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Chapter 0

Notation and Terminology

If M is a topological space and p € M, a neighborhood of p in M is an open subset U of M that
contains p.

The identity element in the groups GL;R and GL;C of invertible k x k real and complex matrices
will be denoted 1.



Chapter 1

Smooth Manifolds and Maps

1 Smooth Manifolds: Definition and Examples

Definition 1.1. A topological space M is a topological m-manifold if
(TM1) M is Hausdorff and second-countable, and
(TM2) every point pe M has a neighborhood U homeomorphic to R™.

A chart around p on M is a pair (U, p), where U is a neighborhood of p in M and ¢: U —U" is
a homeomorphism onto an open subset of R™.

Thus, the set of rational numbers, QQ, in the discrete topology is a 0-dimensional topological mani-
fold. However, the set of real numbers, R, in the discrete topology is not a 0-dimensional manifold
because it does not have a countable basis. On the other hand, R with its standard topology is a
1-dimensional topological manifold, since

(TM1:R) R is Hausdorff (being a metric space) and second-countable;

(TM2:R) the map ¢=id: U=R — R is a homeomorphism; thus, (R,id) is a chart around every
point peR.

A topological space satisfying (TM2) in Definition 1.1 is called locally Euclidean; such a space is
made up of copies of R glued together; see Figure 1.1. While every point in a locally Euclidean
space has a neighborhood which is homeomorphic to R™, the space itself need not be Hausdorff;
see Example 1.2 below. A Hausdorff locally Euclidean space is easily seen to be regular, while
a regular second-countable space is normal [5, Theorem 32.1], metrizable (Urysohn Metrization
Theorem [5, Theorem 34.1]), paracompact [5, Theorem 41.4], and thus admits partitions of unity
(see Definition 5.12 below).

Example 1.2. Let M = (0xRU0'XR)/~, where (0,s)~ (0, s) for all se R—0. As sets, M =RL{0'}.
Let B be the collection of all subsets of R 1LU{0"} of the form

(a,b) CR, a,bcR, (a,b)' = ((a,b) —0) L{0'} ifa<0<b.
This collection B forms a basis for the quotient topology on M. Note that

(TO1) any neighborhoods U of 0 and U’ of 0’ in M intersect, and thus M is not Hausdorff;
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Figure 1.1: A locally Euclidean space M, such as an m-manifold, consists of copies of R™ glued
together. The line with two origins is a non-Hausdorff locally Euclidean space.

(TO2) the subsets M —0" and M —0 of M are open in M and homeomorphic to R; thus, M is
locally Euclidean.

This example is illustrated in the right diagram in Figure 1.1. The two thin lines have length
zero: R~ continues through 0 and 0’ to R*. Since M is not Hausdorff, it cannot be topologically
embedded into R™ (and thus cannot be accurately depicted in a diagram). Note that the quotient
map

¢:OxRUOXR — M

is open (takes open sets to open sets); so open quotient maps do not preserve separation properties.
In contrast, the image of a closed quotient map from a normal topological space is still normal [5,
Lemma 73.3].

Definition 1.3. A smooth m-manifold is a pair (M,F), where M is a topological m-manifold and
F={(Uq, pa)}aca is a collection of charts on M such that

(SM1) M = | J Us,
acA

(SM2) goaocpgl: 0(UaNUpg) — 0a(UaNUpg) is a smooth map (between open subsets of R™) for
all a, e A;

(SM3) F is maximal with respect to (SM2).
The collection F is called a smooth structure on M.

Since the maps ¢, and ¢g in Definition 1.3 are homeomorphisms, ¢3(U,NUg) and o (UsNUp) are
open subsets of R, and so the notion of a smooth map between them is well-defined; see Figure 1.2.
Since {(paocpgl}fl =ppowyt, smooth map in (SM2) can be replaced by diffeomorphism. If a=p3,

500408051:1(1 : @ﬁ(UaﬂUﬁ):@a(Ua) — @a(UamUﬁ):@a(Ua)

is of course a smooth map, and so it is sufficient to verify the smoothness requirement of (SM2)
only for ae#£ .

It is hardly ever practical to specify a smooth structure F on a manifold M by listing all elements
of F. Instead F can be specified by describing a collection of charts Fo={(U, ¢)} satisfying (SM1)
and (SM2) in Definition 1.3 and setting

F = {chart (V,9) on M| potp™': p(UNV) —p(UNV) is diffeomorphism V (U, p) € Fo}. (1.1)



Figure 1.2: The overlap map between two charts is a map between open subsets of R™.

Example 1.4. The map ¢=id: R™ — R is a homeomorphism, and thus the pair (R™,id) is a
chart around every point in the topological m-manifold M =R™. So, the single-element collection
Fo={(R™,id)} satisfies (SM1) and (SM2) in Definition 1.3. It thus induces a smooth structure F
on R™:; this smooth structure is called the standard smooth structure on R™.

Example 1.5. Every finite-dimensional vector space V has a canonical topology specified by the
requirement that any vector-space isomorphism ¢: V — R™, where m =dim V', is a homeomor-
phism (with respect to the standard topology on R™). If ¢): V — R™ is another vector-space

isomorphism, then the map
pop L R™ — R™ (1.2)

is an invertable linear transformation; thus, it is a diffeomorphism and in particular a homeo-
morphism. So, two different isomorphisms ¢,? : V — R determine the same topology on V.
Each pair (V, ) is then a chart on V, and the one-element collection Fo={(V,¢)} determines a
smooth structure F on V. Since the map (1.2) is a diffeomorphism, F is independent of the choice
of vector-space isomorphism ¢ : V — R™. Thus, every finite-dimensional vector space carries a
canonical smooth structure.

Example 1.6. The map ¢: R— R, o(t) =13, is a homeomorphism, and thus the pair (R,¢) is
a chart around every point in the topological 1-manifold M =R. So, the single-element collection
Fo={(R, )} satisfies (SM1) and (SM2) in Definition 1.3. It thus induces a smooth structure F’
on R. While F'# F, where F is the standard smooth structure on R' described in Example 1.4,
the smooth manifolds (R!, F) and (R!, F’) are diffeomorphic in the sense of (2) in Definition 2.1
below.

Example 1.7. Let M =S! be the unit circle in the complex (s, ¢)-plane,
U, =8"—-{i}, U_=8"-{-}.

For each p € Uy, let ¢4 (p) € R be the s-coordinate of the intersection of the s-axis with the line
through the points +i and p # +i; see Figure 1.3. The maps ¢+ : Uy — R are homeomorphisms
and S'=U_UU_. Since

U, NU_=8"—{i,-i}=U, — {-i} =U_ - {i}
and ¢4 (UyNU-)=R—0=R*, the overlap map is

prop”li o (UpNU-)=R* — ¢ (U1 NU-)=R*;
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Figure 1.3: A pair of charts on S' determining a smooth structure.

by a direct computation, this map is s — s~!. Since this map is a diffeomorphism between open
subsets of R, the collection

Fo= {(U+>90+)7 (U—a(/)—)}

determines a smooth structure F on S*.

A smooth structure on the unit sphere M = S™ C R™*! can be defined similarly: take Uy C S™
to be the complement of the point g+ € S™ with the last coordinate +1 and ¢4 (p) € R™ the
intersection of the line through ¢t and p # g+ with R™ =R" x (0. This smooth structure is the
unique one with which S™ is a submanifold of R™*!; see Definition 4.1 and Corollary 4.6.
Example 1.8. Let MB=([0,1]xR)/~, (0,t) ~(1,—t), be the infinite Mobius Band,
Up = (0,1)xR C MB, po=id: Uy — (0,1) xR,
(s—1/2,t), ifse(1/2,1],
U9 =MB—{1/2} xR — (0,1) xR, s, t]) =
P172: V1/2 {1/2} (0,1) @1/2([ 1) {(8+1/2,—t), it s€0,1/2),

where [s,t] denotes the equivalence class of (s,t) € [0,1] x R in MB. The pairs (Up, ¢g) and
(Ui /2, 1/2) are then charts on the topological 1-manifold MB. The overlap map between them is

0172000 2o(UoNUy/2) = ((0,1/2)U(1/2,1)) xR — 1 2(UoNU12) =((0,1/2)U(1/2,1)) xR,
_ _J(s+1/2,-t), if 5€(0,1/2);
P1/2000 (5:1) = {(3_1/2,1:), it se(1/2,1);

see Figure 1.4. Since this map is a diffeomorphism between open subsets of R2, the collection

Fo = {(Uo,%0), U1z, 1/2) }

determines a smooth structure F on MB.

Example 1.9. The real projective space of dimension n, denoted RP"™, is the space of real one-
dimensional subspaces of R"! (or lines through the origin in R"*!) in the natural quotient topol-
ogy. In other words, a one-dimensional subspace of R™*! is determined by a nonzero vector in
R"*! ie. an element of R"T!'—0. Two such vectors determine the same one-dimensional subspace
in R"*! and the same element of RP" if and only if they differ by a non-zero scalar. Thus, as sets

RP" = (R"*'—0)/R* = (R"*'-0)/ ~, where
c-v=cveR"™ -0 VceR*, veR™ 0, v~cv VeeR*, veR 0.
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Figure 1.4: The infinite Mobius band MB is obtained from an infinite strip by identifying the two
infinite edges in opposite directions, as indicated by the arrows in the first diagram. The two charts
on MB of Example 1.8 overlap smoothly.

Alternatively, a one-dimensional subspace of R*! is determined by a unit vector in R"*1, i.e. an
element of S™. Two such vectors determine the same element of RP™ if and only if they differ by
a non-zero scalar, which in this case must necessarily be 1. Thus, as sets

RP" = Sn/ZQ ES”/ ~, where
Zo={*1}, c-v=cv€S" Yc€ly,vES", v~cv VcEly, vES> (1.3)

Thus, as sets,
RP" = (R"*1—0) /R* = S" /Z,.

It follows that RP™ has two natural quotient topologies; these two topologies are the same, however.
The space RP™ has a natural smooth structure, induced from that of R"*'—0 and S™. It is generated
by the n+1 charts

¢i: Ui = {[ X0, X1,..., X)) X;#0} — R",

[Xo, X1, -, X,.] _>(ﬁ L Ko X ﬁ)

Note that RP=51,

Example 1.10. The complex projective space of dimension n, denoted CP"™, is the space of complex
one-dimensional subspaces of C"*! in the natural quotient topology. Similarly to the real case of
Example 1.9,

CP" = (C**'—0)/C* = 5?1 /S' where
St = {CG(C*: |c|:1}, Sontl — {UEC"+1—0: |v|:1},
c-v=cveC"t -0 VeeC*, veCrt—o.

The two quotient topologies on CP" arising from these quotients are again the same. The space
CP™ has a natural complex structure, induced from that of C**1—0.

There are a number of canonical ways of constructing new smooth manifolds.



Proposition 1.11. (1) If (M,F) is a smooth m-manifold, U C M is open, and
Flo = {(UanU, ¢alvanv): Ua, o) €F} = {(Ua, o) €F: UsCU}, (1.4)

then (U, F|y) is also a smooth m-manifold.
(2) If (M, Far) and (N, Fn) are smooth manifolds, then the collection

Fo = {({UaxVs,0ax9p): (Ua,pa) € Fur, (Va,15) € Fi } (1.5)
satisfies (SM1) and (SM2) of Definition 1.3 and thus induces a smooth structure on M x N.

It is immediate that the second collection in (1.4) is contained in the first. The first collection is
contained in the second because F is maximal with respect to (SM2) in Definition 1.3 and the re-
striction of a smooth map from an open subset of R™ to a smaller open subset is still smooth. Since
every element (U,, ¢, ) of F is a chart on M, every such element with U, CU is also a chart on U.
Since {Uy: (Uy, pa) € F} is an open cover of M, {UyU: (U,, o) € F} is an open cover of U. Since
F satisfies (SM2) in Definition 1.3, so does its subcollection F|y. Since F is maximal with respect
to (SM2) in Definition 1.3, so is its subcollection F|¢;. Thus, F|y is indeed a smooth structure on U.

Let m=dim M and n=dim N. Since each (U,, ¢o) € Far is a chart on M and each (Vj3,93) € Fn
is a chart on IV,

YaXthg: Ua x Vi — 0a(Uy) x1g(Vs) C R xR"™ = R"™ "
is a homeomorphism between an open subset of M x N (in the product topology) and an open
subset of R™*". Since the collections {Uy: (Un, ¢a)€Fu} and {Vs: (V3,¢3) € Fn} cover M and
N, respectively, the collection
{UaxVg: (U, 0a) € Far, (Va,thg) €Fn}
covers M X N. If (Uyx V3, pax1g) and (Uy x Vg, o x1Pg) are elements of the collection (1.5),
U, XVB NUy XVB/ = (UaﬂUa/) X (VgﬂVg/)7
{oaxtp}(Uax Vs N Uy xVg) = @a(UaNUpy) x ¥3(VgNVg) C R
{(pa/ X'lp/g/}(Ua X V/B N U, X Vﬁ’) = Qo (UamUa’) X 1/}@/ (VﬁmVﬂ/) C Rern,

and the overlap map,

{paxtis} o {eaxiip} " = {pacp!} x {wsop5'},

is the product of the overlap maps for M and N; thus, it is smooth. So the collection (1.5) satisfies
the requirements (SM1) and (SM2) of Definition 1.3 and thus induces a smooth structure on M xN,
called the product smooth structure.

Corollary 1.12. The general linear group,
GL,R = {AeMat,x,R: det A # 0},

is a smooth manifold of dimension n>.

The map
det: Mat, ,R~R" — R

is continuous. Since R—0 is an open subset of R, its pre-image under det, GL,RR, is an open subset
of R™ and thus is a smooth manifold of dimension n? by (1) of Proposition 1.11.
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Figure 1.5: A continuous map f between manifolds is smooth if it induces smooth maps between
open subsets of Euclidean spaces via the charts.

2 Smooth Maps: Definition and Examples

Definition 2.1. Let (M, Fyr) and (N, Fy) be smooth manifolds.

(1) A continuous map f: M — N is a smooth map between (M,Fyr) and (N,Fn) if for all
(U,p)eFnr and (V,2)) € Fy the map

pofop ™ o(fTHV)NU) — (V) (2.1)
is a smooth map (between open subsets of Euclidean spaces).

(2) A smooth bijective map f : (M,Fn) — (N,Fn) is a diffeomorphism if the inverse map,
f~Y (N, Fn)— (M, Fur), is also smooth.

(8) A smooth map f: (M,Fnr)— (N,Fn) is a local diffeomorphism if for every p € M there are
open neighborhoods Uy, of p in M and Vi) of f(p) in N such that fly, : Up — Vi is a
diffeomorphism between the smooth manifolds (Up, Falu,) and (Vi) Fnlvy,)-

If f: M — N is a continuous map and (V, )€ Fy, f~1(V)C M is open and (V) CR" is open,
where n=dim N. If in addition (U, ¢) € Fus, then o(f~1(V)NU) is an open subset of R™, where
m=dim M. Thus, (2.1) is a map between open subsets of R”" and R", and so the notion of a smooth
map between them is well-defined; see Figure 1.5. If Fjr,0 and F, are collections of charts on M
and N, respectively, that generate F); and Fy in the sense of (1.1), then f: (M, Fpr) — (N, Fn)
is a smooth map if and only if (2.1) is a smooth map for every (U, ) € Faryo and all (V,4) € Fiyo
covering f(U). Similarly, f: M — N is a local diffeomorphism if and only if (2.1) is a local
diffeomorphism for every (U, ¢) € Far,o and all (V,v) € Fno covering f(U).

