
MAT 530: Topology&Geometry, I
Fall 2005

Problem Set 9

Solution to Problem p353, #4

Suppose you are given the fact that for every n there is no retraction r : Bn+1−→Sn. Show that
(a) The identity map i : Sn−→Sn is not null-homotopic.
(b) The inclusion map j : Sn−→Rn+1−0 is not null-homotopic.
(c) If v is a nonvanishing vector field on Bn+1, then

(c-i) v(x)=ax for some a∈R− and x∈Sn;
(c-ii) v(x)=ax for some a∈R+ and x∈Sn.

(d) Every continuous map f : Bn+1−→Bn+1 has a fixed point.
(e) Every (n+1)×(n+1)-matrix A of positive reals has a positive eigenvalue.
(f) If h : Sn−→Sn is null-homotopic, then h(x)=x for some x∈Sn and h(x)=−x for some x∈Sn.

Remark: For same reason as for π1, if r : X−→A is a retraction, then the induced homomorphism

r∗ : πn(X, a0) −→ πn(A, a0)

between the nth homotopy groups is surjective. As πn(B2n+1, a0) is trivial, while πn(Sn, a0)≈Z,
there exists no retraction from X =Bn+1 to A=S2.

The solution is essentially Section 55, with S1 and B2 replaced everywhere Sn and Bn+1. The only
difference is that part (c) of Lemma 55.3 has to be omitted. The correct replacement is that h∗ is
the trivial homomorphism on πn.

(a) If f : Sn−→Sn is null-homotopic, there exist c∈Sn and a continuous map

F : Sn×I −→ Sn, F (x, 0) = f(x) ∀x∈Sn, and F (x, 1) = c ∀x∈Sn.

Since F is constant on Sn×1, it induces a map from the quotient space

F̄ : X = (Sn×I)/∼ −→ Sn, where (x, 1) ∼ (x′, 1) ∀x∈Sn.

Since F is continuous, F̄ is continuous in the quotient topology on X. With this topology, X is
homeomorphic to Bn+1 by the map

[x, t] −→ (1−t)x ∈ Rn=1.

Thus, if f : Sn−→Sn is null-homotopic, it extends to a continuous map g : Bn+1−→Sn. If f = i,
such an extension would be a retraction. Since no retraction of Bn+1 onto Sn, the identity map



i : Sn−→Sn is not null-homotopic.

(b) Let r : Rn+1−0−→Sn be the natural retraction given by r(x)=x/|x|. Then,

r ◦ j = i : Sn −→ Sn.

Since i is not null-homotopic by part (a), neither is j (nor r).

(c-i) Suppose there exists no x∈Sn and a∈R− such that v(x)=ax. Define

F : Sn×I −→ Rn+1−0 by F (x, t) = (1−t)v(x) + tx ∈ Rn+1.

Note that if F (x, t) = 0, then either t=1 and v(x)=0 or v(x) = −(t/(1−t))x. Neither is the case
by our assumptions. Thus, F is homotopy between

v, j : Sn −→ Rn+1−0.

Since j is not null-homotopic by part (b), neither is v. Thus, by the proof of by part (a), v cannot
extend to a continuous map Bn+1−→Sn, contrary to our assumptions.

(c-ii) This follows from (c-i) applied to −v.

(d) Let v(x)=f(x)−x. If f(x) 6=x for all x∈Bn+1, then

v : Bn+1 −→ Rn+1−0

is a continuous map. Thus, by (c-ii), for some x∈Sn and a∈R+

v(x) = ax =⇒ f(x) = ax+x = (a+1)x =⇒ |f(x)| = |a+1||x| = |a+1| > 1.

This is impossible, since f(x)∈Bn+1 for all x∈Sn.

(e) Let
B =

{
(x1, . . . , xn) : x1, . . . ,xn >0, x2

1+. . .x2
n =1

}
.

Since all entries of the vector A are positive, all entries of the vector Ax, for x∈B, are nonnegative
and at least one is positive. Thus, we can define

f : B −→ B by f(x) = Bx
/
|Bx|.

Since f is continuous and B is homeomorphic to Bn, f(x)=x for some x∈B by part (d). Then,

Bx = |Bx|f(x) = |Bx|x.
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In other words, x is an eigenvector of A with (positive) eigenvalue |Bx|.

