MAT 530: Topology&Geometry, I Fall 2005

Problem Set 9

Solution to Problem p353, #4

Suppose you are given the fact that for every n there is no retraction $r: B^{n+1} \longrightarrow S^n$. Show that (a) The identity map $i: S^n \longrightarrow S^n$ is not null-homotopic.

(b) The inclusion map $j: S^n \longrightarrow \mathbb{R}^{n+1} - 0$ is not null-homotopic.

(c) If v is a nonvanishing vector field on B^{n+1} , then

- (c-i) v(x) = ax for some $a \in \mathbb{R}^-$ and $x \in S^n$;
- (c-ii) v(x) = ax for some $a \in \mathbb{R}^+$ and $x \in S^n$.

(d) Every continuous map $f: B^{n+1} \longrightarrow B^{n+1}$ has a fixed point.

- (e) Every $(n+1) \times (n+1)$ -matrix A of positive reals has a positive eigenvalue.
- (f) If $h: S^n \longrightarrow S^n$ is null-homotopic, then h(x) = x for some $x \in S^n$ and h(x) = -x for some $x \in S^n$.

Remark: For same reason as for π_1 , if $r: X \longrightarrow A$ is a retraction, then the induced homomorphism

$$r_* \colon \pi_n(X, a_0) \longrightarrow \pi_n(A, a_0)$$

between the *n*th homotopy groups is surjective. As $\pi_n(B^{2n+1}, a_0)$ is trivial, while $\pi_n(S^n, a_0) \approx \mathbb{Z}$, there exists no retraction from $X = \mathcal{B}^{n+1}$ to $A = S^2$.

The solution is essentially Section 55, with S^1 and B^2 replaced everywhere S^n and B^{n+1} . The only difference is that part (c) of Lemma 55.3 has to be omitted. The correct replacement is that h_* is the trivial homomorphism on π_n .

(a) If $f: S^n \longrightarrow S^n$ is null-homotopic, there exist $c \in S^n$ and a continuous map

$$F: S^n \times I \longrightarrow S^n, \qquad F(x,0) = f(x) \quad \forall x \in S^n, \quad \text{and} \quad F(x,1) = c \quad \forall x \in S^n$$

Since F is constant on $S^n \times 1$, it induces a map from the quotient space

$$\overline{F}: X = (S^n \times I) / \sim \longrightarrow S^n, \quad \text{where} \quad (x, 1) \sim (x', 1) \; \forall \, x \in S^n.$$

Since F is continuous, \overline{F} is continuous in the quotient topology on X. With this topology, X is homeomorphic to B^{n+1} by the map

$$[x,t] \longrightarrow (1-t)x \in \mathbb{R}^{n=1}.$$

Thus, if $f: S^n \longrightarrow S^n$ is null-homotopic, it extends to a continuous map $g: B^{n+1} \longrightarrow S^n$. If f=i, such an extension would be a retraction. Since no retraction of B^{n+1} onto S^n , the identity map

 $i: S^n \longrightarrow S^n$ is not null-homotopic.

(b) Let $r: \mathbb{R}^{n+1} \to S^n$ be the natural retraction given by r(x) = x/|x|. Then,

$$r \circ j = i \colon S^n \longrightarrow S^n$$
.

Since i is not null-homotopic by part (a), neither is j (nor r).

(c-i) Suppose there exists no $x \in S^n$ and $a \in \mathbb{R}^-$ such that v(x) = ax. Define

$$F: S^n \times I \longrightarrow \mathbb{R}^{n+1} - 0 \qquad \text{by} \qquad F(x,t) = (1-t)v(x) + tx \in \mathbb{R}^{n+1}.$$

Note that if F(x,t) = 0, then either t=1 and v(x)=0 or v(x) = -(t/(1-t))x. Neither is the case by our assumptions. Thus, F is homotopy between

$$v, j: S^n \longrightarrow \mathbb{R}^{n+1} - 0.$$

Since j is not null-homotopic by part (b), neither is v. Thus, by the proof of by part (a), v cannot extend to a continuous map $B^{n+1} \longrightarrow S^n$, contrary to our assumptions.

(c-ii) This follows from (c-i) applied to -v.

