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Overview

(1) Smooth manifolds, tangent vectors, differentials, immersions, etc. (intrinsically and in local coor-
dinates): PS1 #1-5; PS2 #1,2,7; MT06 #1; MT #1,2; FE06 #1

(2) Vector Bundles: PS2 #3-6; PS4 #5; PS5 #4; PS6 #4,5ab; PS8 #2,3; MT06 #5; MT #5;
FE06 #3,7

• Set of isomorphism classes of (smooth) real vector bundles of rank k on a paracompact topo-
logical space (smooth manifold) is Ȟ1(M ; GLkR). If k =1 (line bundles), this is an abelian
group isomorphic to H1(M ; Z2). The sum in H1(M ; Z2) corresponds to tensor product of
line bundles (multiplication of transition data); the inverse of a line bundle is its dual. In
particular, the square of every real line is trivial.

• Set of isomorphism classes of (smooth) complex vector bundles of rank k on a paracompact
topological space (smooth manifold) is Ȟ1(M ; GLkC). If k = 1 (line bundles), this is an
abelian group isomorphic to H2(M ; Z). The sum in H2(M ; Z) corresponds to tensor prod-
uct of line bundles (multiplication of transition data); the inverse of a line bundle is its dual.
The square of a complex line is usually not trivial (as a complex line bundle).

(3) Differentials, Inverse FT, Slice Lemma, Implicit FT (I&II): PS3 #1-3; MT06 #2; MT #2

(4) Flows of vector fields, Lie Bracket, Lie Derivative: PS3 #4,5; PS4 #1,2; PS6 #8a; MT06 #1;
FE06 #2

• compute flow of a vector field and Lie derivative from the flow: PS3 #6; PS6 #1

• compute the Lie bracket of two vector fields: PS4 #3.

(5) The Differential d : Ep(M)−→Ep+1(M), Frobenius Theorem (I&II), Strong Slice Statement: PS4
#3; PS5 #1-3,5,6; MT06 #3; MT #3

• when does a collection of k vector fields form a subset of coordinate vectors or at least has
the same span at each point as the first k coordinate vectors?

• when can a 1-form be written with fewer pieces after a change of coordinates?

(6) de Rham cochain complex, Poincare Lemma, Stokes’ Theorem (I&II), and group actions: PS6
#2,3,6b,9; PS7 #5; PS10 #3; MT06 #4; MT #4; FE06 #1,6

• If π : M̃ −→ M is a regular covering projection and G is its group of deck transformations,
then the homomorphism

π∗ : E∗(M) −→ E∗(M̃)G ≡
{

α̃∈E∗(M̃) : g∗α̃ = α̃ ∀ g∈G
}



is an isomorphism. If in addition, G is finite, then the homomorphism

π∗ : H∗

deR(M) −→ H∗

deR(M̃)G ≡
{

α̃∈H∗

deR(M̃) : g∗[α̃] = [α̃]∀ g∈G
}

is also an isomorphism. The cohomology homomorphism fails to be an isomorphism for the
simplest non-trivial covering map with G being infinite: R−→S1.

• A covering projection π : M̃ −→ M is regular if the group of deck transformations (maps
g : M̃ −→ M̃ such that π = π◦g) acts transitively on the fibers of π. Every double (2-to-1)
cover is necessarily regular: G=Z2 with (−1)∈Z2 interchanging the two points in each fiber
of π. For any covering map, the homomorphism

π∗ : π1(M̃, x̃0) −→ π1(M, x0), x0 = π(x̃0),

is injective. If M and M̃ are connected, π is a regular covering if and only if the image of π∗ is
a normal subgroup of π1(M, x0), i.e. preserved by conjugation in π1(M, x0). So if π1(M, x0)
is abelian, then every covering is regular. Every double cover being regular corresponds to
every subgroup H⊂G of index 2, i.e. |G/H|=2, being normal. If G is a group acting on M̃
properly discontinuously (by diffeomorphisms), then the quotient map

π : M̃ −→ M = M̃/G

is a regular covering (and π is a smooth map). If G is finite and acts on M̃ without fixed
points (gx̃= x̃ for some x̃∈M̃ if and only if g= id), then G acts properly discontinuously and
thus π : M̃ −→ M̃/G is a regular covering and the cohomology of M̃/G can be computed
from the cohomology of M̃ (but not the other way around).