A Dbijective local diffeomorphism is a diffeomorphism, and vice versa. In particular, the identity
map id: (M, F) — (M,F) on any manifold is a diffeomorphism, since for all (U, ¢), (V,9) € Fur
the map (2.1) is simply

wogoflz ga(UﬂV) — w(UﬂV) cY(V);

it is smooth by (SM2) in Definition 1.3. For the same reason, the map
Q: (U,}-M‘U) — (p(U) CcR™

9
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Figure 1.6: A horizontal slice M x¢=1Im,, a vertical slice px N =Im¢,, and the two component
projection maps M x N — M, N

is a diffeomorphism for every (U, ¢) € Far. A composition of two smooth maps (local diffeomor-
phisms, diffeomorphisms) is again smooth (a local diffeomorphism, a diffeomorphism).

Example 2.2. Let (M, Fy) and (N, Fy) be smooth manifolds and Fyrxn the product smooth
structure on M x N of Proposition 1.11. Let Fy be as in (1.5).

(1)

For each g€ N, the inclusion as a “horizontal” slice,
Lq:M%MXNa p—)(p7Q)>
is smooth, since for every (U, p) € Fas and (U XV, px1)) € Fy with g€V the map

{exip}orgop™ ! =idxp(q): (1 (UXV)NU) =p(U) — {ex ¢} (UXV) = o(U)x (V)

“vertical” slice,

is smooth and ¢,(U) CU x V. Similarly, for each p€ M, the inclusion as a
i N — MxN,  q— (p,q),
is also smooth.
The projection map onto the first component,
m=my: MxN — M,  (p,q) —p,
is smooth, since for every (U XV, px) € Fy and (U, @) € Fps the map
pomaro{oxtp} = m: {oxp} (r (U)NUXV) = o(U) x (V) — (V)

is smooth (being the restriction of the projection R™ x R™ — R™ to an open subset) and
ma(UxV)CU. Similarly, the projection map onto the second component,

me=mN: MXxN — N, (P, q) — q.

is also smooth.

The following two lemmas and a proposition provide additional ways of constructing smooth struc-
tures. Lemma 2.3 can be used in the proof of Proposition 2.5; Lemma 2.4 gives rise to manifold
structures on the tangent and cotangent bundles of a smooth manifold, as indicated in Example 6.5.

10



Lemma 2.3. Let M be a Hausdorff second-countable topological space and {pq : Uy — Ma} a
collection of homeomorphisms from open subsets Uy of M to m-manifolds M, such that

vaopy": 9 (UaNUp) — pa(UaNUs) (2.2)

is a smooth map for all o, € A. If the collection {Uy}aea covers M, then M admits a unique
smooth structure such that each map @4 is a diffeomorphism.

Lemma 2.4. Let M be a set and {pq: U, —>Ma} a collection of bijections from subsets Uy of
M to m-manifolds M, such that

paopy' 0p(UanUs) — ¢a(UaNUp) (2.3)
is a smooth map between open subsets of Mg and M,, respectively, for all o, B€ A.

(NMS1) If the collection {Ugy}aena covers M, then M admits a unique topology Tys such that each
map pq S a homeomorphism.

(NMS2) Ifin addition Tys is Hausdorff and second-countable, then (M, Tyr) admits a unique smooth
structure such that each map @4 is a diffeomorphism.

Proposition 2.5. If a group G acts properly discontinuously on a smooth m-manifold (M,]:M)
by diffeomorphisms and w: M — M =M /G is the quotient projection map, then

Fo = {(7r(U),<po{7r\U}_l): (U,p)eFy, mlu is injective}

is a collection of charts on the quotient topological space M that satisfies (SM1) and (SM2) in
Definition 1.3 and thus induces a smooth structure Fpr on M. This smooth structure on M is the
unique one satisfying either of the following two properties:

(QSM1) the projection map M — M is a local diffeomorphism;

(QSM2) if N is a smooth manifold, a continuous map f: M — N is smooth if and only if the
map forw: M — N is smooth.

A basis for the topology 73 of Lemma 2.4 consists of the subsets U C M such that U C U, and
¢0a(Ua) C M, is open for some a € A. In the case of Lemma 2.3, ¢, (U,NUg) is an open subset
of M, because U, and Ug are open subsets of M and ¢, is a homeomorphism; thus, smoothness
for the map (2.2) is a well-defined requirement in light of (1) of Proposition 1.11 and (1) of Def-
inition 2.1. In the case of Lemma 2.4, ¢, (UsNUg) need not be a priori open in M,, and so this
must be one of the assumptions. In both cases, the requirement that gaaocpgl be smooth can be
replaced by the requirement that it be a diffeomorphism. We leave proofs of Lemmas 2.3 and 2.4
and Proposition 2.5 as exercises.

The smooth structure Fjs on M of Proposition 2.5 is called the quotient smooth structure on M.
For example, the group Z acts on R and on R xR by

Z xR — R, (m,s) — s+ m, (2.4)
Zx RxR — RxR,  (m,s,t) — (s+m,(—1)"t).

Both of these actions satisfy the assumptions of Proposition 2.5 and thus give rise to quotient
smooth structures on S' =R/Z and MB = (R xR)/Z. These smooth structures are the same as

11



those of Examples 1.7 and 1.8, respectively.

Example 1.6 is a special case of the following phenomenon. If (M, F) is a smooth manifold and
h: M — M is a homeomorphism, then

WF={(h1(U),poh): (Up)eF}

is also a smooth structure on M, since the overlap maps are the same as for the collection F. The
smooth structures F and h*F are the same if and only if h: (M, F) — (M, F) is a diffeomorphism.
However, in all cases, the map h~': (M, F) — (M, h*F) is a diffeomorphism; so if a topological
manifold admits a smooth structure, it admits many smooth equivalent (diffeomorphic) smooth
structures.

This raises the question of which topological manifolds admit smooth structures and if so how
many inequivalent ones. Since every connected component of a topological manifold is again a
topological manifold, it is sufficient to study this question for connected topological manifolds.

dim=0: every connected topological 0-manifold M consists of a single point, M = {pt}; the only
smooth structure on such a topological manifold is the single-element collection {(M, )},
where ¢ is the unique map M —RY.

dim=1: every connected topological (smooth) 1-manifold is homeomorphic (diffeomorphic) to ei-
ther R or S* in the standard topology (and with standard smooth structure); a short proof
of the smooth statement is given in [2, Appendix].

dim=2: every topological 2-manifold admits a unique smooth structure; every compact topological
2-manifold is homeomorphic (and thus diffeomorphic) to either a “torus” with g >0 handles
or to a connected sum of such a “torus” with RP? [5, Chapter 8]; every such manifold
admits a smooth structure as it is the quotient of either S? or R? by a group acting properly
discontinuously by diffeomorphisms.

dim=3: every topological 3-manifold admits a unique smooth structure [3].

dim=4: there are lots of topological 4-manifolds that admit no smooth structure and lots of other
topological 4-manifolds (including R*) that admit many (even uncountably many) smooth
structures.

The first known example of a topological manifold admitting non-equivalent smooth structures
is the 7-sphere [1]. Since then the situation in dimensions 5 or greater has been sorted out by
topological arguments.

Remark 2.6. While topology studies the topological category 7 C, differential geometry studies
the smooth category SC. The objects in the latter are smooth manifolds, while the morphisms are
smooth maps. The composition of two morphisms is the usual composition of maps (which is still
a smooth map). For each object (M, Fys), the identity morphism is just the identity map idys
on M (which is a smooth map). The “forgetful map”

SC —TC, (M, Frr) — M, (f:(M,fM)—>(N,.7:N))—>(f:M%N),

is a functor from the smooth category to the topological category.

12
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Figure 1.7: The tangent space of S at p viewed as a subspace of R2.

1,51

3 Tangent Vectors

This section defines tangent vectors and related concepts for a smooth manifold. These are often
used in describing properties of smooth maps between manifolds as well as in studying specific
manifolds.

If M is an m-manifold embedded in R", with m<n, and a: (—¢,e) — M is a smooth map (curve
on M) such that a(0) =pe M, then /(0) € R™ should be a tangent vector of M at p. The set of
such vectors is an m-dimensional linear subspace of R™; it is often thought of as having the 0-vector
at p, at the origin of R"; see Figure 1.7. However, this presentation of the tangent space 1), M of
M at p depends on the embedding of M in R”, and not just on M and p.

On the other hand, the tangent space at a point p € R™ should be R™ itself, but based (with the
origin) at p. Each vector v€R™ acts on smooth functions f defined near p by

flp+tv) — fp)
t

Dulpf = lim (3.1)

If v=e; is the i-th coordinate vector on R™, then O, |, f is just the i-th partial derivative 0;f|, of f
at p. The map 0,|, defined by (3.1) takes each smooth function defined on a neighborhood of p in
R™ to R and satisfies:

(TV1) if f: U — R and g: V — R are smooth functions on neighborhoods of p such that
flw =glw for some neighborhood W of p in UNV, then 0, |,f =0y |p9;

(TV2) if f: U—1R and g: V—R are smooth functions on neighborhoods of p and a,b€R, then

8v|p(af—|-bg) = aav|pf + b@v|pg,

where a f+bg is the smooth function on the neighborhood UNV given by
{af+bg}(q) = af(q) + bg(q);
(TV3) if f: U—R and g: V—R are smooth functions on neighborhoods of p, then

8v|p(fg) = f(p)av |pg + g(p)av|pfa

where fg is the smooth function on the neighborhood UNV given by {fg}(¢) = f(q)g(q)-
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It turns out every R-valued map on the space of smooth functions defined on neighborhood of p
satisfying (TV1)-(TV3) is 0, for some v € R™; see Proposition 3.4 below. At the same time,
these three conditions make sense for any smooth manifold, and this approach indeed leads to an
intrinsic definition of tangent vectors for smooth manifolds.

The space of functions defined on various neighborhoods of a point does not have a very nice
structure. In order to study the space of operators satisfying (TV1)-(TV3) it is convenient to put
an equivalence relation on this space.

Definition 3.1. Let M be a smooth manifold and pe M.

(1) Functions f: U—1R and g: V— R defined on neighborhoods of p in M are p-equivalent, or
f~pg, if there exists a neighborhood W of p in UNV such that flw =g|w .

(2) The set of p-equivalence classes of smooth functions is denoted ﬁ'p; the p-equivalence class of
a smooth function f: U — R on a neighborhood of p is called the germ of f at p and is
denoted ip.

The set ﬁ’p has a natural R-algebra structure:
of +bg =af+bg . f g =fg, Vf,g € abeR,

where af+bg and fg are functions defined on UNV if f and g are defined on U and V, respectively.
There is a well-defined valuation homomorphism,

evy: Fp — R, ip SN f(p)

Let F), = ker evy; this subset of Fp consists of the germs at p of the smooth functions defined on
neighborhoods of p in M that vanish at p. Since ev), is an R-algebra homomorphisms, F, is an
ideal in Fp; this can also be seen directly: if f(p)=0, then {fg}(p)=0. Let F2 C F}, be the ideal

in Fp consisting of all finite linear combinations of elements of the form ipgp with ip, 9,€ F,. If

cER, let ¢, Gﬁp denote the germ at p of the constant function with value ¢ on M.

Lemma 3.2. Let M be a smooth manifold and pe M. If v is a derivation on Fp relative to the
valuation evy,! then
v[pz =0, v(c,) =0 VceR. (3.2)

If ip,ngFp, then f(p), g(p)=0 and thus

v(f,9,) = f)o(g,) + gp)u(f,) = 0;

< =p

so v vanishes identically on Fg . If ceR,
v(gp) = v(lye,) = 1p) - v(g,) +clp) - v(ly) = 1-v(g,) +c-v(ly)
= U(Qp) + U(C : lp) = v(gp) + v(gp);

so v(c,) = 0.

Yi.e. v: F,—R is an R-linear map such that

u(f,9,) = evp(f Jolg) +evplg Jo(f ), V[ .9 €Fp.

P —b =P
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Corollary 3.3. If M be a smooth manifold and p€ M, the map v — v|F, induces an isomorphism
from the vector space Der(Fp,evp) of derivations on F relative to the valuation evy, to

{LeHom(Fy,R): L =0} ~ (F,/F;)".
The set Der(Fp, evp) of derivations on Fp relative to the valuation ev, indeed forms a vector space:

{av—i—bw}(i ) —av(f )+bw(f ) VU,wEDer(Fp,evp), a,beR, iPEFp-

If v eDer(Fp, evp), the restriction of v to F), Cﬁ'p is a homomorphism to R that vanishes on Fp2 by
Lemma 3.2. Conversely, if L: Fj, — R is a linear homomorphism vanishing on Fg, define

v F,—R by vL(ip)zL(f—f(p)p);

since the function f— f(p) vanishes at p, f—f (p)p € F), and so vy, is well-defined. It is immediate
that vy, is a homomorphism of vector spaces. Furthermore, for all ip, 9,

vr(f,9,) = L(f9—f()g(p) ) =L(f(p)g—g(p) ,towf-1p) +f-fp) 9-9(p))
f()L(g=g(p) ) +9@)L(f—f(p) ) + L(f=f(p) 9—9(p) )
=/

pyor(g,) +9(@)or(f,) +0,

since L vanishes on F} 2. so vy, is a derivation with respect to the valuation evp. It is also immediate

that the maps

Der(F), evy) — {LeHom(F,,R): L\Fg =0}, v — Ly, = v|E,, (33)
- 3.3
{LeHom(F,,R): L =0} — Der(F},evy), L — vp,

are homomorphisms of vector spaces. If L € Hom(F},,R) and L| F2 =0, the restriction of vy, to Fj, is
L, and so L,, = L. If v€Der(F), ev,) and ipeﬁp, by the second statement in (3.2)

o(f,) = (L) ~o(IW),) = v =I0),) = L(f=1®),) = ve.(1,);

so v, =v and the two homomorphisms in (3.3) are inverses of each other. This completes the
proof of Corollary 3.3.

Proposition 3.4. If peR™, the vector space Fp/Fg 18 m-dimensional and the homomorphism
R™ — Der(Fp,evy) = (F/F2)", v — ulp, (3.4)
induced by (3.1), is an isomorphism.

