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Overview

(1) Smooth manifolds, tangent vectors, differentials, immersions, etc. (intrinsically and in local coor-
dinates): PS1 #1-5; PS2 #1,2,7; MT06 #1; MT #1,2; FE06 #1

(2) Vector Bundles: PS2 #3-6; PS4 #5; PS5 #4; PS6 #4,5ab; PS8 #2,3; MT06 #5; MT #5;
FE06 #3,7

e Set of isomorphism classes of (smooth) real vector bundles of rank k on a paracompact topo-
logical space (smooth manifold) is H'(M;GLgR). If k=1 (line bundles), this is an abelian
group isomorphic to H'(M;Zs). The sum in H'(M;Zs) corresponds to tensor product of
line bundles (multiplication of transition data); the inverse of a line bundle is its dual. In
particular, the square of every real line is trivial.

e Set of isomorphism classes of (smooth) complex vector bundles of rank k£ on a paracompact
topological space (smooth manifold) is H'(M;GL,C). If k=1 (line bundles), this is an
abelian group isomorphic to H2(M;Z). The sum in H?(M;Z) corresponds to tensor prod-
uct of line bundles (multiplication of transition data); the inverse of a line bundle is its dual.
The square of a complex line is usually not trivial (as a complex line bundle).

(3) Differentials, Inverse FT, Slice Lemma, Implicit FT (I&II): PS3 #1-3; MT06 #2; MT #2

(4) Flows of vector fields, Lie Bracket, Lie Derivative: PS3 #4.5; PS4 #1,2; PS6 #8a; MT06 #1;
FE06 #2

e compute flow of a vector field and Lie derivative from the flow: PS3 #6; PS6 #1
e compute the Lie bracket of two vector fields: PS4 #3.

(5) The Differential d: EP(M)— EPT1(M), Frobenius Theorem (I&II), Strong Slice Statement: PS4
43: PS5 #1-3,5,6; MT06 #3; MT #3

e when does a collection of k£ vector fields form a subset of coordinate vectors or at least has
the same span at each point as the first k coordinate vectors?

e when can a 1-form be written with fewer pieces after a change of coordinates?

(6) de Rham cochain complex, Poincare Lemma, Stokes’ Theorem (I&II), and group actions: PS6
493 6b,9: PST #5: PS10 #3: MT06 #4;: MT #4: FE06 #1,6

o If 7: M — M is a regular covering projection and G is its group of deck transformations,
then the homomorphism

™ E* (M) — E*(M)% = {acE*(M): g*a=aVvgeG}



is an isomorphism. If in addition, G is finite, then the homomorphism
m: Hip(M) — Hip(M)® = {ae Hip(M): g*la] = [a]Vg€G}
is also an isomorphism. The cohomology homomorphism fails to be an isomorphism for the

simplest non-trivial covering map with G being infinite: R — S1.

e A covering projection 7 : M — M is regular if the group of deck transformations (maps
g: M — M such that m =mog) acts transitively on the fibers of 7. Every double (2-to-1)
cover is necessarily regular: G =79 with (—1) € Zy interchanging the two points in each fiber
of w. For any covering map, the homomorphism

e ﬂl(M?jO) - 7T1(M7 1"0)7 o = 71-(i'())v

is injective. If M and M are connected, 7 is a regular covering if and only if the image of 7, is
a normal subgroup of 71 (M, ), i.e. preserved by conjugation in m (M, zo). So if m1 (M, xo)
is abelian, then every covering is regular. Every double cover being regular corresponds to
every subgroup H C G of index 2, i.e. |G/H|=2, being normal. If G is a group acting on M
properly discontinuously (by diffeomorphisms), then the quotient map

7T:M—>M:M/G

is a regular covering (and 7 is a smooth map). If G is finite and acts on M without fixed
points (g =2 for some T € M if and only if g=1d), then G acts properly discontinuously and
thus 7: M — M /G is a regular covering and the cohomology of M /G can be computed
from the cohomology of M (but not the other way around).

(7) Orientability of manifolds and vector bundles, relations with topology and covering maps: PS6
#4-7 8bc; MT06 #5; FEO06 #5,7

(8) Singular chain complex, Hurewicz Theorem: PS7 #1; PS9 #2; FE06 #4

(9) (Co)chain complexes and (co)homology, duals, coefficient changes, Snake Lemma

e Mayer-Vietoris for de Rham cohomology, singular homology, compactly supported cohomol-
ogy: PS7 #2-4, PS11 #2; FE06 #6b,BP

e Sheafs and Cech Cohomology: PS7 #6,7; PS8 #1-3; PS9 #1,3
e Cohomology from fine resolutions: de Rham Theorem

e Compactly supported cohomology: PS11 #3

(10) Geometric Analysis and Hodge Theory

e Differential operators, symbol, elliptic operators: FE06 #8



Sobolev Lemma, Rellich Lemma, Fundamental Inequality: PS 10, #4,5
Laplacian: PS4 #4; PS10 #1,2

Hodge Decomposition Theorem, Poincare Duality, finite-dimensionality of de Rham coho-
mology, Kunneth Formula: PS10 #5

¢ The main point of Chapter 6 is that H} . (M)~HP(M) for a compact (Riemannian) mani-
fold M. While HY (M) is a quotient of a subspace of EP(M) (the subspace ker d,), HP(M)
is an actual subspace of kerd, and the isomorphism to ngR(M ) is given by the quotient
projection map. One drawback of HP(M) is that it depends on the choice of Riemannian
metric, but this is not a problem for many applications (such as Poincare Duality and Kun-
neth formula); more applications will be done in MAT 545 (see also Figure 1 below). If M
is not compact, it is generally not true HY (M) is isomorphic HP(M); for example, the
space of harmonic functions on R? is infinite-dimensional (the real and imaginary parts of
a holomorphic function on C are harmonic), even though HY ; (R?) ~R consists of just the
constant functions.

(11) Computing de Rham cohomology of n-manifold M:

o HY (M); Hi (M) (M orientable/not, compact/not): PS10 #3; PS11 #1
e H} p(M) from mi(M); then H" 1 (M) if M is compact orientable

o if M=M/G, where G is finite and acts freely on M, can compute Hj (M) from HQ‘GR(M)
(see above); if G Is infinite and acts properly discontinuously on M, may be able to compute
m (M) from 7y (M) (e.g. m(M)=G if m(M)={1}), but not Hj (M) from H} (M)

e Mayer-Vietoris (need open sets; path-connected not necessarily, unlike van Kampen)

o Hin(R™), Hir(S™), Hir(Eg): PST #3,4
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Figure 1: For a compact oriented n-manifold M, Hodge theory leads to Poincare duality; it implies that
the dimensions of the de Rham cohomology groups of M are symmetric about n/2. For a compact
Kahler manifold M (subject of MAT 545), Hodge theory leads to a two-way symmetry, known as
Hodge diamond; it implies that the dimensions of the odd cohomologies of a Kahler manifold are even
(a quick way to see which manifolds do not admit a Kahler structure). The two diagrams above show
the “de Rham segment” and the Hodge diamond for CP?xT?, which is a real 6-manifold and a Kahler
3-manifold, and their symmetries.
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Figure 2: Same diagram as above, but just with numbers; the diamond is symmetric about the center e