(f) Since the map h : Sn−→Sn is null-homotopic, by the proof of part (a) it extends to a continuous
map

v : Bn+1 −→ Sn ⊂ Rn+1−0.

By (c), there exist x+, x−∈Sn, a+∈R+, and a−∈R− such that

v(x+) = a+x+ and v(x−) = a−x−.

Since |v(x)|=1 for all x∈Bn+1,

|a+| = |a−| = 1 =⇒ a± = ±1 =⇒ v(x±) = ±x±.

Solution to Problem p359, #4

Suppose you are given the fact that for every n no continuous antipode-preserving h : Sn−→Sn is
null-homotopic. Show that:
(a) There is no retraction r : Bn+1−→Sn.
(b) There is no continuous antipode-preserving map g : Sn+1−→Sn.
(c) If f : Sn+1−→Rn+1 is a continuous map, f(x)=f(−x) for some x∈Sn+1.
(d) If A1, . . . , An+1 are bounded measurable sets in Rn+1, there exists n-plane that bisects each of
them.

(a) If such a retraction exists, the identity map Sn−→Sn is null-homotopic. However, since the
identity map is antipode-preserving, it is not null-homotopic.

(b) There restriction of such a map to the upper-hemisphere Bn+1
+ would give a retraction onto Sn.

Since (Bn+1
+ , Sn) is homeomorphic to (Bn+1, Sn) (by dropping the last coordinate), no such retrac-

tion exists by part (a).

(c) Let h(x)=f(x)−f(−x). If f(x) 6=f(−x) for all x∈Sn+1, then we can define

g : Sn+1 −→ Sn by g(x) = h(x)/|h(x)|.

Since h(−x) =−h(x), g(−x) =−g(x), i.e. g is antipode-preserving. However, no such map exists
by part (b).
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(d) For each x∈Sn+1, let Hx be the hyperplane in Rn+2 which is orthogonal to the unit vector x
and passes through the point

p = (0, . . . , 0, 1).

In particular, Hp =H−p. If x=±p, Hp is parallel to Rn+1×0; otherwise, Hp∩Rn+1 is a hyperplane
in Rn+1. For each k=1, . . . , n+1, let fk(x)∈ R̄+ be the measure of the portion of Ak that lies on
the side of Hx corresponding to x. In particular,

fk(x) + fk(−x) = Area Ak and fk(p) = 0.

The function fk : Sn+1−→R is a continuous, and so is the function

f =
(
f1, . . . , fn+1

)
: Sn+1−→Rn+1.

Thus, by part (c),

fk(x) = fk(−x) =
1
2
Area Ak

for some x∈Sn+1.

Solution to Problem p366, #9

If h : S1 −→ S1 is a continuous map and x0 ∈ S1, choose a path α : I −→ S1 from x0 to h(x0).
Define

deg h ∈ Z by h∗ = (deg h) · α̂ : π1(S1, x0) −→ π1(S1, h(x0)).

(a) Show that the deg h is independent of the choice of α and x0.
(b) Show that if h, k : S1−→S1 are homotopic, then deg h = deg k.
(c) Show that deg (h ◦ k) = (deg h)(deg k).
(d) Compute the degree of a constant map, the identity map, the reflection map (ρ(x, y)=ρ(x,−y)),
and the map h(z)=zn.
(e) Show that if h, k : S1−→S1 have the same degree, then they are homotopic.

(a) Suppose β : I−→S1 is another path from x0 to h(x0), then the isomorphisms

α̂, β̂ : π1(S1, x0) −→ π1(S1, h(x0))

are the same because π1(S1, x0)≈Z is abelian. Thus,

α̂−1 ◦ h∗ = β̂−1 ◦ h∗ : π1(S1, x0) −→ π1(S1, x0) ≈ Z

are the multiplication by the same number, which is denoted by deg h. Suppose x′0 ∈ S1 and
γ : I−→S1 is a path from x0 to x′0. Then,

β ≡ γ̄ ∗ α ∗ (h◦γ) : I −→ S1
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is a path from x′0 to h(x′0). Furthermore,

β̂−1 ◦ h∗ =
(
ĥ◦γ ◦ α̂ ◦ ˆ̄γ

)−1 ◦ h∗ = γ̂ ◦ α̂−1 ◦ ĥ◦γ
−1
◦ h∗

= γ̂ ◦ (α̂−1◦h∗) ◦ γ̂−1 : π1(S1, x′0) −→ π1(S1, x0) −→ π1(S1, x0) −→ π1(S1, x′0).