(7) Orientability of manifolds and vector bundles, relations with topology and covering maps: PS6
#4-7,8bc; MT06 #5; FE06 #5,7

(8) Singular chain complex, Hurewicz Theorem: PS7 #1; PS9 #2; FE06 #4

(9) (Co)chain complexes and (co)homology, duals, coefficient changes, Snake Lemma

• Mayer-Vietoris for de Rham cohomology, singular homology, compactly supported cohomol-
ogy: PS7 #2-4, PS11 #2; FE06 #6b,BP

• Sheafs and Čech Cohomology: PS7 #6,7; PS8 #1-3; PS9 #1,3

• Cohomology from fine resolutions: de Rham Theorem

• Compactly supported cohomology: PS11 #3

(10) Geometric Analysis and Hodge Theory

• Differential operators, symbol, elliptic operators: FE06 #8
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• Sobolev Lemma, Rellich Lemma, Fundamental Inequality: PS 10, #4,5

• Laplacian: PS4 #4; PS10 #1,2

• Hodge Decomposition Theorem, Poincare Duality, finite-dimensionality of de Rham coho-
mology, Kunneth Formula: PS10 #5

• The main point of Chapter 6 is that Hp
deR

(M)≈Hp(M) for a compact (Riemannian) mani-
fold M . While Hp

deR
(M) is a quotient of a subspace of Ep(M) (the subspace ker dp), H

p(M)
is an actual subspace of ker dp and the isomorphism to Hp

deR
(M) is given by the quotient

projection map. One drawback of Hp(M) is that it depends on the choice of Riemannian
metric, but this is not a problem for many applications (such as Poincare Duality and Kun-
neth formula); more applications will be done in MAT 545 (see also Figure 1 below). If M
is not compact, it is generally not true Hp

deR
(M) is isomorphic Hp(M); for example, the

space of harmonic functions on R
2 is infinite-dimensional (the real and imaginary parts of

a holomorphic function on C are harmonic), even though H0
deR

(R2)≈R consists of just the
constant functions.

(11) Computing de Rham cohomology of n-manifold M :

• H0
deR

(M); Hn
deR

(M) (M orientable/not, compact/not): PS10 #3; PS11 #1

• H1
deR

(M) from π1(M); then Hn−1(M) if M is compact orientable

• if M =M̃/G, where G is finite and acts freely on M̃ , can compute H∗

deR
(M) from H∗

deR
(M̃)

(see above); if G is infinite and acts properly discontinuously on M̃ , may be able to compute
π1(M) from π1(M̃) (e.g. π1(M)=G if π1(M̃)={1}), but not H∗

deR
(M) from H∗

deR
(M̃)

• Mayer-Vietoris (need open sets; path-connected not necessarily, unlike van Kampen)

• H∗

deR
(Rn), H∗

deR
(Sn), H∗

deR
(Σg): PS7 #3,4
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h6 =1

h5 =2

h4 =2

h3 =2

h2 =2

h1 =2

h0 =1

h3,3 =1

h3,2 =1 h2,3 =1

h3,1 =0 h2,2 =2 h1,3 =0

h3,0 =0 h2,1 =1 h1,2 =1 h0,3 =0

h2,0 =0 h1,1 =2 h1,3 =0

h1,0 =1 h0,1 =1

h0,0 =1

Figure 1: For a compact oriented n-manifold M , Hodge theory leads to Poincare duality; it implies that
the dimensions of the de Rham cohomology groups of M are symmetric about n/2. For a compact
Kahler manifold M (subject of MAT 545), Hodge theory leads to a two-way symmetry, known as
Hodge diamond; it implies that the dimensions of the odd cohomologies of a Kahler manifold are even
(a quick way to see which manifolds do not admit a Kahler structure). The two diagrams above show
the “de Rham segment” and the Hodge diamond for CP 2×T 2, which is a real 6-manifold and a Kahler
3-manifold, and their symmetries.
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Figure 2: Same diagram as above, but just with numbers; the diamond is symmetric about the center •
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