(d) Let v(x) = f(x) - x. If $f(x) \neq x$ for all $x \in B^{n+1}$, then

 $v\colon B^{n+1} \longrightarrow \mathbb{R}^{n+1} - 0$

is a continuous map. Thus, by (c-ii), for some $x \in S^n$ and $a \in \mathbb{R}^+$

$$v(x) = ax \qquad \Longrightarrow \qquad f(x) = ax + x = (a+1)x \qquad \Longrightarrow \qquad |f(x)| = |a+1||x| = |a+1| > 1.$$

This is impossible, since $f(x) \in B^{n+1}$ for all $x \in S^n$.

(e) Let

$$B = \{(x_1, \dots, x_n) : x_1, \dots, x_n > 0, \ x_1^2 + \dots + x_n^2 = 1\}$$

Since all entries of the vector A are positive, all entries of the vector Ax, for $x \in B$, are nonnegative and at least one is positive. Thus, we can define

 $f: B \longrightarrow B$ by f(x) = Bx/|Bx|.

Since f is continuous and B is homeomorphic to B^n , f(x) = x for some $x \in B$ by part (d). Then,

$$Bx = |Bx|f(x) = |Bx|x.$$

In other words, x is an eigenvector of A with (positive) eigenvalue |Bx|.

(f) Since the map $h: S^n \longrightarrow S^n$ is null-homotopic, by the proof of part (a) it extends to a continuous map

$$v: B^{n+1} \longrightarrow S^n \subset \mathbb{R}^{n+1} - 0.$$

By (c), there exist $x_+, x_- \in S^n$, $a_+ \in R^+$, and $a^- \in \mathbb{R}^-$ such that

$$v(x_+) = a_+x_+$$
 and $v(x_-) = a_-x_-$.

Since |v(x)| = 1 for all $x \in \mathcal{B}^{n+1}$,

$$|a_{\pm}| = |a_{-}| = 1 \qquad \Longrightarrow \qquad a_{\pm} = \pm 1 \qquad \Longrightarrow \qquad v(x_{\pm}) = \pm x_{\pm}.$$

Solution to Problem p359, #4

Suppose you are given the fact that for every n no continuous antipode-preserving $h: S^n \longrightarrow S^n$ is null-homotopic. Show that:

(a) There is no retraction $r: B^{n+1} \longrightarrow S^n$.

(b) There is no continuous antipode-preserving map $q: S^{n+1} \longrightarrow S^n$.

(c) If $f: S^{n+1} \longrightarrow \mathbb{R}^{n+1}$ is a continuous map, f(x) = f(-x) for some $x \in S^{n+1}$. (d) If A_1, \ldots, A_{n+1} are bounded measurable sets in \mathbb{R}^{n+1} , there exists *n*-plane that bisects each of them.

(a) If such a retraction exists, the identity map $S^n \longrightarrow S^n$ is null-homotopic. However, since the identity map is antipode-preserving, it is not null-homotopic.

(b) There restriction of such a map to the upper-hemisphere B_+^{n+1} would give a retraction onto S^n . Since (B_+^{n+1}, S^n) is homeomorphic to (B^{n+1}, S^n) (by dropping the last coordinate), no such retraction exists by part (a).

(c) Let h(x) = f(x) - f(-x). If $f(x) \neq f(-x)$ for all $x \in S^{n+1}$, then we can define

 $q: S^{n+1} \longrightarrow S^n$ by q(x) = h(x)/|h(x)|.

Since h(-x) = -h(x), g(-x) = -g(x), i.e. g is antipode-preserving. However, no such map exists by part (b).

(d) For each $x \in S^{n+1}$, let \mathcal{H}_x be the hyperplane in \mathbb{R}^{n+2} which is orthogonal to the unit vector x and passes through the point

$$p=(0,\ldots,0,1).$$

In particular, $\mathcal{H}_p = \mathcal{H}_{-p}$. If $x = \pm p$, \mathcal{H}_p is parallel to $\mathbb{R}^{n+1} \times 0$; otherwise, $\mathcal{H}_p \cap \mathbb{R}^{n+1}$ is a hyperplane in \mathbb{R}^{n+1} . For each $k = 1, \ldots, n+1$, let $f_k(x) \in \mathbb{R}^+$ be the measure of the portion of A_k that lies on the side of \mathcal{H}_x corresponding to x. In particular,

$$f_k(x) + f_k(-x) = \operatorname{Area} A_k$$
 and $f_k(p) = 0.$

The function $f_k: S^{n+1} \longrightarrow \mathbb{R}$ is a continuous, and so is the function

$$f = (f_1, \ldots, f_{n+1}) \colon S^{n+1} \longrightarrow \mathbb{R}^{n+1}.$$

Thus, by part (c),

$$f_k(x) = f_k(-x) = \frac{1}{2} \operatorname{Area} A_k$$

for some $x \in S^{n+1}$.