By (TV1), d,], induces a well-defined map £, — R. By (TV2), d,], is a vector-space homomor-
phism. By (TV3), 9y, is a derivation with respect to the valuation ev,. Thus, the map (3.4) is
well-defined and is clearly a vector-space homomorphism. If 7;: R™ —R is the projection on the
j-th component,

1, ifi=7;

0, ifizj. (3:5)

861‘17( Wj(p)) = (8i(7rj_77j(p)))p =i = {
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Thus, the homomorphism (3.4) is injective, and the set {m;—m;(p) } is linearly independent
——=p

in F},/F2. On the other hand, Lemma 3.5 below implies that

7] =m

> mia / (1—1)(0:0; f ) pstzdt (3.6)

i,j=1

fp+x) = —i—Z (0i f ) pi +
i=1

for every smooth function f defined on a open ball U around p in R™ and for all p+x € U. Thus,
the set {m;j—m;(p) } spans F,/F}; so F},/F2 is m-dimensional and the homomorphism (3.4) is an
" p

isomorphism.

Note that the inverse of the isomorphism (3.4) is given by

Der(ﬁ’p,evp) — R™, v — (v(ﬂp

)o- oo 0(m,)); (3.7)

by (3.5), this is a right inverse and thus must be the inverse.

Lemma 3.5. If h: U—1R is a smooth function defined on an open ball U around a point p in R™,
then

i=m 1
h(p+x) = h(p) + Z xi/o (Oih) pttodt

for all p+x€U.

This follows from the Fundamental Theorem of Calculus:

1i=m
h(p+x) = / —h(p+tx)d / Z (Oih)prtzzidt
= h(p) + Z ffi/(aih)p+tzdt-

i=1 0

Corollary 3.6. If M be a smooth m-manifold and p € M, the vector space Der(ﬁp,evp) s m-
dimensional.

If p: U—R™ is a chart around pe M, the map f— foy induces an R-algebra isomorphism

Fop) — Fp, Lo — [o9,- (3:8)
Since ev,,) =evyop™, p* restricts to an isomorphism F,,y — F}, and descends to an isomorphism

2 2
F@(P)/Fgo(p) - P/Fp : (3.9)
Thus, Corollary 3.6 follows from Corollary 3.3 and Proposition 3.4.
Definition 3.7. Let M be a smooth manifold and pe M .

(1) The tangent space of M at p is the vector space TpM:Der(Fp, evp); a tangent vector of M at
p is an element of T,M.

(2) The cotangent space of M at p is TyM = (T,M)* = Hom(T,M,R).
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By Corollary 3.6, T, M and T}y M are m-dimensional vector spaces if M is an m-dimensional mani-
fold. By Proposition 3.4, T,R™ is canonically isomorphic to R for every p€ R™. By Corollary 3.3,
TyM~F,/ Fg; an element f —FFP2 of F,/ Fp2 determines the vector-space homomorphism

=p

LM —R,  v—u(f) (3.10)

Any smooth function f defined on a neighborhood of p in M defines an element of T*M in the
same way, but this element depends only on

f—f(p) +F; € F/F.
Definition 3.8. Let h: M — N be a smooth map between smooth manifolds and pe M.
(1) The differential of h at p is the map

dph: M — TN, {dph(0)}(f, ) =v(foh) YveD,M, f, €Fq. (3.11)

(2) The pull-back map on the cotangent spaces is the map

The map (3.11) is a vector-space homomorphism, and thus so is A*. It is immediate from the
definition that dpidy =idz,a and thus idy, = idT; v If N=R, ThpR is canonically isomorphic
to R, via the map

TR — R, w — w(idR);

see (3.7). In particular, if ve T,M,
dph(v) — {dph(v)}(idr) = v(idroh) = v(h).

Thus, under the canonical identification Tj,,)R with R, the differential d,h of a smooth map
h: M —1R is given by

dph(v) = v(h) VoveT,M (3.13)

and so corresponds to the same element of T7M as
2 2,
h—h(p)p + Fy € Fp/Fy
see (3.10).

Lemma 3.9. If g: M — N and h: N — X are smooth maps between smooth manifolds and
pEM, then
dp(hog) = dypyh odpg: TyM — Thgp) X- (3.14)

Thus, (hog)*=g*oh*: T} X—T;M and

(g(p))

whenever f is a smooth function on a neighborhood of g(p) in N.
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If veT,M and f is a smooth function on a neighborhood of h(g(p)) in X, then by (3.11)

{{dp(hog)} () }(f) = v(fohog) = {dpg(v) }(foh) = {dy)h(dpg(v)) } (f)

= {{dg(p)hodpg}(v)}(f)S
thus, (3.14) holds. The second claim is the dual of the first. For the last claim, note that
9 dy(p) f = dg(p) f o dpg = dp(fog) (3.16)

by (3.12) and (3.14). For the purposes of applying (3.12) and (3.14), all expressions in (3.16) are
viewed as maps to T4, R, before its canonical identification with R. The identities of course
continue to hold after this identification.

Let ¢ = (x1,...,2m): U —R™ be a chart on a neighborhood of a point p in M; so, x; =m0,
where 7;: R™ — R is the projection to the i-th component as before. Since the map (3.8) induces
the isomorphism (3.9) and {m—xi(p)‘p(p)}i is a basis for Fw(p)/Fz(py

v ({mizzilp), )

yi) = {(mizzip))oy, 1, = {zi=zi(p) },

is a basis for Fp/Fg. Thus, {d,;}; is a basis for Ty M, since dpz; and z; —x; (p)p act in the same

way on all elements of T),M; see the paragraph following Definition 3.8. For each i=1,2,...,m,
let
9 .
o | T Aoy (Oeilo(p)) € TpM.
tip

By (3.11), for every smooth function f defined on a neighborhood of p in M

K
8@-

p(f) = {dw(p)@fl(aeib(p))}(f) = 8€i|4P(P) (fo@il) (3.17)

= ai(fo‘P_l)|s0(p)

is the i-th partial derivative of the function fop™" at ¢(p); this is a smooth function defined on a
neighborhood of ¢(p) in R™. In particular, for all ¢,j=1,2,...,m

0 0

the first equality above is a special case of (3.13). Thus, {%‘p}i is a basis for T),M; it is dual to

the basis {dpz;}; for T, M. The coefficients of other elements of T,M and T,y M with respect to
these bases are given by

1

(l’j) = 81'(7Tj0(p o) go_l) = (52']' ;
p

i=m i=m

v= (dp;(v)) Oi = Z v(mz)aa‘ VoveT,M; (3.18)
i=1 ¢ i=1 tip
=m 8 .

n=2_"MN 5 dpx; VneT, M. (3.19)
i=1 Tilp

The first identities in (3.18) and (3.19) are immediate from the two bases being dual to each other
(each dyx; gives the same values when evaluated on both sides of the first identity in (3.18); both
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sides of (3.19) evaluate to the same number on each %’p). The second equality in (3.18) follows
from (3.13). If f is a smooth function on a neighborhood of p, by (3.19), (3.13), and (3.17)

i=m 9 i=m 9
wf =3 (5] Y=Y (5
i—1 7 7

P i=1
If v=(y1,...,ym): V—R™ is another chart around p, by (3.18) and (3.17)

i=m

(f)>dpa:i = Z (8i(fo<p_1))@(p)dp;ri. (3.20)

i=1

p

o ":m< ) ) il . B
| = - (%)) = <3‘(7Tz‘01/1090 ) ())
o, = 2 om ) o, = 2 1 T gy
9 0 0 9 »
= — = ) ==, = ,
(fm 7 By p> (0?;1 Y )ﬂww )t

where J (op~1) o(p) 18 the usual Jacobian (matrix of partial derivatives) of the smooth map o1

between the open subsets ¢ (UV') and ¢ (UNV') of R™ at ¢(p); see Figure 1.2 with ¢, =1 and pg=¢.

Suppose next that f: M — N is a map between smooth manifolds and
o=(x1,...,2p): U —R™ and V=(y1,...,yn): V —R"

are coordinate charts around p€ M and f(p) € N, respectively; see Figure 1.5. By (3.18) and (3.11),

o i=n o o i=n 0
d,fl =—1| | = dpf| 5— i) A = 9.
pf<axj p) Z{ pf<axj p)}(y)ayi f(p) zz; <8mj

i=1
=n B a
= z; (9;(miotpo fop 1))90(?)@

(yiof))aayi

p f(p)

(3.22)

?

f(p)

so the matrix of the linear transformation d, f: T, M — T(,) N with respect to the bases {% ‘p}j
and {a%i‘f(p)}i is j(wofocpfl)w(p), the Jacobian of the smooth map 1o fop~! between the open

subsets @(UN f~1(V)) and (V) of R™ and R™, respectively, evaluated at o(p). In particular,
dpf is injective (surjective) if and only if J(wofow_l)‘p(p) is. The f =1id case of (3.22) is the
change-of-coordinates formula (3.21). If M and N are open subsets of R™ and R", respectively,
p=idps, and ¢ =idy, then under the canonical identifications T,R™ =R™ and T}, R" =R" the
differential d, f is simply the Jacobian J(f), of f at p. The chain-rule formula (3.14) states that
the Jacobian of a composition of maps is the (matrix) product of the Jacobians of the maps; if M,
N, and X are open subsets of Euclidean spaces, this yields the usual chain rule for smooth maps
between open subsets of Euclidean spaces, for free (once it is checked that all definitions above
make sense and correspond to the standard ones for Euclidean spaces).

By the above, if ¢ =(z1,...,2y): U—R™ is a chart around a point p in M, then {d,z;}; is a
basis for TyM. A weak converse to this statement is true as well; see Corollary 3.12 below. The
key tool in obtaining it is the Inverse Function Theorem for R"; see [4, Theorem 8.3], for example.

Theorem 3.10 (Inverse Function Theorem). Let U’ CR™ be an open subset and f: U — R™ a

smooth map. If the Jacobian J(f), of f is non-singular for some peU’, there exist neighborhoods
UofpinU and V of f(p) in R™ such that f: U—V is a diffeomorphism.
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Corollary 3.11 (Inverse Function Theorem for Manifolds). Let f: M — N be a smooth map
between smooth manifolds. If the differential dpf : TyM — Ty, N is an isomorphism for some
pE€ M, then there exist neighborhoods U of p in M and V of f(p) in N such that f: U—V is a
diffeomorphism.

Let o=(21,...,2p): U —R™ and = (y1,...,ym): V' —>R™ be charts around p in M and f(p)
in N, respectively; see Figure 1.5. Then,

pofop tip(UNFH(V)) — (V') CR™

is a smooth map from an open subset of R” to R™ such that J (yofop~!) ) is non-singular (since

e(p
by (3.22) this is the matrix of the linear transformation d,f with respect to bases {ﬁ}j and
J

{a%i\ #(p)}i)- Since o and ¢ are homeomorphisms onto the open subsets ¢(U’) and ¢ (V’) of R™,

by Theorem 3.10 there exist open neighborhoods U of p in U'Nf~1(V’) and V of f(p) in V' such
that the restriction

vofop i p(U) — (V)
is a diffeomorphism. Since ¢: U — ¢(U) and ¢: V — (V) are also diffeomorphisms, it follows
that so is f: U — V (being composition of 1o fop™! with =1 and ).

Corollary 3.12. Let M be a smooth m-manifold. If x1,...,zy: U — R are smooth functions
such that {dpz;}; is a basis for Ty M for some p € U’, then there exists a neighborhood U of p in
U’ such that

o= (z1,...,2m): U —R
1s a chart around p.
Let f=(21,...,2m): U —R™. Since {d,z;}; is a basis for Ty M, the differential
dpl'l

dpf= :TyM — R™

dpTm

is an isomorphism (for each v €T, M —0, there exists i such that dyz;(v)#0). Thus, Corollary 3.12
follows immediately from Corollary 3.11 with M =U" and N =R".

Corollary 3.13. Let M be a smooth m-manifold. If z1,...,z,: U — R are smooth functions
such that the set {d,x;}; spans TyM for some p € U’, then there exists a neighborhood U of p in
U’ such that an m-element subset of {x;}; determines a chart around p on M.

This claim follows from Corollary 3.12 by choosing a subset of {z;}; so that the corresponding
subset of {dpz;}; is a basis for T,y M.

Corollary 3.14. Let M be a smooth m-manifold. If x1,...,x,: U — R are smooth functions
such that the set {dpz;}; is linearly independent in Ty M for some p € U’, then there exist a
neighborhood U of p in U’ and a set of smooth functions xji1,...,Tm: U — R such that the map

. m
gpz(xl,...,xk,wk+1,...,:cn).U—>R

is a chart around p on M.
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This claim follows from Corollary 3.12 by choosing a chart ¥ = (y1,...,ym) : U’ — R™ on a
neighborhood U” of p in U’ and adding some of the functions y; to the set {x;}; so that the
corresponding set {d,z;, dpy;} is a basis for Ty M.

Remark 3.15. The differential of a smooth map induces a functor from the category of pointed
smooth manifolds (smooth manifolds with a choice of a point) and pointed smooth maps (smooth
maps taking chosen points to each other) to the category of finite-dimensional vector spaces and
vector-space homomorphisms:

(M, p) — T, M, (h: (M,p)— (N,q)) — (dph: T,M —T,N);

these mappings take a composition of morphisms to a composition of morphisms by (3.14) and id s
toidr,ps. On the other hand, the pull-back map h* on the cotangent spaces reverses compositions of
morphisms by (3.15) and thus gives rise to a contravariant functor between the same two categories.

4 Immersions and Submanifolds

Definition 4.1. Let M and N be smooth manifolds.

(1) A smooth map f: M — N is an immersion if the differential dp,f: TyM — Ty, N is injective
for every pe M.

(2) The manifold M is a submanifold of N if M C N, M has the subspace topology, and the
inclusion map v: M — N s an immersion.

If f: M — N is a diffeomorphism between smooth manifolds, then the differential

is an isomorphism for every p € M. Thus, a diffeomorphism between two smooth manifolds is a
bijective immersion. On the other hand, if f: M — N is an immersion, dim M < dim N. If
dim M =dim N and f: M — N is an immersion, then the differential (4.1) is an isomorphism
for every p € M. Corollary 3.11 then implies that f is a local diffeomorphism. Thus, a bijective
immersion f: M — N between smooth manifolds of the same dimension is a diffeomorphism.
The assumption that manifolds are second-countable topological spaces turns out to imply that
a bijective immersion must be a map between manifolds of the same dimension; see Exercise 24.
Thus, a bijective immersion is a diffeomorphism and vice versa.

A more interesting example of an immersion is the inclusion of R™ as the coordinate subspace
R™x0 into R™, with m <n. By Proposition 4.3 below, every immersion f: M — N locally (on M
and N) looks like the inclusion of R as R™x 0 into R™ and every submanifold M C N locally
(on N) looks like R"™x0CR"™. We will use the following lemma in the proof of Proposition 4.3.

Lemma 4.2. Let f: M™ — N" be a smooth map. If the differential d,,f is injective for pe M,
there exist a neighborhood U of p in M and a chart ¥ = (y1,...,yn) : V—R" around f(p) € N
such that

e=(y1of,...,ymof): U — R™
is a chart around pe M.
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Rm

Figure 1.8: An immersion pull-backs a subset of the coordinates on the target to a chart on the
domain

Since the differential d,f: T, M — T}(,) N is injective, its dual
is surjective. Thus, if Y=(y1,...,yn) : V — R" is any chart around f(p) € N, then the set

{f*df(p)yi = dp(yiof)}i

spans Ty M (because the set {d(,)y;} is a basis for T;(p)N). By Corollary 3.13, a subset of {y;of};
determines a chart around p on M. If this subset is different from {yiof,...,ymof}, compose 9
with a diffeomorphism of R™ that switches the coordinates, sending the chosen coordinates (those
in the subset) to the first m coordinates.