Thus, if α̂−1◦h∗ is the multiplication by deg h, then so is β̂−1◦h∗. It follows that degh is independent
of the choice of x0 and α.

(b) Since h and k are homotopic, there exists a path β : I−→S1 from h(x0) to k(x0) such that

k∗ = β̂ ◦ h∗ : π1(X, x0) −→ π1(X, h(x0)) −→ π1(X, k(x0)).

If α : I−→S1 is a path from x0 to h(x0), then α∗β is a path from x0 to h(x0). Furthermore,

k∗ = β̂ ◦ h∗ = β̂ ◦
(
(deg h)α̂

)
= (deg h)β̂ ◦ α̂ = (degh)α̂∗β.

Since by definition k∗=(degh)α̂∗β and α̂∗β is an isomorphism, we conclude that deg k=deg h.

(c) Let α, β : I −→S1 be paths from x0 to k(x0) and from k(x0) to h(k(x0)), respectively. Then,
α∗β is a path from x0 to h(k(x0)). Furthermore, by definition of the degree,

k∗ = (deg k)α̂, h∗ = (deg h)β̂ =⇒

(h◦k)∗ = h∗ ◦ k∗ =
(
(deg h)β̂

)
◦

(
(deg k)α̂

)
= (deg h)(deg k)β̂ ◦ α̂ = (deg h)(deg k)α̂∗β.

Since by definition (h ◦ k)∗ = (deg (h ◦ k))α̂∗β and α̂∗β is an isomorphism, we conclude that
deg (h◦k) =(deg h)(deg k).

(d) If h : S1−→S1 is a constant map, the homomorphism h∗ : π1(S1, x0)−→π1(S1, h(x0)) is trivial
and thus deg h=0. If h : S1−→S1 is the identity map, the homomorphism h is the identity and
thus deg h=1. If h(z)=zn, for some n∈Z+,

h∗ : π1(S1, 1) −→ π1(S1, 1)

is the multiplication by n as computed on the previous problems (the natural loop generating
π1(S1, 1) is taken to n times itself). Thus, degh=n. The reflection map is the n=−1 case of this.

(e) By (b) and (c), we can assume that h(1)=k(1)=1. We define the loop at 1 in S1 by

q : I −→ S1 and q(t) = e2πit.

Since deg h = deg k,
h∗=k∗ : π1(S1, 1) −→ π1(S1, 1).
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In particular, [h◦q]=[k◦q]. Let

p : R −→ S1, q(t) = e2πit,

be the standard covering map. Let

q̃h, q̃k : (I, 0) −→ (R, 0)

be the lifts of h◦q, k◦q : (I, 0)−→(S1, 1). Since h◦q is path homotopic to k◦q,

q̃k(1) = q̃k(1) ∈ Z=p−1(1) ⊂ R.

Let
F̃ :

(
I×I, 0×I, 1×I

)
−→

(
R, 0, q̃h(1)

)
be a path homotopy between q̃h and q̃k in R. Then,

p◦F̃ :
(
I×I, 0×I, 1×I

)
−→

(
S1, 1, 1

)
is a path-homotopy between the loops h◦q and k◦q. It descends to a map on the quotient

F : X = (I×I)
/
∼−→ S1, where (0, t) ∼ (1, t) ∀ t∈I.

This map is continuous in the quotient topology. With this topology, X is homeomorphic to S1×I.
The quotient project map is

q×id : I×I −→ S1×I.

(we have simply identified the two vertical edges of the square I× I). Thus, we have found a
continuous map

F : S1×I −→ S1 s.t. p◦F̃ = F ◦ q, F̃ |0×I = q̃h, F̃ |1×I = q̃k

=⇒ F ◦q|0×I = p◦F̃ |0×I = p◦q̃h = h◦q, F ◦q|1×I = p◦F̃ |1×I = p◦q̃k = k◦q
=⇒ F |0×I = h, F |1×I = k.

We conclude F is a homotopy between h and k.
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