Solution to Problem p366, #9

If $h: S^1 \longrightarrow S^1$ is a continuous map and $x_0 \in S^1$, choose a path $\alpha: I \longrightarrow S^1$ from x_0 to $h(x_0)$. Define

 $\deg h \in \mathbb{Z} \qquad \text{by} \qquad h_* = (\deg h) \cdot \hat{\alpha} \colon \pi_1(S^1, x_0) \longrightarrow \pi_1(S^1, h(x_0)).$

(a) Show that the deg h is independent of the choice of α and x_0 .

(b) Show that if $h, k: S^1 \longrightarrow S^1$ are homotopic, then deg $h = \deg k$.

(c) Show that $\deg(h \circ k) = (\deg h)(\deg k)$.

(d) Compute the degree of a constant map, the identity map, the reflection map $(\rho(x, y) = \rho(x, -y))$, and the map $h(z) = z^n$.

(e) Show that if $h, k: S^1 \longrightarrow S^1$ have the same degree, then they are homotopic.

(a) Suppose $\beta: I \longrightarrow S^1$ is another path from x_0 to $h(x_0)$, then the isomorphisms

$$\hat{\alpha}, \hat{\beta} \colon \pi_1(S^1, x_0) \longrightarrow \pi_1(S^1, h(x_0))$$

are the same because $\pi_1(S^1, x_0) \approx \mathbb{Z}$ is abelian. Thus,

$$\hat{\alpha}^{-1} \circ h_* = \hat{\beta}^{-1} \circ h_* \colon \pi_1(S^1, x_0) \longrightarrow \pi_1(S^1, x_0) \approx \mathbb{Z}$$

are the multiplication by the same number, which is denoted by deg h. Suppose $x'_0 \in S^1$ and $\gamma: I \longrightarrow S^1$ is a path from x_0 to x'_0 . Then,

$$\beta \equiv \bar{\gamma} * \alpha * (h \circ \gamma) \colon I \longrightarrow S^1$$

is a path from x'_0 to $h(x'_0)$. Furthermore,

$$\hat{\beta}^{-1} \circ h_* = \left(\widehat{h \circ \gamma} \circ \hat{\alpha} \circ \hat{\gamma}\right)^{-1} \circ h_* = \hat{\gamma} \circ \hat{\alpha}^{-1} \circ \widehat{h \circ \gamma}^{-1} \circ h_* \\ = \hat{\gamma} \circ \left(\hat{\alpha}^{-1} \circ h_*\right) \circ \hat{\gamma}^{-1} \colon \pi_1(S^1, x'_0) \longrightarrow \pi_1(S^1, x_0) \longrightarrow \pi_1(S^1, x_0) \longrightarrow \pi_1(S^1, x'_0).$$

Thus, if $\hat{\alpha}^{-1} \circ h_*$ is the multiplication by deg h, then so is $\hat{\beta}^{-1} \circ h_*$. It follows that deg h is independent of the choice of x_0 and α .

(b) Since h and k are homotopic, there exists a path $\beta: I \longrightarrow S^1$ from $h(x_0)$ to $k(x_0)$ such that

$$k_* = \hat{\beta} \circ h_* \colon \pi_1(X, x_0) \longrightarrow \pi_1(X, h(x_0)) \longrightarrow \pi_1(X, k(x_0)).$$

If $\alpha: I \longrightarrow S^1$ is a path from x_0 to $h(x_0)$, then $\alpha * \beta$ is a path from x_0 to $h(x_0)$. Furthermore,

$$k_* = \hat{\beta} \circ h_* = \hat{\beta} \circ \left((\deg h) \hat{\alpha} \right) = (\deg h) \hat{\beta} \circ \hat{\alpha} = (\deg h) \widehat{\alpha * \beta}.$$

Since by definition $k_* = (\deg h) \widehat{\alpha * \beta}$ and $\widehat{\alpha * \beta}$ is an isomorphism, we conclude that $\deg k = \deg h$.