The statement of Lemma 4.2 is illustrated in Figure 1.8. In summary, if d,, f is injective, then m of
the coordinates of a chart around f(p) give rise to a chart around p. By re-ordering the coordinates
around f(p), it can be assumed that it is the first m coordinates that give rise to a chart around p,
which is then ¢ =7movyo f, where w: R — R"™ is the projection on the first m coordinates. In
particular,

T (f(U)) — (U) CR™
is bijective; so the image of f(U)CV C N under v is the graph of some function g: ¢(U) — R~
D(f(U)) = {(z, g(2)): z€p(U)}.
By construction,

(@) = (n(f@))s- - un(f ) = (2(0), 9(0(p))) ER™XR"™  Vp'eU;

$0 g = (Yms1,---,yn)o fop~t. In the proof of the next proposition, we compose 1 with the
diffeomorphism (z,y) — (z,y—g(z)) so that the image of f(U) is shifted to R™ x0.

Proposition 4.3 (Slice Lemma). Let f: M™ — N™ be a smooth map. If dpf is injective for
some pe M, there exist charts

p: U —R™ and Yv:V— R"
around pe M and f(p) € N, respectively, such that the diagram

U—1 v

‘| |+

Rm > RTL
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Rn—m
NTL

p f (U
o 0

p=1of

Figure 1.9: The local structure of immersions

commutes, where the bottom arrow is the natural inclusion of R™ as R™x0, and f(U)=1"1(R™x0).

By Lemma 4.2, there exist a neighborhood U of p in M and a chart ¢/ = (y1,...,y,) : V' — R”
around f(p) € N such that
p=mop/of: U — R™

is a chart around p€ M, where 7m: R — R"™ is the projection on the first m coordinates as before.
In particular, o(U) CR™ is an open subset and

Yo f=(p,gop): U — R"xR"™,
where = (Ym11,...,Yn)ofop ! : o(U)—R"™; this is a smooth function. Thus, the map
O: SO(U)XRn_m - QO(U)XRn_m’ (l',y) - (m,y—g(ﬂf)),

is smooth. It is clearly bijective, and

I, 0
O )

Ly—m
so O is a diffeomorphism. Let V =19'"1(o(U)xR"™™) and
=00y : V — R".

Since (U)xR"™ ™" is open in R™, V is open in N. Since O is a diffeomorphism, 1 is a chart on N.
Since ¢'(V') and p(U) xR™™™ contain ¢'(f(U)), f(U) is contained in V. By definition,

Yo f(p') =00y o f(p') = O(e(0'), g(0(@")) = (2@, 9( (@) — 9((@")))
= (¢(p),0) € p(U)x0 Vp eU.

Since ¢(f(U)) =p(U) =9 (V)NR™x0, f(U) =4~ (R™ x0).

Corollary 4.4. If M™ C N" is a submanifold, for every p € M there exists a chart ¢¥: V — R"
on N around p such that MNV =¢~1(R™x0) and

Y MOV — R™x0 =R™

is a chart on M.
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S ) 0
O O

Figure 1.10: Images of some immersions R — R?

Let U be an open neighborhood of p in M and (V,4) a chart on N around p= f(p) provided by
Proposition 4.4 for the inclusion map f: M — N. Since M C N has subspace topology, there
exists W CV open so that U=MNW; the chart (W, | ) then has the desired properties.

Proposition 4.3 completely describes the local structure of immersions, but says nothing about
their global structure. Images of 3 different immersions of R into R? are shown in Figure 1.10.
Another type phenomena is illustrated by the injective immersion

R — Stx S, s —> (ei‘s,eias), (4.2)
where « € R—Q. The image of this immersion is a dense submanifold of S'x S*.

If f: M — N is an injective map and h: X — N is any map such that h(X)C f(M), then there
exists a unique map hg: X — M so that the diagram

M

ho 7
P f
7 h

HN

commutes. If M, N, and X are topological spaces, f is an embedding, and h is continuous, then
hg is also continuous [5, Theorem 7.2¢|. An analogue of this property holds in the smooth category,
as indicated by the next proposition.

Proposition 4.5. Let f: M — N be an injective immersion, h: X — N a smooth map such that
h(X)C f(M), and hg: X — M the unique map such that h= fohg. If hy is continuous, then it is
smooth; in particular, hy is smooth if f is an embedding (e.g. if M is a submanifold of N ).

It is sufficient to show that every point g € X has a neighborhood W on which hg is smooth. By
Proposition 4.3, there exist charts

p: U — R™ and Y:V—R"
around ho(q) € M and h(q)=f(ho(q)) € N such that the diagram

h 4
e
7 h P

W=V ——=R"
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commutes, where W =hy!(U) and the right-most arrow is the standard inclusion of R™ as R™ x0
in R™. Since hg is continuous, W is open in X. Since h is smooth and ) is a chart on IV, the map

Yoh =1pofohy = (poho,0): W — R™ xR"™™

is smooth. Thus, the map pohg: W — R™ is also smooth. Since ¢ is a chart on M containing
the image of hg|w, it follows that hg|y is a smooth map.

It is possible for the map hg to be continuous even if f: M — N is not an embedding (and even if
the image of h is not contained in the image of any open subset of M on which f is an embedding).
This is in particular the case for the immersion (4.2) and more generally for any integral immersion
of a completely integral distribution. Such immersions may or may not be embeddings, but the
map hg is necessarily continuous for them; see Proposition 5.11 below. On the other hand, hg need
not be continuous in general. For example, it is not continuous at 2~*(0) if f and h are immersions
described by the middle and right-most diagrams, respectively, in Figure 1.10. A similar example
can be obtained from the left diagram in Figure 1.10 if all branches of the curve have infinite
contact with the z-axis at the origin (f and h can then differ by a “a branch switch” at the origin).

Corollary 4.6. Let N be a smooth manifold, M C N, and v: M — N the inclusion map.

(1) If Tar is a topology on M, there exists at most one smooth structure Fur on (M, Tyr) with
respect to which v is an immersion.

(2) If Tpr is the subspace topology on M and (M, Tyr) admits a smooth structure Fyy with respect
to which v is an immersion, there exists no other topology T, admitting a smooth structure

" on M with respect to which v is an immersion.

The first statement of this corollary follows easily from Proposition 4.5. The second statement
depends on manifolds being second-countable; its proof makes use of Exercise 24.

Corollary 4.7. A topological subspace M C N admits a smooth structure with respect to which M
s a submanifold of N if and only if for every pe M there exists a neighborhood U of p in N such
that the topological subspace MNU of N admits a smooth structure with respect to which MNU is
a submanifold of N.

By Corollary 4.6, the smooth structures on the overlaps of such open subsets must agree.

The middle and right-most diagrams in Figure 1.10 are examples of a subset M of a smooth
manifold NV that admits two different manifold structures (M, 7y, Fas), in different topologies, with
respect to which the inclusion map ¢: M — N is an embedding. In light of the second statement
of Proposition 4.6, this is only possible because M does not admit such a smooth structure in
the subspace topology. On the other hand, if manifolds were not required to be second-countable,
the discrete topology on R would provide a second manifold structure with respect to which the
identity map R — R, with the target R having the standard manifold structure, would be an
immersion.

5 Implicit Function Theorems

This section is in a sense dual to Section 4. It describes ways of constructing new immersions and
submanifolds by studying properties of submersions (smooth maps with surjective differentials),
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Figure 1.11: The local structure of submersions

rather than studying properties of immersions and submanifolds. While Section 4 exploits Corol-
lary 3.13, this section makes use of Corollary 3.14, as well as of the Slice Lemma. We will use the
following lemma in the proof of the Implicit Function Theorem for Manifolds, Theorem 5.3, below.

Lemma 5.1. Let h: M™ — Z* be a smooth map. If the differential dph is surjective for some
pE M, there exist charts
p: U — R™ and vV — RF

around p€ M and h(p) € Z, respectively, such that the diagram

U —2pm

|

V —RF
commutes, where the right arrow is the natural projection map from R™ to RFx0CR™.

Let = (y1,...,yx): V—RF be a chart on Z around f(p). Since the differential dph is surjective,
its dual map

is injective. Since {dj,)yi} is a basis for T;(p)N , it follows that the set
{P*dppyyi = dp(yioh) }
is linearly independent in 77 M. By Corollary 3.14, it can be extended to a chart
V: (ylof, e Ykoh, T, ... ,xm) U — RFxR™F
on M, where U is a neighborhood of p in h=1(V).

Lemma 5.1 can be seen as a counter-part of the Slice Lemma (Proposition 4.3). While an immersion
locally looks like the inclusion

R™ — R™x0 C R", m<n,
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a submersion locally looks like the projection
R™ — RF = RFx0 c R™, k<m.

Thus, an immersion can locally be represented by a horizontal slice in a chart, while the pre-
image of a point in the target of a submersion is locally a vertical slice (it is customary to present
projections vertically, as in Figure 1.11).

Corollary 5.2. Let h: M — Z be a smooth map. If the differential d,h is surjective for some
p€E M, there exist a neighborhood U of p in M and a smooth structure on the subspace h=t(h(p))NU
of M so that h=*(h(p))NU is a submanifold of M and

codimyy (b~ (h(p))NU) = dim M — dim (A~ ! (h(p))NU) = dim Z.

If : V—RF and p=(ypoh, ¢) : U —RFxR™* are charts on Z around h(p) and on M around p,
respectively, provided by Lemma 5.1,

h=H(h(p))NU = {goh}~ (¢(h(p))NU = {mow} ' (¢(h(p))) = ¢~ (v (h(p)) xR™F).
Since ¢: U — @(U) is a homeomorphism, so is the map
@: b~ (h(p))NU — ¢(h(p)) xR™ " N o(U)
in the subspace topologies. Thus,
¢ h™ (h(p)NU — R™F

induces a smooth structure on h~!(h(p))NU C M in the subspace topology with respect to which
the inclusion A1 (h(p))NU — M is an immersion because so is the inclusion

Y(h(p)) xR™F — RFxR™F,

Theorem 5.3 (Implicit Function Theorem for Manifolds). Let f: M — N be a smooth map and
Y CN an embedded submanifold. If

Ty N =Imd,f + Ty, Y — Vpef '(Y), (5.1)
then f~1(Y) has a structure of an embedded submanifold of M and codimp; f~1(Y) = codimyY .

By Corollary 4.7, it is sufficient to show that for every p€ f~!(Y') there exists a neighborhood U
of p in M such that f~1(Y)NU has a structure of an embedded submanifold of M. As provided
by Corollary 4.4, let ¢»: V —R" be a chart on N around f(p)€Y such that YNV =4~ (R! x0),
where [=dim Y. Let 7: R® — 0xR"~! be the projection map and

h=nroppof: fTHYV)—V —R* — R,
Since Rl x0=7"1(0), YNV =4~ 1(7#71(0)) and
NI V) = nv) = (@ EH0) = H0) (5.2)
On the other hand, by the chain rule (3.14)

dph = dy(p) T © Ay 0 dpf s TyM — Ty N — Ty R™ — To(0xR™). (5.3)
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The homomorphism dy,(s(,))7 is onto, as is the homomorphism dy(,)%. On the other hand,
dy(sp)7 © Ayt = dpi) (Fov): TrpN — Ty R" — To(0xR")

by the chain rule (3.14) and thus vanishes on T}(,Y (since 7o maps Y to 0 in 0 x R"71). So,
by (5.1), the restriction
dy (s Todppy: Imdyf — To(OxR™)

is onto, i.e. the homomorphism (5.3) is surjective. By Corollary 5.2 and (5.2), there exists a
neighborhood U of p in f~1(V) such that
T ONU=f1 )N v)ynUu=r"10)nU

admits a structure of an embedded submanifold of M, as required.
Corollary 5.4. Let f: M — N be a smooth map and g€ N. If

dpf: T,M — T,N s onto ¥ pcf'(q), (5.4)
then f=Y(q) has a structure of an embedded submanifold of M and codimy; f~!(q) = dim N.
This is just the Y ={q} case of Theorem 5.3.

Example 5.5. Let f: R™"l — R be given by f(x) = |z|?>. This is a smooth map, and its
differential at z € R™*! with respect to the standard bases for T,R™*! and TR is

JI(f)e= (2551 2x9 ... 2xm+1) R R

Thus, d, f is surjective if and only if z#0, i.e. f(x)#0. By Corollary 5.4, f~!(q) with ¢#0 then
has a structure of an embedded submanifold of R™*! and its codimension is 1 (so the dimension
is m). This is indeed the case, since f~!(gq) is the sphere of radius \/q centered at the origin if ¢>0
and the empty set (which is a smooth manifold of any dimension) if ¢<0. If ¢=0, f~(¢q)={0};
this happens to be a smooth submanifold of R™*!, but of the wrong dimension.

Example 5.6. Corollary 5.4 can be used to show that the group SO,, is a smooth submanifold of
Mat,, xR, while U,, and SU,, are smooth submanifolds of Mat,,x,C. For example, with Symm,,,,,R
denoting the space of symmetric n xn real matrices, define

f+Mat,x,R — Symm,, ., R, by f(A)=AA™.

Then, O(n) = f~1(I,). It is then sufficient to show that the differential d 4 f is onto for all A€ O(n).
Since f=foR4 for every A€O(n), where the diffeomorphism

Ra: Mat,xnR — Mat, xR is given by Ra(B) = BA

it is sufficient to establish that djf is surjective. This is a direct check.

Corollary 5.7 (Implicit Function Theorem for Maps). Let f: X — M and g: Y — M be smooth
maps. If

TryM =Imd, f +Imd,g V (z,y) e X XY s.t f(z)=g(y), (5.5)
then the space

XxuY = {(z,y) eXxY: f(z)=g(y)}

has a structure of an embedded submanifold of X XY and its codimension equals to the dimension
of M. Furthermore, the projection map m = wx : X xp Y — X is injective (immersion) if
g: Y — M is injective (immersion).
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This corollary is obtained by applying Theorem 5.3 to the smooth map
h=(fg9): XxY — MxM.

Its last statement immediately implies Warner’s Theorem 1.39. The commutative diagram

XxyY sy

l f lg

X M

is known as a fibered square.

Corollary 5.8 (Implicit Function Theorem for Intersections). Let X,Y C M be embedded subman-
ifolds. If
T,M =T,X +T,Y VpeXny, (5.6)

then XNY is a smooth submanifold of X, Y, and M and
dim XNY =dim X +dimY — dim M.

This corollary is a special case of Corollary 5.7.

Remark 5.9. Submanifolds X,Y C M satisfying (5.6) are said to be transverse (in M); this is
written as X MY or X M /Y to be specific. For example, two distinct lines in the plane are
transverse, but two intersecting lines in R3 are not. Similarly, smooth maps f: X — M and
g: Y — M satisfying (5.5) are called transverse; this is written as fMg or fMyg. If f: M — N
satisfies (5.1) with respect to a submanifold Y C N, f is said to transverse to Y’; this is written
as fMY or fMyY. Finally, if f: M — N satisfies (5.4) with respect to ¢ € N, ¢ is said to be a
regular value of f. By Corollary 5.4, the pre-image of a regular value is a smooth submanifold in
the domain of codimension equal to the dimension of the target. By Sard’s Theorem [2, §2], the
set of a regular values is dense in the target (in fact, its complement is a set of measure 0); so the
pre-images of most points in the target of a smooth map are smooth submanifolds of the domain,
though in some cases they may all be empty (e.g. if the dimension of the domain is lower than the
dimension of the target).

The standard version of the Implicit Function Theorem for R™, Corollary 5.10 below, says that
under certain conditions a system of k equations in m variables has a locally smooth (m —k)-
dimensional space of solutions which can be described as a graph of a function ¢g: R % — R,
It is normally obtained as an application of the Inverse Function Theorem for R™, Theorem 3.10
above. It can also be deduced from the proof of Lemma 5.1 and by itself implies Corollary 5.2.

Corollary 5.10 (Implicit Function Theorem for R™). Let U C R™* xR* be an open subset and
f: U — RF a smooth function. If (zo,y0) € f~1(0) is such that the right k x k submatriz of
T (F) @o,y0) %kxo,yo)? is non-singular, then there exist open neighborhoods V' of xg in R™* and

W of yo in R* and a smooth function g: V— W such that

FHO NV W = {(z,9(z)): veV}.
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Exercises

10.

11.

12.

. Show that every Hausdorff locally Euclidean space is regular.
. Show that every regular second-countable space is normal.

. Show that the collection (1.1) is indeed a smooth structure on M, according to Definition 1.3.

Show that the two smooth structures F and F’ on R! in Example 1.6 are not the same, but
(RY, F) and (R, ') are diffeomorphic smooth manifolds.

. Show that the maps ¢y : Ur —> R™ described after Example 1.7 are indeed charts on S” and

the overlap map between them is

x

0ot o (UNU_)=R™—0 — ¢ (U NU_)=R™ -0, x— FER

. Show that the map ¢;/o in Example 1.8 is well-defined and is indeed a homeomorphism.

With notation as in Example 1.10, show that

a) the map S?"+1/81 — (C"*t1—0)/C* induced by inclusions §?**1 — C?"*+! and S — C*
Y
is a homeomorphism with respect to the quotient topologies;

(b) the quotient topological space, CP", is a compact topological 2n-manifold which admits a
structure of a complez (in fact, algebraic) n-manifold, i.e. it can be covered by charts whose
overlap maps, g0 gpgl, are holomorphic maps between open subsets of C" (and rational
functions on C");

(¢c) CP™ contains C" (with its complex structure) as a dense open subset.
Let V and W be finite-dimensional vector spaces with the canonical smooth structures of Ex-

ample 1.5. Show that the canonical smooth structure on the vector space VW =V xW is the
same as the product smooth structure.

. Let (M, Fyr) and (N, Fn) be smooth manifolds and Fjyso and Fy,o collections of charts on M

and N, respectively, generating Fj; and Fy in the sense of (1.1). Show that a continuous map
f: M — N is smooth (or a local diffeomorphism) if and only if the map (2.1) is smooth (or a
local diffeomorphism) for every (U, ¢) € Faro and all (V,v) € Fn.o covering f(U).

Show that a composition of two smooth maps (local diffeomorphisms, diffeomorphisms) is again
smooth (a local diffeomorphism, a diffeomorphism).

Let S cC and M B be the unit circle and the infinite Mobius band with the smooth structures
of Examples 1.7 and 1.8, respectively. Show that the map

MB = ([0,1] x R)/~— S, [s,t] — ™,
is well-defined and smooth.

Let (M, F) be a smooth m-manifold and U C M an open subset. Show that F|y is the unique
smooth structure on the topological subspace U of M satisfying either of the following two
properties:
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

(SSM1) the inclusion map ¢: U — M is a local diffeomorphism;

(SSM2) if N is a smooth manifold, a continuous map f: N — U is smooth if and only if the
map tof: N— M is smooth.

Let (M, Far) and (N, Fy) be smooth manifolds and Fjr«n the product smooth structure on
M x N of Proposition 1.11. Show that Fjs«n is the unique smooth structure on the product
topological space M x N satisfying either of the following two properties:

(PSM1) the slice inclusion maps ¢, : M — M x N, with ¢ € N, and ¢, : M — M x N, with
p€ M, and the projection maps mps, 7y : M X N — M, N are smooth;

(PSM2) if X is a smooth manifold, continuous maps f: X — M and g: X — N are smooth
if and only if the map fxg: X — M x N is smooth.

Verify Lemmas 2.3 and 2.4.
Verify Proposition 2.5.

Show that the actions (2.4), (2.5), and (1.3) satisfy the assumptions of Proposition 2.5 and that
the quotient smooth structures on

S'=R/Z,  MB=(RxR)/Z, and RP" = S"/Z,,
are the same as the smooth structures of Examples 1.7, 1.8, and 1.9, respectively.

Verify that the adclition and product operations on Fp described after Definition 3.1 are well-
defined and make F}, an R-algebra.

Deduce (3.6) from Lemma 3.5.
Verify that the map (3.8) is well-defined and is indeed an R-algebra homomorphism.

Verify that the differential dph of a smooth map h: M — N, as defined in (3.11), is indeed
well-defined. In other words, d,h(v) is a derivation on Fj,, for all v € T,M. Show that
dph: Ty M — T, N is a vector-space homomorphism.

Let M be a non-empty compact m-manifold. Show that there exists no immersion f: M — R™.

Let M be an embedded submanifold in R™ and ¢: M — R the inclusion map. Show that for
every p€ M the image of the differential

dpt: Ty,M — T,R" =R"

is the subspace of R™ consisting of the vectors o/(0), where a: (—¢,€) — R™ is a smooth map
such that Ima C M and a(0)=p.

Show that the map (4.2) is an injective immersion and that its image is dense in S x S*.

Show that a bijective immersion f: M — N between two smooth manifolds is a diffeomorphism.
Hint: you’ll need to use that M is second-countable, along with either

(i) if f: U—R" is a smooth map from an open subset of R™ with m <n, the measure of
f(U)CR™is 0;
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26

27.

28.

29.

30.

31

32

(ii) Proposition 4.3 (Slice Lemma) and Baire Category Theorem [5, Theorem 7.2].
. Verify Corollary 4.6.
. Show that the smooth structures on S™ of Example 5.5 and Exercise 5 are the same.

(a) For what values of t€R, is the subspace
{1, pp1) ERMM i af 422 —a2 =t}

a smooth embedded submanifold of R*+1?

(b) For such values of ¢, determine the diffeomorphism type of this submanifold (i.e. show that
it is diffeomorphic to something rather standard). Hint: Draw some pictures.

Show that the special unitary group

SU, = {AEMatn(C: A'A=1,, det Azl}
is a smooth compact manifold. What is its dimension?
Verify Corollary 5.7.

With notation as in Corollary 5.7, show that every pair of continuous maps p: Z — X and
q: Z —Y such that fop=gogq factors through a unique continuous map r: Z— X X Y,

and that Xx /Y is the unique (up to homeomorphism) topological space possessing this property
for all (p, ¢) as above. If in addition the assumption (5.5) holds and p and ¢ are smooth, then r
is also smooth, and X x ;Y is the unique (up to diffeomorphism) smooth manifold possessing
this property for all (p,q) as above.

. Verify Corollary 5.8.

. Deduce Corollary 5.10 from the proof of Lemma 5.1 and Corollary 5.2 from Corollary 5.10.
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Proposition 5.11. Let f: M — N be an injective immersion, h: X — N a smooth map such
that h(X)C f(M), and ho: X — M the unique map so that the diagram

M
h 1
07 lf
7 h

HN

commutes. If there exists a completely integrable distribution DCTN such that Imd, f =Dy, for
all pe M, then the map hg is continuous (and thus smooth by Proposition 4.5).

Definition 5.12. A smooth partition of unity subordinate to the open cover {Uy}aca of a smooth
manifold M is a collection {na}aca of smooth functions on M with values in [0,1] such that

(PU1) the collection {Supp na taca is locally finite;

(PU2) suppne CU, for every a€ A;

(PU3) Z No = 1.

acA

33



Chapter 2

Smooth Vector Bundles

6 Definitions and Examples

A (smooth) real vector bundle V' of rank k over a smooth manifold M is a smoothly varying family
of k-dimensional real vector spaces which is locally trivial. Formally, it is a triple (M, V,r), where
M and V are smooth manifolds and

.V —M

is a smooth map. For each p€ M, the fiber szﬂ_l(p) of V over p is a real k-dimensional vector
space; see Figure 2.1. The vector-space structures in V), vary smoothly with p € M. This means
that the scalar multiplication map

RxV —1V, (c,v) — ¢ v, (6.1)
and the addition map
VxyV = {(vi,02) eVXVim(v)=m(v2) e M} — V, (v1,v2) — v1+v2, (6.2)
are smooth. Note that we can add vi,ve €V only if they lie in the same fiber over M, i.e.
m(v1) =m(va) = (v1,v2) € Vxp V.

The space Vx p/V is a smooth submanifold of VxV', by Corollary 5.7. The local triviality condition
means that for every point p€ M there exist a neighborhood U of p in M and a diffeomorphism

h: Vg =7 1U) — UxRF,

such that h takes every fiber of 7 to the corresponding fiber of the projection map 7 : UxRF — U,
i.e. mpoh=m on V|y so that the diagram

Vip=r"1U) —— U xRF
\ %
U
commutes, and the restriction of h to each fiber is linear:
h(civ1+cava) = c1h(vy) + cah(v2) € x X RF Ve, €ER, v, v9€V,, xel.
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Figure 2.1: Fibers of a vector-bundle projection map are vector spaces of the same rank.

These conditions imply that the restriction of h to each fiber V, of 7 is an isomorphism of vector
spaces. In summary, V locally (and not just pointwise) looks like bundles of R*’s over open sets in
M glued together. This is in a sense analogous to an m-manifold being open subsets of R™ glued
together in a nice way. Here is a formal definition.

Definition 6.1. A real vector bundle of rank k is a tuple (M,V,n,-,+) such that
(RVB1) M and V are smooth manifolds and w: V — M is a smooth map;

(RVB2) -: RxV —V is a map s.t. w(c-v)=m(v) for all (c,v) eRxV;
(RVB3) +: VxyV—V is amap s.t. m1(vi+ve)=m(v1)=m(ve) for all (vi,v2) EV X V;
( )

RVB4) for every point p € M there exist a neighborhood U of p in M and a diffeomorphism
h: Vg —UxRF such that

(RVB4-a) moh=m on V|y and
(RVB4-b) the map hly,: Vo —x xR is an isomorphism of vector spaces for all x€U.

The spaces M and V are called the base and the total space of the vector bundle (M,V,w). It
is customary to call 7 : V — M a vector bundle and V a vector bundle over M. If M is an
m-manifold and V' — M is a real vector bundle of rank k, then V' is an (m+k)-manifold. Its local
coordinate charts are obtained by restricting the trivialization maps h for V', as above, to small
coordinate charts in M.

Example 6.2. If M is a smooth manifold and k is a nonnegative integer, then
T M xRF — M
is a real vector bundle of rank k& over M. It is called the trivial rank &k real vector bundle over M.

Example 6.3. Let M =S! be the unit circle and V =MB the infinite Mobius band of Example 1.8.
With notation as in Example 1.8, the map

m:V — M, [s,t] — €™,

defines a real line bundle (i.e. rank one bundle) over S!. Trivializations of this vector bundle can
be constructed as follows. With Uy =81 —{+1}, let

hy: Vg, — UpxR, [s,t] — (627”8,15);

h_:V]yg. — U_xR [s,t] — (627“8375), if s € (1/2,1];
Vg - XK, , (e¥™s 1), if s €[0,1/2).
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Both maps are diffeomorphisms, with respect to the smooth structures of Example 1.8 on MB and
of Example 1.7 on S'. Furthermore, mjohs =7 and the restriction of h4 to each fiber of 7 is a
linear map to R.

Example 6.4. Let RP™ be the real projective space of dimension n described in Example 1.9 and
Tn = {(E,’U)ERP"XR”H: vel}.
If U; CRP" is as in Example 1.9, the map
hi: Ay NU; xR — U; xR, (4, (vo, - .. yvn)) — (L,v9),
is a homeomorphism. The overlap maps,
hioh;': UinU; x R — UiNU; x R, (4, c) — (£,(X;/X;)c),

are smooth. By Lemma 2.3, the collection {(v, NU;xR"*1 h;)} of generalized charts then induces
a smooth structure on the topological subspace 7, C RP" x R"*!. With this smooth structure, ~,
is an embedded submanifold of RP™ x R™*! and the projection on the first component,

T=m Y — RP",

defines a smooth real line bundle. The fiber over a point £€RP"™ is the one-dimensional subspace
¢ of R™"1! For this reason, v, is called the tautological line bundle over RP™. Note that ; — S*
is the infinite Mobius band of Example 6.3.

Example 6.5. If M is a smooth m-manifold, let

T™M = | |T,M, «:TM—M, =(v)=p ifveT,M.
peEM

If po: Uy —>R™ is a smooth chart on M, let
Go: TM|y, =71 (Uy) — Uy x R™, Pa(v) = (W(U),dw(v)gpav).
If g: Ug—R"™ is another smooth chart, the overlap map
BaoPy: UaNUs x R™ — UaNUg x R™
is a smooth map between open subsets of R?™. By Lemma 2.4, the collection of generalized charts

{(W_I(Ua)v Qboz) : (Ua, 9004) EJ:M}v

where Fjs is the smooth structure of M, then induces a manifold structure on the set TM. With
this smooth structure on T'M, the projection m: T'M — M defines a smooth real vector bundle of
rank m, called the tangent bundle of M.

Definition 6.6. A complex vector bundle of rank k is a tuple (M,V,m,-,+) such that
(CVB1) M and V' are smooth manifolds and w: V — M is a smooth map;

(CVB2) -: CxV —V is a map s.t. w(c-v)=m(v) for all (c,v)eCxV;
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(CVB3) +: VxyV—V is a map s.t. m(vi+ve)=m(v1)=m(v2) for all (vi,v2) €V xpV;

(CVB4) for every point p € M there exists a neighborhood U of p in M and a diffeomorphism
h:V]y —UxCF such that

(CVB4-a) moh=m on V|y and
(CVB4-b) the map hly, : Vo — xxCF is an isomorphism of complex vector spaces for all
zelU.

Similarly to a real vector bundle, a complex vector bundle over M locally looks like bundles of
C*’s over open sets in M glued together. If M is an m-manifold and V — M is a complex vector
bundle of rank £, then V' is an (m+2k)-manifold. A complex vector bundle of rank k is also a real
vector bundle of rank 2k, but a real vector bundle of rank 2k need not in general admit a complex
structure.

Example 6.7. If M is a smooth manifold and k is a nonnegative integer, then
T MxCF— M

is a complex vector bundle of rank k over M. It is called the trivial rank-k complex vector bundle
over M.