(c) Let $\alpha, \beta: I \longrightarrow S^1$ be paths from x_0 to $k(x_0)$ and from $k(x_0)$ to $h(k(x_0))$, respectively. Then, $\alpha * \beta$ is a path from x_0 to $h(k(x_0))$. Furthermore, by definition of the degree,

$$k_* = (\deg k)\hat{\alpha}, \quad h_* = (\deg h)\beta \implies (h \circ k)_* = h_* \circ k_* = ((\deg h)\hat{\beta}) \circ ((\deg k)\hat{\alpha}) = (\deg h)(\deg k)\hat{\beta} \circ \hat{\alpha} = (\deg h)(\deg k)\widehat{\alpha*\beta}.$$

Since by definition $(h \circ k)_* = (\deg (h \circ k))\widehat{\alpha * \beta}$ and $\widehat{\alpha * \beta}$ is an isomorphism, we conclude that $\deg (h \circ k) = (\deg h)(\deg k)$.

(d) If $h: S^1 \longrightarrow S^1$ is a constant map, the homomorphism $h_*: \pi_1(S^1, x_0) \longrightarrow \pi_1(S^1, h(x_0))$ is trivial and thus deg h = 0. If $h: S^1 \longrightarrow S^1$ is the identity map, the homomorphism h is the identity and thus deg h = 1. If $h(z) = z^n$, for some $n \in \mathbb{Z}^+$,

$$h_*: \pi_1(S^1, 1) \longrightarrow \pi_1(S^1, 1)$$

is the multiplication by n as computed on the previous problems (the natural loop generating $\pi_1(S^1, 1)$ is taken to n times itself). Thus, deg h=n. The reflection map is the n=-1 case of this.

(e) By (b) and (c), we can assume that h(1) = k(1) = 1. We define the loop at 1 in S^1 by

$$q: I \longrightarrow S^1$$
 and $q(t) = e^{2\pi i t}$.

Since $\deg h = \deg k$,

$$h_* = k_* \colon \pi_1(S^1, 1) \longrightarrow \pi_1(S^1, 1).$$

In particular, $[h \circ q] = [k \circ q]$. Let

$$p: \mathbb{R} \longrightarrow S^1, \qquad q(t) = e^{2\pi i t},$$

be the standard covering map. Let

$$\tilde{q}_h, \tilde{q}_k \colon (I, 0) \longrightarrow (\mathbb{R}, 0)$$

be the lifts of $h \circ q, k \circ q \colon (I, 0) \longrightarrow (S^1, 1)$. Since $h \circ q$ is path homotopic to $k \circ q$,

$$\tilde{q}_k(1) = \tilde{q}_k(1) \in \mathbb{Z} = p^{-1}(1) \subset \mathbb{R}.$$

Let

$$\tilde{F}: (I \times I, 0 \times I, 1 \times I) \longrightarrow (\mathbb{R}, 0, \tilde{q}_h(1))$$

be a path homotopy between \tilde{q}_h and \tilde{q}_k in $\mathbb{R}.$ Then,

$$p \circ \tilde{F} \colon (I \times I, 0 \times I, 1 \times I) \longrightarrow (S^1, 1, 1)$$

is a path-homotopy between the loops $h \circ q$ and $k \circ q$. It descends to a map on the quotient

$$F \colon X = (I \times I) \big/ \! \sim \longrightarrow S^1, \qquad \text{where} \qquad (0,t) \sim (1,t) \ \, \forall \, t \! \in \! I.$$

This map is continuous in the quotient topology. With this topology, X is homeomorphic to $S^1 \times I$. The quotient project map is

$$q \times \mathrm{id} \colon I \times I \longrightarrow S^1 \times I.$$

(we have simply identified the two vertical edges of the square $I \times I$). Thus, we have found a continuous map

$$\begin{split} F: S^1 \times I \longrightarrow S^1 \quad \text{s.t.} \quad p \circ \tilde{F} = F \circ q, \quad \tilde{F}|_{0 \times I} = \tilde{q}_h, \quad \tilde{F}|_{1 \times I} = \tilde{q}_k \\ \Longrightarrow \quad F \circ q|_{0 \times I} = p \circ \tilde{F}|_{0 \times I} = p \circ \tilde{q}_h = h \circ q, \quad F \circ q|_{1 \times I} = p \circ \tilde{F}|_{1 \times I} = p \circ \tilde{q}_k = k \circ q \\ \implies \quad F|_{0 \times I} = h, \quad F|_{1 \times I} = k. \end{split}$$

We conclude F is a homotopy between h and k.