Example 6.8. Let CP™ be the complex projective space of dimension n described in Example 1.10

and
Y = {(£,v) ECP"xC"*': vel}.

The projection m: v, — CP" defines a smooth complex line bundle. The fiber over a point € CP"
is the one-dimensional complex subspace £ of C"T!. For this reason, -, is called the tautological
line bundle over CP™.

Example 6.9. If M is a complex m-manifold, the tangent bundle TM of M is a complex vector
bundle of rank m over M.

7 Sections and Homomorphisms

Definition 7.1. (1) A (smooth) section of a (real or complex) vector bundle m: V — M is a
(smooth) map s: M —V such that mos=idyy, i.e. s(x) €V, for all ze M.

(2) A vector field on a smooth manifold is a section of the tangent bundle TM — M.

If s is a smooth section, then s(M) is an embedded submanifold of V: the injectivity of s and ds is
immediate from mos=1ids, while the embedding property follows from the continuity of 7. Every
fiber V, of V is a vector space and thus has a distinguished element, the zero-vector in V., which
we denote by 0,. It follows that every vector bundle admits a canonical section, called the zero
section,
so(z) = (z,04) € Vg.

This section is smooth, since on a trivialization of V' over an open subset U of M it is given by the
inclusion of U as U x0 into U xR¥ or U x C¥. Thus, M can be thought of as sitting inside of V as
the zero section, which is a deformation retract of V'; see Figure 2.2. The set of all smooth sections

of a vector bundle 77: V' — M is denoted by T'(M; V). This is naturally a module over the ring
C*®(M) of smooth functions on M, since fs€I'(M;V) whenever feC*>(M) and seI'(M;V).
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: ‘ ‘ ‘
so(M)~M

Figure 2.2: The image of a vector-bundle section is an embedded submanifold of the total space.

Definition 7.2. (1) Suppose 7: V — M and n': V' — N are real (or complex) vector bundles. A

smooth map f:V — V' is a vector bundle homomorphism if f descends to a map f: M — N,
i.e. the diagram

commutes, and the restriction f: Vi —Vy(y) is linear (or C-linear, respectively) for all x€ M.

(2) Ifm:V—M andn': V' — M are vector bundles, a vector bundle homomorphism f:v—v
is an isomorphism of vector bundles if ©’'o f =7, i.e. the diagram

commutes, and f is a diffeomorphism (or equivalently, its restriction to each fiber is an isomor-
phism of vector spaces). If such an isomorphism exists, then V and V' are said to be isomorphic
vector bundles.

Lemma 7.3. The real line bundle V — S given by the infinite Mobius band of Example 6.3 is
not isomorphic to the trivial line bundle S* xR — ST,

Proof: In fact, (V, S!) is not even homeomorphic to (S* xR, S!). Since
SIXR — 50(S1) = S'xR — S'x0 = S'xR™ U S xRT,

the space S' xR — S! is not connected. On the other hand, V —s¢(S') is connected. If M B is
the standard Mobius Band and S' C M B is the central circle, M B—S"' is a deformation retract of
V —S1. On the other hand, the boundary of M B has only one connected component (this is the
primary feature of M B) and is a deformation retract of M B—S'. Thus, V —S" is connected as
well.

Lemma 7.4. If 7: V. — M s a real (or complex) vector bundle of rank k, V' is isomorphic to
the trivial real (or complex) vector bundle of rank k over M if and only if V admits k sections

S1,...,8k such that the vectors si(x),...,si(x) are linearly independent (over C, respectively) in
Vi for all ze M.
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Proof: We consider the real case; the proof in the complex case is nearly identical.
(1) Suppose h: M xRF — V is an isomorphism of vector bundles over M. Let ey, ..., e be the
standard coordinate vectors in R¥. Define sections s, ..., s, of V over M by

si(z) = h(z,e) Vi=1,....k, € M.

Since the maps z — (z, ¢;) are sections of M xR* over M and h is a bundle homomorphism, the
maps s; are sections of V. Since the vectors (z,¢;) are linearly independent in 2 x R¥ and h is

an isomorphism on every fiber, the vectors s;(x),..., si(x) are linearly independent in V, for all
x € M, as needed.
(2) Suppose s1, ..., s are sections of V such that the vectors s1(z),. .., sg(z) are linearly indepen-

dent in V, for all x € M. Define the map
h: MxRF — V by h(z,c1y...,cr) =cis1(x) + ...+ cgpsp(x) € V.

Since the sections si,...,s; and the vector space operations on V are smooth, the map h is
smooth. It is immediate that 7(h(z,c)) =2z and the restriction of h to 2 x R¥ is linear; thus, h is
a vector bundle homomorphism. Since the vectors s1(z),. .., sg(z) are linearly independent in V;,
the homomorphism h is injective and thus an isomorphism on every fiber. We conclude that h is
an isomorphism between vector bundles over M.

8 Transition Data

Suppose m: V — M is a real vector bundle of rank k. By Definition 6.1, there exists a collection
{(Uqa, ha) taea of trivializations for V' such that |J . 4 Uy =M. Since (Uy, hy) is a trivialization
for V,

acA

ha: Vg, — Uy xRE

is a diffeomorphism such that mjoh, =7 and the restriction hq: Vy — 2 xR¥ is linear for all z € U,.
Thus, for all a, 3€ A,

hap=haohg"': (UaNUp) x R¥ — (UaNUp) x R
is a diffeomorphism such that mjohyg =1, i.e. hog maps x X R* to . xR¥, and the restriction of
hag to xxRF defines an isomorphism of xR" with itself. Such a diffeomorphism must be given by
(z,v) — (2, gap(z)v) Vv e RF,
for a unique element g,g(z) € GLgR (the general linear group of R¥). The map hag is then given by
hag(x,v) = (w,gag(:v)v) Vo € UsNUg, veRF,

and is completely determined by the map gog: UoNUg— GLiR (and g,g is determined by hqg).
Since hag is smooth, so is gag.

Example 8.1. Let 7: V — S! be the Mobius band line bundle of Example 6.3. If {(Ux, hs)} is
the pair of trivializations described in Example 6.3, then

), if Im p<0;
hoohi!:UyAU_ xR — UynU- xR, (pv) — {200 <000 o),
(p,—v), if Imp>0;
-1, if Imp>0;

where gt UnU- = S'—{£1} — GLiR=R*, g_,(p) = .
1, if Imp<0.

In this case, the transition maps g,z are locally constant, which is rarely the case.
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By the above, starting with a real rank k vector bundle 7: V — M, we can obtain an open cover
{Ua}aca of M and a collection of smooth transition maps

{gaﬁz Us,NUg — GLkR}a,ﬁeA'
These transition maps satisfy:
(VBT1) gaa = I, since hoo =haohy !t =id;
(VBT2) gap9sa = I, since hoghge =id;
(VBT3) 90898+9~va = Lk, since hoghgyhyo=id.

The last condition is known as the (Cech) cocycle condition (more details in Chapter 5 of Warner).
It is sometimes written as

—1 —
quOéanoanOloal == ]Ik va07 a1, 0 S A

In light of (VBT2), the two versions of the cocycle condition are equivalent.

Conversely, given an open cover {Ug }aea of M and a collection of smooth maps
{gagt UaﬁUﬁ — GLkR}a,ﬁeA

that satisfy (VBT1)-(VBT3), we can assemble a rank k vector bundle 7’: V' — M as follows. Let

V= ( || aanxIR{k>/~, where

acA
(B,x,v) ~ (oz,a:,gag(yc)v) VoaBeA xcU,NUg, veRF.

The relation ~ is reflexive by (VBT1), symmetric by (VBT2), and transitive by (VBT3) and (VBT?2).
Thus, ~ is an equivalence relation, and V' carries the quotient topology. Let

q: Uaanka—ﬂ/’ and 7V — M, [a,x,0] — x,
acA

be the quotient map and the natural projection map (which is well-defined). If € A and W is a
subset of Ug xR¥, then

qfl(quW)) = |_| axhag(W), where
acA

hag: (UaNUg) x RF —s (UanUg) x RF, hap(z,v) = (2, gap(z)v).

In particular, if 3x W is an open subset of 3xUg xRF, then ¢! (q(ﬁx W)) is an open subset of
Lpeq axUs xR¥. Thus, ¢ is an open continuous map. Since its restriction

o = q,aanx]Rk

is injective, (ga(ax Uy xR¥),g;1) is a chart on V’ in the sense of Lemma 2.3. The overlap maps
between these charts are the maps hqg and thus smooth.! Thus, by Lemma 2.3, these charts induce

'Formally, the overlap map is (83— a) X hag.
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a smooth structure on V'. The projection map 7': V' — M is smooth with respect to this smooth
structure, since it induces projection maps on the charts. Since

T =7 0qe: axUy,xRF — U, Cc M,

the diffeomorphism g, induces a vector space structure in V; for each x € U, such that the restric-
tion of ¢, to each fiber is a vector space isomorphism. Since the restriction of the overlap map hqg
to z xRF, with z € UaNUg, is a vector space isomorphism, the vector space structures defined on
V. via the maps ¢, and gg are the same. We conclude that 7': V/— M is a real vector bundle of
rank k.

If {Ua}ocEA and {gaﬁ : UaﬂUg - GLkR}aﬂEA
m: V — M, then the vector bundle V' constructed in the previous paragraph is isomorphic to V.
Let {(Ua, ha)} be the trivializations as above, giving rise to the transition functions g,g. We define

are transition data arising from a vector bundle

frV—V' by  f)=[aha(v)] if 7(v) € U,
If 7(v) e UsNUg, then
(8. hs(v)] = [a, hap(hp(v)] = [, ha(v)] € V',

i.e. the map f is well-defined (depends only on v and not on «). It is immediate that 7’0 f =T.

Since the map .
gutofohy': UyxRF — axU, xR”

is the identity (and thus smooth), f is a smooth map. Sin~ce the restrictions of~qCY and h, to every
fiber are vector space isomorphisms, it follows that so is f. We conclude that f is a vector-bundle
isomorphism.

In summary, a real rank k£ vector bundle over M determines a set of transition data with values
in GL;R satisfying (VBT1)-(VBT3) above (many such sets, of course) and a set of transition data
satisfying (VBT1)-(VBT3) determines a real rank-k vector bundle over M. These two processes
are well-defined and are inverses of each other when applied to the set of equivalence classes of
vector bundles and the set of equivalence classes of transition data satisfying (VBT1)-(VBT3).
Two vector bundles over M are defined to be equivalent if they are isomorphic as vector bundles
over M. Two sets of transition data

{gaﬁ}a,,@eA and {g‘/lﬁ}aﬂEA’

with A consisting of all sufficiently small open subsets of M, are said to be equivalent if there exists
a collection of smooth functions { f,: Uy —> GLxR},c4 such that

g/ozﬁ:f&gaﬁf[;17 va?IBE‘A72

i.e. the two sets of transition data differ by the action of a Cech 0O-chain (more in Chapter 5
of Warner). Along with the cocycle condition on the gluing data, this means that isomorphism
classes of real rank k vector bundles over M can be identified with H'(M; GLiR), the quotient of
the space of Cech cocycles of degree one by the subspace of Cech boundaries.

2Such a collection {fa}aca corresponds, via trivializations, to an isomorphism between the vector bundles deter-
mined by {gas}a.pea and {ghs}a.sea.
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Remark 8.2. In Chapter 5 of Warner, Cech cohomology groups, H™, are defined for (sheafs of)
abelian groups. However, the first two groups, H" and H', easily generalize to non-abelian groups
as well.

If m: V— M is a complex rank k vector bundle over M, we can similarly obtain transition data
for V' consisting of an open cover {U, }qaeca of M and a collection of smooth maps

{gag: UaﬂUgﬁGLkC}a’ﬁeA

that satisfies (VBT1)-(VBT3). Conversely, given such transition data, we can construct a complex
rank k vector bundle over M. The set of isomorphism classes of complex rank k vector bundles
over M can be identified with H*(M; GL;C).

9 Operations on Vector Bundles

Vector bundles can be restricted to smooth submanifolds and pulled back by smooth maps. All
natural operations on vector spaces, such as taking quotient vector space, dual vector space, direct
sum of vector spaces, tensor product of vector spaces, and exterior powers also carry over to vector
bundles via transition functions.

Restrictions and pullbacks

If N is a smooth manifold, M C N is an embedded submanifold, and 7w: V — N is a vector bundle
of rank k (real or complex) over N, then its restriction to M,

m:Vipy=rY(M) — M,

is a vector bundle of rank k& over N. It inherits smooth structure from V by the Slice Lemma
or the Implicit Function Theorem, Theorem 5.3. If {(Uq, hq)} is a collection of trivializations
for V.— N, then {(MNUa, halz—1(mnu.))} s @ collection of trivializations for V[ — M. Simi-
larly, if {gap} is transition data for V.— N, then {gas|mnv.nu, ) is transition data for V|y — M.

If f: M — N is a smooth map and 7: V — N is a vector bundle of rank k, there is a pullback
bundle over M:

FV=MxyV={{pv)eMxV: f(p)=n(v)} =5 M. (9.1)
Note that f*V is the maximal subspace of M xV so that the diagram
[V
1
M . N

commutes. By Corollary 5.7, f*V is a smooth submanifold of M xV. By construction, the fiber of
w1 over p€ M is px Vy,) CM XV, i.e. the fiber of 7 over f(p) € N:

(fV)p=pxVipy  VpeM. (9.2)

If {(Uqy,ha)} is a collection of trivializations for V — N, then {(f~1(U,), haof)} is a collection
of trivializations for f*V — M. Similarly, if {g.g} is transition data for V' — N, then {gsg0 f}
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is transition data for f*V — M. The case discussed in the previous paragraph corresponds to f
being the inclusion map.

The above pullback operation on vector bundles extends to homomorphisms. Let f: M — N
be a smooth map and 7y : V. — N and my : W — N be vector bundles. Any vector-bundle
homomorphism ¢ : V — W over N induces a vector-bundle homomorphism f*¢: f*V — f*W
over M so that the diagram

v v (9.3)

\ Fw—= w
S, N\~
N

commutes. The vector-bundle homomorphism f*y is given by

M

(fe)p=idx syt (fV)p=px Vi) — (FW)p=px Wiy, (p,v) — (p,o(v)),
where ¢, is the restriction of ¢ to the fiber Vi, =7, (f(p)) over f(p)EN.

If f: M — N is a smooth map, then d;,f: T, M — T{;,) N is a linear map which varies smoothly
with p. It thus gives rises to a smooth map,

df: TM — TN, v — dr(y) f(v). (9.4)

However, this description of d f gives no indication that d f maps v €T, M to T, N or that this map
is linear on each T, M. One way to fix this defect is to state that (9.4) is a bundle homomorphism
covering the map f: M — N, i.e. that the diagram

d
TM N (9.5)
M ! N

commutes. Since (f*T'N), =px TN by (9.2), another way to fix this is to state that df is a
bundle homomorphism from T'M to f*I'N, i.e. that the diagram

d 0
TM ! f¥*TN -2 ~TN (9.6)
|
x % | 7’
\i
ME---L N

commutes. The triangular part of (9.6) is generally the preferred way of describing df. The
description (9.5) factors through the triangular part of (9.6), as indicated by the dashed arrows.
The triangular part of (9.6) also leads to a more precise statement of the Implicit Function Theorem,
which is rather useful in topology of manifolds; see Theorem 9.2 below.
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Quotient Bundles

If V is a vector space (over R or C) and V/CV is a linear subspace, then we can form the quotient
vector space, V/V'. If W is another vector space, W/ CW is a linear subspace, and g: V — W is
a linear map such that g(V’) CW’, then g descends to a linear map between the quotient spaces:

g: V)V — W/W'.

If we choose bases for V and W such that the first few vectors in each basis form bases for V'
and W', then the matrix for g with respect to these bases is of the form:

=(0 )

The matrix for g is then D. If g is an isomorphism from V' to W that restricts to an isomorphism
from V' to W', then g is an isomorphism from V/V’ to W/W’. Any vector-space homomorphism
p: V— W such that V' C ker ¢ descends to a homomorphism @, so that the diagram

7
ql e
Ve

VIV

6

commutes.

Definition 9.1. Let 7: V— M be a smooth vector bundle of rank k. A subbundle of V' of rank k'
is a smooth submanifold V' of V' such that w|y: V! — M is a vector bundle of rank k'.

A subbundle of course cannot have a larger rank than the ambient bundle; so &’ <k in Definition 9.1
and the equality holds if and only if V/=V.

If V/'CV is a subbundle, we can form a quotient bundle, V/V’/— M, such that
(V/V')p:‘/;,/Vp/ VpeM.

The topology on V/V' is the quotient topology for the natural surjective map ¢ : V—V/V’. The
vector-bundle structure on V/V' is determined from those of V' and V' by requiring that ¢ be a
smooth vector-bundle homomorphism; so if s is a smooth section of V', then gos is a smooth section
of V/V'. This also gives a short exact sequence® of vector bundles over M,

00—V —v-Lvyv —o,

where the zeros denote the zero vector bundle Mx0— M. We can choose a system of trivializations
{(Ua7 hoz)}ae_A such that

ha(V/[0,) = Ua x (R x0) C Uy xR VaeA. (9.7)

Let g : RF — R*=* be the projection onto the last (k—k’) coordinates. Then, the trivializations
for V/V' are given by {(Uq, {id X qi'} © ho)}. Alternatively, if {gos} is transition data for V' such

3exact means that at each position the kernel of the outgoing vector-bundle homomorphism equals the image of
the incoming one; short means that it consists of five terms with zeros at the ends
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that the upper-left k' x k’-submatrices of g, correspond to V' (as is the case for the above trivial-
izations hq) and gags is the lower-right (k—k")x (k—k’) matrix of g3, then {gnp} is transition data
for V/V'. Any vector-bundle homomorphism ¢: V — W over M such that ¢(v)=0 for all ve V'
descends to a vector-bundle homomorphism @ so that ¢ =@oq.

For example, if 1: Y — N is an immersion, the bundle homomorphism d: as in (9.6) is injective
and the image of d¢ in «*T'N is a subbundle of *T'N. In this case, the quotient bundle,

Nyt = L*TN/ImdL —Y,

is called the normal bundle for the immersion ¢. If Y is an embedded submanifold and ¢ is the
inclusion map, TY is a subbundle of .*T'N =T N|y and the quotient subbundle,

NNY =Nye = TN /Imde =TN|y /TY — Y,

is called the normal bundle of Y in IV; its rank is the codimension of Y in N. If f: M — N
is a smooth map and X C M is an embedded submanifold, the vector-bundle homomorphism d f
in (9.6) restricts (pulls back by the inclusion map) to a vector-bundle homomorphism

df|x: TM|x — (f*TN)|,
over X, which can be composed with the inclusion homomorphism TX — T M |x,

X — TM|x 2 (TN,
If in addition f(X) CY, then the above sequence can be composed with the f*-pullback of the
projection homomorphism ¢: TN|y — NyNY,

YIS ()|, L Py (9.8)

TX — TM|x
This composite vector-bundle homomorphism is 0, since d, f(v) € T t(2)Y for all x € X. Thus, it
descends to a vector-bundle homomorphism

df: NyuX — f*NNY (9.9)

over X. If fMxY as in (5.1), then the map TM|x — f*NnY in (9.8) is onto and thus the
vector-bundle homomorphism (9.9) is surjective on every fiber. Finally, if X = f~1(Y), the ranks
of the two bundles in (9.9) are the same by the last statement in Theorem 5.3, and so (9.9) is an
isomorphism of vector bundles over X. Combining this observation with Theorem 5.3, we obtain
a more precise statement of the latter.

Theorem 9.2. Let f: M — N be a smooth map and Y CN an embedded submanifold. If fMnY
as in (5.1), then X = f~1(Y) is an embedded submanifold of M and the differential df induces a
vector-bundle isomorphism

NurX FHNNY) (9.10)
N A
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Since the ranks of Ny X and f*(NxnY) are the codimensions of X in M and Y in N, respectively,
this theorem implies Theorem 9.2. If Y ={q} for some point g €Y, then NyY is a trivial vector
bundle and thus so is Ny X ~ f*(NMyY). For example, the unit sphere S™ C R™*! has trivial
normal bundle, because

sm = f71(1), where f:R™ — R, f(z)=|z%
A trivialization of the normal bundle to S™ is given by
TR™/TS™ — S™ xR, (x,v) — (z,z-0).

Corollary 9.3. Let f: X — M and g: Y — M be smooth maps. If fMyrg as in (5.5), then the
space
XxuY = {(z,y) XY f(2)=g(y)}

18 an embedded submanifold of X XY and the differential df induces a vector-bundle isomorphism

d e} d
Ny (X x 3 V) — DA e ey — o g*TM (9.11)
\ /
XXMY

Furthermore, the projection map mi=7nx: X XY — X is injective (immersion) if g: Y — M
is injective (immersion).

This corollary is obtained by applying Theorem 9.2 to the smooth map
fxg: XxY — MxM.

All other versions of the Implicit Function Theorem stated in these notes are special cases of this
corollary.
Direct Sums

If V and W are two vector spaces, we can form a new vector space, VAW =V x W, the direct
sum of V and W. There are natural inclusions V,W — V @&W and projections VoW — V, W.
If f:V—V'and g: W — W’ are linear maps, they induce a linear map

fog: VoW — V'ew'.

If we choose bases for V', W, V', and W' so that f and g correspond to some matrices A and D,
then in the induced bases for VW and V' @W/,

ron- (4 )

If my: V— M and my : W — M are smooth vector bundles, we can form their direct sum,
VW, so that
(Vew), =V,eW, VpeM.
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The vector-bundle structure on V& W is determined from those of V' and W by requiring that
either the natural inclusion maps V,W — V@ W or the projections VW — V, W be smooth
vector-bundle homomorphisms over M. Thus, if syy and sy are sections of V' and W, then sy ®sy
is a smooth section of VW if and only if sy and sy are smooth. If {g,s} and {g,,5} are transition
data for V and W, transition data for VW is given by {gag@gfw}, i.e. we put the first matrix
in the top left corner and the second matrix in the bottom right corner. Alternatively, let

d: M — MxM,  d(p) = (p,p),
be the diagonal embedding. Then,
my Xy VW — M x M
is a smooth vector bundle (with the product structure), and

Vew =d(VxW).

If V,W — M are vector bundles, then V' and W are vector subbundles of V@ W. It is immediate
from Section 9 that
(Vow)/V =W  and (Vow)/W =V.

These equalities hold in the holomorphic category as well (i.e. when the bundles and the base
manifold carry complex structures and all trivializations and transition maps are holomorphic).
Conversely, if V' is a subbundle of V', by Section 10 below

VaV/V)eV

as smooth vector bundles, real or complex. However, if V and V' are holomorphic bundles, V' may
not have the same holomorphic structure as (V/V')@V’ (i.e. the two bundles are isomorphic as
smooth vector bundles, but not as holomorphic ones).

Dual Bundles

If V' is a vector space (over R or C), the dual vector space is the space of the linear homomorphisms
to the field (R or C, respectively):

V* = Hompg (V, R) or V* = Homc (V, C).

A linear map g : V — W between two vector spaces, induces a dual map in the “opposite”
direction:

g W — vV, {g*(L)}(v) = L(g(v)) VLeW* veV.

If V=RF and W =R", then ¢ is given by an n x k-matrix, and its dual is given by the transposed
k X n-matrix.

If 7: V— M is a smooth vector bundle of rank £ (say, over R), the dual bundle of V is a vector
bundle V* — M such that

V), =V;  VpeM.
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The vector-bundle structure on V* is determined from that of V' by requiring that the natural map
VeV =V xyV* — R (or C), (v,L) — L(v), (9.12)

be smooth. Thus, if s and v are smooth sections of V' and V*, ¢(s) is a smooth function on M. If
{gap} is transition data for V, i.e. the transitions between charts are given by

haohgl: UaNUg x RF — UsNUg x ]Rk, (p,v) — (p, gag(p)v),
the dual transition maps are then given by
UaNUg x RF — UaNUg x R*, (p,v) — (p, gag(p)trv).

However, these maps reverse the direction, i.e. they go from the a-side to the §-side. To fix this
problem, we simply take the inverse of g,s(p)™:

UaNUs x R¥ — U,nU xRE, (p,0) — (p, {gap(p)™} 'v).

So, transition data for V* is {(ggﬁ)_l}. As an example, if V' is a line bundle, then g,z is a smooth
nowhere-zero function on U,NUg and (¢g*)ap is the smooth function given by 1/gqg3.

Tensor Products

If V and V' are two vector spaces, we can form a new vector space, V®V’, the tensor product of
Vand V. If g: V—W and ¢': V' — W' are linear maps, they induce a linear map

g24g VeV — WeW'.

If we choose bases {e;}, {e},}, {fi}, and {f;,} for V, V', W, and W”, respectively, then {e;®e], }(;n)
and {f;®f,}(i,m) are bases for VoV’ and W @W'. If the matrices for g and g’ with respect to the
chosen bases for V, V', W, and W' are (gi;)i,; and (g,,,)m,n, then the matrix for g®¢’ with respect
to the induced bases for VeV’ and WRW" is (gij9mn) i,m),(j,n)- The rows of this matrix are indexed
by the pairs (7, m) and the columns by the pairs (j,n). In order to actually write down the matrix,
we need to order all pairs (i,m) and (j,n). If all four vector spaces are one-dimensional, g and ¢
correspond to single numbers g;; and g,,,,,, while g®g¢’ corresponds to the single number g;;g;,,.

If 7: V— M and 7’: V' — M are smooth vector bundles, we can form their tensor product,
V®V’, so that
VOV, =VaeV,  YmeM.

The topology and smooth structure on V®V’ are determined from those of V' and V'’ by requiring
that if s and s’ are smooth sections of V' and V', then s ® s’ is a smooth section of V®@V’. More
explicitly, suppose {gag} and {g,5} are transition data for V' and V’. Then, transition data for
VeV’ is given by {gag®,5}, i-e. we construct a matrix-valued function gos®g,,5 from {gag}
and {g’aﬁ} as in the previous paragraph. As an example, if V and V' are line bundles, then g.g
and gfxﬁ are smooth nowhere-zero functions on U,NUg and (g®¢’)ss is the smooth function given

bY Gapdns-
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Exterior Products

If V is a vector space and k is a nonnegative integer, we can form the k-th exterior power, AFV,
of V. A linear map g: V — W induces a linear map

Afg: APV — AW
If n is a nonnegative integer, let Si(n) be the set of increasing k-tuples of integers between 1 and n:

Sk(n) = {(il, L ,’ik)EZk: 1< <in<... < ’Lkﬁn}
If {ej}j=1,..n and {fi}i=1,...m ave bases for V and W, then {e;},cg,(n) and {fu}.cs,(m) are bases
for A*V and A*WW, where
C(ntyemie) = Em N o Nl and f(m’_“’“k) = fur Ao A fu

If (gij)i=1,...m,j=1,...n is the matrix for g with respect to the chosen bases for V and W, then

(det ((9rm)rs=1)) (uiny et myx ()

is the matrix for A*g with respect to the induced bases for A¥V and A*W. The rows and columns of
this matrix are indexed by the sets Si(m) and Si(n), respectively. The (u,n)-entry of the matrix
is the determinant of the k x k-submatrix of (gi;);; with the rows and columns indexed by the
entries of p and 7, respectively. In order to actually write down the matrix, we need to order the
sets Si(m) and Sg(n). If k=m=n, then A¥V and A*W are one-dimensional vector spaces, called
the top exterior power of V' and W, with bases

{el/\.../\ek} and {fl/\.../\fk}.

With respect to these bases, the homomorphism A*g corresponds to the number det(gij)ij. f k>n
(or k>m), then A*V (or A*IW) is the zero vector space and the corresponding matrix is empty.

If 7: V— M is a smooth vector bundle, we can form its k-th exterior power, A*V, so that
(A*V),, = AV, VmeM.

The topology and smooth structure on A¥V are determined from those of A¥V by requiring that if
S1,...,5; are smooth sections of V', then s; A ... A s is a smooth section of A¥V. More explicitly,
suppose {gag} is transition data for V. Then, transition data for AV is given by {A¥g.s}, i.e. we
construct a matrix-valued function Akgag from each matrix g,g as in the previous paragraph. As
an example, if the rank of V is k, then the transition data for the line bundle AV, called the top
exterior power of V, is {det gog}-

It follows directly from the definitions that if V' — M is a vector bundle of rank k£ and L — M is
a line bundle (vector bundle of rank one), then

AP(VaL) =AM Y VeL) = A"V e L =AYV L.
More generally, if V,W — M are any two vector bundles, then

APV W) = (APV) @ (APW)  and  AF(VeW) = @D AV)e(WW).
it+j=k
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Remark: For complex vector bundles, the above constructions (exterior power, tensor product,
direct sum, etc.) are always done over C, unless specified otherwise. So if V' is a complex vector
bundle of rank k over M, the top exterior power of V is the complex line bundle A*V over M
(could also be denoted as A(’é ). In contrast, if we forget the complex structure of V' (so that it
becomes a real vector bundle of rank 2k), then its top exterior power is the real line bundle ARV
(could also be denoted as AZV).

10 Metrics on Fibers

If V is a vector space over R, a positive-definite inner-product on V' is a symmetric bilinear map
(,): VXV —R, (v,w)— (v,w), s.t. (v,v) >0 Yve V-0.

If {,) and (, )’ are positive-definite inner-products on V and a,a’ € RT are not both zero, then
a(,)+d' (,): VxV — R, {a(,)+d'(,)'}(v,w) = alv,w) + d' (v, w)’,

is also a positive-definite inner-product. If W is a subspace of V and (,) is a positive-definite
inner-product on V, let
Wt = {veV: (v,w)=0VweW}

be the orthogonal complement of W in V. In particular,
V=weWw"
Furthermore, the quotient projection map
mV —V/W
induces an isomorphism from W+ to V/W so that

VaWae (V/W).

If M is a smooth manifold and V' — M is a smooth real vector bundle of rank &, a Riemannian metric
on V is a positive-definite inner-product in each fiber V, ~R¥ of V that varies smoothly with = € M.
More formally, the smoothness requirement is one of the following equivalent conditions:

(a) the map (,): V x;V —R is smooth;

(b) the section (,) of the vector bundle (V®V)* — M is smooth;

(c) if s1, s9 are smooth sections of the vector bundle V'— M, then the map

(s1,82): M — R, m — (s1(m), s2(m)),

is smooth;
(d) if h: V]yy —UxRF is a trivialization of V, then the matrix-valued function,

B:U — MatzR  s.t. (b7 (m,v),h (m,w)) =v'B(m)w ¥ mell, v,weR",
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is smooth.
Every real vector bundle admits a Riemannian metric. Such a metric can be constructed by
covering M by a locally finite collection of trivializations for V' and patching together positive-
definite inner-products on each trivialization using a partition of unity. If W is a subspace of V
and (,) is a Riemannian metric on V, let

wt= {veV: (v,w)=0VweW}
be the orthogonal complement of W in V. Then W+ — M is a vector subbundle of V and
V=WaWw"
Furthermore, the quotient projection map
m:V—V/W
induces a vector bundle isomorphism from W+ to V/W so that

VaWae (V/W).

If V is a vector space over C, a nondegenerate Hermitian inner-product on V' is a map
(,):VxV —C, (v,w)— (v,w),

which is C-antilinear in the first input, C-linear in the second input,

(w,v) = (v,w) and (v,v) >0 YveV-0.

If {,) and (,)" are nondegenerate Hermitian inner-products on V and a,a’ € RT are not both zero,
then a(, )+d’(,)’ is also a nondegenerate Hermitian inner-product on V. If W is a complex subspace
of V and (,) is a nondegenerate Hermitian inner-product on V, let

Wt ={veV: (v,w)=0VweW}
be the orthogonal complement of W in V. In particular,
V=wWaeWw
Furthermore, the quotient projection map
mV —V/W
induces an isomorphism from W+ to V/W so that

VaWwe (V/W).

If M is a smooth manifold and V' — M is a smooth complex vector bundle of rank k, a Hermitian
metric on V is a nondegenerate Hermitian inner-product in each fiber V, ~ C* of V that varies
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smoothly with € M. More formally, the smoothness requirement is one of the following equivalent
conditions:
(a) the map (,): V x /V —C is smooth,;
(b) the section (,) of the vector bundle (V®gV)* — M is smooth;
(c) if s1, s9 are smooth sections of the vector bundle V.— M, then the function <sl, 32>
on M is smooth;
(d) if h: V |y —U x CF is a trivialization of V, then the matrix-valued function,

B:U — Mat;C s.t. (h7'(m,v),h Y (m,w)) =0'B(m)w ¥ meM, v,weCF,

is smooth.
Similarly to the real case, every complex vector bundle admits a Hermitian metric. If W is a
subspace of V and (,) is a Hermitian metric on V, let

Wt ={veV: (v,w)=0 Ywe W}

be the orthogonal complement of W in V. Then W' — M is a complex vector subbundle of V'
and
V=weaewh

Furthermore, the quotient projection map
mV—V/W
induces an isomorphism of complex vector bundles over M so that

VaWae (V/W).

If V— M is a real vector bundle of rank k£ with a Riemannian metric (,) or a complex vector
bundle of rank k& with a Hermitian metric (), let

SV ={veV:{vv)=1} — M

be the sphere bundle of V. In the real case, the fiber of SV over every point of M is S*~1.
Furthermore, if ¢/ is a small open subset of M, then SV|y ~Ux S*1 as bundles over U, i.e. SV is
an S*~1-fiber bundle over M. In the complex case, SV is an S%*~!-fiber bundle over M. If V— M
is a real line bundle (vector bundle of rank one) with a Riemannian metric (,), then SV — M
is an SO-fiber bundle. In particular, if ¢/ is a small open subset of M, SV |y is diffeomorphic to
Ux{x1}. Thus, SV — M is a 2: 1-covering map. If M is connected, the covering space SV is
connected if and only if V' is not orientable; see Section 11 below.

11 Orientations
If V is a real vector space of dimension k, the top exterior power of V| i.e.

APy = ARV
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is a one-dimensional vector space. Thus, APV —0 has exactly two connected components. An
orientation on V' is a component C of V. If C is an orientation on V, then a basis {e;} for V is
called oriented (with respect to C) if

et N...Ne €C.

If {f;} is another basis for V" and A is the change-of-basis matrix from {e;} to {f;}, i.e.

i=k
(fl,...,fk) = (61,...,ek)A <~ fj:ZAijei;
=1

then
finh. . A fr=(detA)es A... Neg.

Thus, two different bases for V' belong to the same orientation on V if and only of the determinant
of the corresponding change-of-basis matrix is positive.

Suppose V — M is a real vector bundle of rank k. An orientation for V' is an orientation for each
fiber V, ~R¥, which varies smoothly (or continuously, or is locally constant) with x € M. This
means that if

h:V]y — UxRF

is a trivialization of V' and U is connected, then h is either orientation-preserving or orientation-
reversing (with respect to the standard orientation of R¥) on every fiber. If V admits an orientation,
V' is called orientable.

Lemma 11.1. Suppose V— M is a smooth real vector bundle.
(1) V is orientable if and only if there exists a collection {Uy, ho} of trivializations that covers M
such that

det gog: UaNUg — RY,

where {gapg} is the corresponding transition data.

(2) V is orientable if and only if the line bundle A*°PV — M s orientable.

(8) If V is a line bundle, V is orientable if and only if V is (isomorphic to) the trivial line
bundle M xR.

(4) If V is a line bundle with a Riemannian metric (,), V is orientable if and only if SV is not
connected.

Proof: (1) If V' has an orientation, we can choose a collection {Uy,hs} of trivializations that
covers M such that the restriction of h, to each fiber is orientation-preserving (if it is orientation-
preserving, simply multiply its first component by —1). Then, the corresponding transition data
{9ap} is orientation-preserving, i.e.

det gog: UaNUg — RT.

Conversely, suppose {Uy, hq} is a collection of trivializations that covers M such that
det gog: UsNUz — R*.

Then, if z €U, for some «, define an orientation on V, by requiring that

he: Vy — zxRF
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is orientation-preserving. Since det gop is RT-valued, the orientation on V is independent of «
such that x €U,. Each of the trivializations h, is then orientation-preserving on each fiber.
(2) An orientation for V is the same as an orientation for A*™P, since

Atopv — Atop (AtOpV).

Furthermore, if {(Uy, ha)} is a collection of trivializations for V' such that the corresponding tran-
sition functions g,g have positive determinant, then {(Uy, A*®Phy)} is a collection of trivializations
for APV such that the corresponding transition functions A*Pg,g = det(gqg) have positive de-
terminant as well.

(3) The trivial line bundle M xR is orientable, with an orientation determined by the standard ori-
entation on R. Thus, if V' is isomorphic to the trivial line bundle, then V is orientable. Conversely,
suppose V' is an oriented line bundle. For each x € M, let

Cr CAYPV =V

be the chosen orientation of the fiber. Choose a Riemannian metric on V and define a section s of
V by requiring that for all z € M

(s(z),s(z)) =1 and s(x) € Cy.

This section is well-defined and smooth (as can be seen by looking on a trivialization). Since it
does not vanish, the line bundle V is trivial by Lemma 7.4.
(4) If V is orientable, then V is isomorphic to M xR, and thus

SV =S(MxR) =MxS®=MuM

is not connected. Conversely, if M is connected and SV is not connected, let SV be one of the
components of V. Since SV — M is a covering projection, so is SV — M. Since the latter is
one-to-one, it is a diffeomorphism, and its inverse determines a nowhere-zero section of V. Thus,
V' is isomorphic to the trivial line bundle by Lemma 7.4.

If V is a complex vector space of dimension k, V' has a canonical orientation as a real vector space
of dimension 2k. If {e;} is a basis for V over C, then

{61,161, .o .,ek,iek}

is a basis for V over R. The orientation determined by such a basis is the canonical orientation
for the underlying real vector space V. If {f;} is another basis for V' over C, B is the complex
change-of-basis matrix from {e;} to {f;}, A is the real change-of-basis matrix from

{61,161,...,6k,i€k} to {fl,ifl,...,fk,ifk},

then
det A = (det B)det B € R™.

Thus, the two bases over R induced by complex bases for V' determine the same orientation for V.
This implies that every complex vector bundle V — M is orientable as a real vector bundle.
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Exercises

1 Let w: V— M Dbe a vector bundle. Show that

(a) the scalar-multiplication map (6.1) is smooth;

(b) the space V x 3/ V is a smooth submanifold of V' xV and the addition map (6.2) is smooth.

2 Verify all claims made in Example 6.5, thus establishing that the tangent bundle 7'M of a smooth
manifold is indeed a vector bundle. What is its transition data?

3 Show that the tangent bundle T'S' of S! is isomorphic to the trivial real line bundle over S*.

4 Show that the complex tautological line bundle v, — CP™ is indeed a complex line bundle as
claimed in Example 6.8. What is its transition data? Why is it non-trivial for n>17?

5 Let m: V — M be a smooth vector bundle of rank k and {(Uy, ha)}aca a collection of triv-
ializations covering M. Show that a section s of 7 is continuous (smooth) if and only if the
map

Sq = maohq08: Uy — R” ,

where 79 : U, xRF — RF is the projection on the second component, is continuous (smooth) for
every a € A.

6 Let M be a smooth m-manifold. Show that

(TM1) the topology on T'M constructed in Example 6.5 is the unique one so that 7: TM — M
is a topological vector bundle with the canonical vector-space structure on the fibers
and so that for every vector field X on T'M and smooth function f: U — R, where U
is an open subset of R, the function X(f): U — R is continuous if and only if X is
continuous;

(TM2) the smooth structure on T'M constructed in Example 6.5 is the unique one so that
w: TM — M is a smooth vector bundle with the canonical vector-space structure on
the fibers and so that for every vector field X on T'M and smooth function f: U —R,
where U is an open subset of R, the function X (f): U — R is smooth if and only if X
is smooth.

7 Show that the two versions of the last condition on f in (2) in Definition 7.2 are indeed equivalent.

8 Suppose that f: M — N is a smooth map and 7: V — N is a smooth vector bundle of rank k
with transition data {gn3: UsNUg— GL,R}, gea. Show that

(a) the space f*V defined by (9.1) is a smooth submanifold of M xV and the projection
m: f*V — M is a vector bundle of rank k with transition data

{f*9ap=gapof: T Ua)Nf H(Us) — GLyR} 4 pens

(b) if M is an embedded submanifold of N and f is the inclusion map, then the projection
ma: f*V —V induces an isomorphism f*V — V|, of vector bundles over M.

9 Let f: M — N be a smooth map and ¢: V — W a smooth vector-bundle homomorphism
over N. Show that the pullback vector-bundle homomorphism f*p: f*V — f*W is also smooth.

95



10

11

12
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15
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Let p: V— W be a smooth surjective vector-bundle homomorphism over a smooth manifold M.
Show that
kero = {veV: p(v)=0} — M

is a subbundle of V.

Let V— M be a vector bundle of rank k& and V' CV a smooth subbundle of rank k’. Show that

(a) there exists a collection {(Uq,hq)}aca of trivializations for V' covering M so that (9.7)
holds and thus the corresponding transition data has the form

JaB = (3 :):UaﬂU5—>GLk]R,

where the top left block is k' x k/;

(b) the vector-bundle structure on V/V' described in Section 9 is the unique one so that the
natural projection map V — V/V’ is a smooth vector-bundle homomorphism;

(c) if p: V— W is a vector-bundle homomorphism over M such that ¢(v)=0 for all veV’,
then the induced vector-bundle homomorphism @: V/V'— W is smooth.

Let f=(f1,...,fx) : R™" — R* be a smooth map, ¢ €R¥ a regular value of f, and X = f~1(q).
Denote by V f; the gradient of f;. Show that

TX = {(p,v) eXxR™: Vfi|,v=0Vi=1,2,...,k}

under the canonical identifications TX C TR™|x and TR™ =R™ xR™. Use this description of
TX to give a trivialization of Ngm X.

Obtain Corollary 9.3 from Theorem 9.2.

Let V, W — M be smooth vector bundles. Show that the two constructions of VW in Section 9
produce the same vector bundle and that this is the unique vector-bundle structure on the total
space of

peEM

so that

(VBE@1) the projection maps VAW — V, W are smooth bundle homomorphisms over M;
(VBE2) the inclusion maps V, W — V@W are smooth bundle homomorphisms over M.

Let my: V— M and wy : W — N be smooth vector bundles and mp;, iy : M XN — M, N
the component projection maps. Show that the total of the vector bundle

m:myV enyW — MxN
is VxW (with the product smooth structure) and ©=my Xy .

Let M and N be smooth manifolds and 7wy, 7 : M XN — M, N the projection maps. Show
that dmys and dmy viewed as maps from T'(M x N) to
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(a) TM and T'N, respectively, induce a diffeomorphism T'(M xN) —TMxT N that commutes
with the projections from the tangent bundles to the manifolds and is linear on the fibers
of these projections;

(b) m3,TM and w3TN, respectively, induce a vector-bundle isomorphism
T(MxN)— 7y TM&ryTN.

Why are the above two statements the same?

17 Show that the vector-bundle structure on the total space of V* constructed in Section 9 is the

18

19

20

unique one so that the map (9.12) is smooth.
Suppose k<n. Show that the map
.: CP* — cpP, [(Xo,..., X% — [Xo,..., X, 0,...,0],
n—k

is a complex embedding (i.e. a smooth embedding that induces holomorphic maps between the
charts that determine the complex structures on CP* and CP") and that the normal bundle to
this immersion, N, is isomorphic to

=k =@ 8,

—_———
n—k

where v, — CP* is the tautological line bundle (isomorphic as complex line bundles). Hint:

there are a number of ways of doing this, including:

(i) construct an isomorphism between the two vector bundles;
(ii) determine transition data for N, and (n—Fk)v;;

(iii) show that there exists a holomorphic diffeomorphism between (n—k)~; and a neighborhood
of «(CP¥) in CP™, fixing +(CP"), and that this implies that N, = (n—k)~;.

Let w: V— M be a real vector bundle.

(a) Show that the vector-bundle homomorphism dr : TV — 7*T'M is surjective and thus
kerdm — V is a vector bundle; it is called the vertical tangent bundle of V and de-
noted TV,

(b) Show that there is a canonical isomorphism TV'Y"* — 7*V of vector bundles over V.
Conclude that there is a short exact sequence of vector bundles

0— TV 7V I — 0
over V', where ¢ is the inclusion map.

Let 7, — CP"™ be the tautological line bundle as in Example 6.8 and P : C"*! — C a
homogeneous polynomial of degree one. Show that

sp: CP"—~}, {sp(0)}(,v) = P(v) V({,v) €,

is a well-defined holomorphic section of +;, while the line bundle v, — CP™ admits no nonzero
holomorphic section.
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