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p39, #5:

Which of the following subsets of Rω can be expressed as the cartesian product of subsets of
R?

a {x|xi is an integer for all i}
This is Zω.

b {x|xi ≥ i for all i.}
This is

∏
i∈Z+

{x ∈ R|x ≥ i}.

c {x|xi is an integer for all i ≥ 100}
This is

∏99
i=1 R

∏∞
i=100 Z

d {x|x2 = x3}
If this were a cartesian product, then it would be the set of ω-tuples in R with xi ∈
Xi ⊂ R for some set of subsets Xi. In particular, since x2 and x3 can take any value in
R, we would have X2 = X3 = R. But then this cartesian product would contain tuples
with differing x2 and x3 as well.

p83, #4:

a If {Tα} is a family of topologies on X, show that ∩Tα is a topology on X. Is ∪Tα a
topology on X?

We need to establish the three properties of the definition of a topology for ∩Tα.

For any α, since Tα is a topology for X, it contains X and ∅. Then the intersection of
all these also contains these.
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Suppose Ui ∈ ∩Tα. Then Ui ∈ Tα for each α so ∪Ui ∈ Tα. Then it is also in their
intersection.

Suppose U1, . . . , Un ∈ ∩Tα. Then Ui ∈ Tα for each α so ∩n
i=1Ui ∈ Tα. Then it is also

in their intersection.

On the other hand, neither the second nor third properties will necessarily be satisfied
for the case of a union. For example, let X = {a, b, c}. Then two topologies on X are
given by {∅, {a, b}, X} and {∅, {a, c}, X}, but their union fails to be closed under finite
intersection.

b Let {Ta} be a family of topologies on X. Show that there is a unique smallest topology
on X containing all the Ta and a unique largest topology contained in all Ta.

For the first of these, examine the topology generated by the subbasis ∪Ta. This is
certainly a topology on X containing each Ta. On the other hand, any topology con-
taining each of these topologies must contain unions of finite intersections of elements
of the various topologies Ta and hence must contain the subbasis topology generated
by them. So any topology containing all Ta must contain this one so it is the desired
unique topology.

For the second, look at the intersection of the topologies, which is contained in each
and which we have shown to be a topology. If T is a topology contained in every Ta

and U ∈ T then U ∈ Ta for all a. So then each element of T is contained in every
Ta so that it is contained in their intersection, meaning that T is contained in the
intersection topology.

c if X = {a, b, c}, T1 = {∅, {a}, {a, b}, X}, and T2 = {∅, {a}, {b, c}, X}, find the two
unique topologies from the last part of the exercise.

These are {∅, {a}, {b}, {a, b}, {b, c}, X} and {∅, {a}, X}.

7: Consider the following topologies on R :

• T1, the standard topology

• T2, the RK topology

• T3, the finite complement topology

• T4, the upper limit topology with (a, b] as basis

• T5, the topology having sets (−∞, a) as basis.

Determine the inclusions here.

We will show that three and five are contained in one, which is contained in two, which is
contained in four, all inclusions strict, and that three and five are incomparable.

First, (−∞, a) = ∪b<a(b, a) is open in the standard topology, and similarly (a,∞).
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T3 ⊂ T1 :
A set with finite complement is a union of the standard open intervals between its complement
points and the half-infinite open intervals at the ends (which we just showed to be standard
open), so is in the standard topology. (0, 1) is standard open but not finite complement.

T5 ⊂ T1 :
Since the basis sets of T5 are in the standard topology, any unions are as well, so the whole
topology is thus contained. (0, 1) can’t be written as a union of basis elements in this topology
since such a union is unbounded below, but is standard open.

T1 ⊂ T2 :
Again, since T2 contains the basis {(a, b)} of T1, it contains the whole topology. Since
(−1, 1)−K is not open in the standard topology, the inclusion is strict.

T2 ⊂ T4 :
A basis element of T2 is either an open interval (a, b) or a set of form (a, b) −K, that is, a
union of open intervals like ( 1

n+1 , 1
n ) and possibly an interval of the form (a, 0]. Clearly (a, 0]

is open in T4, and since (a, b) = ∪a<c<b(a, c], standard open intervals are open under this
topology as well, which shows that a basis for T2 is contained in T4, which is all that we
need. Since (1, 2] is open in one but not the other the inclusion is strict.

T3 and T5 are incomparable:
(−∞, 0) is in T5 but does not have finite complement. On the other hand, a union of basis
elements from T5 is of form ∪(−∞, a), so is of form (−∞, sup{a}), so is a single interval.
Then R\{0} is finite complement but not in T5.

8:

a Apply lemma 13.2 to show that the countable collection {(a, b)|a < b, a, b ∈ Q} is a
basis for the standard topology on R.

Let x ∈ (a, b) ⊂ R. Then a < x < b. Since these numbers differ, their decimal expansions
differ at some point, so we can truncate decimal expansions to find rational numbers
c, d between a and x and between x and b. Then x ∈ (c, d) ⊂ (a, b), and (c, d) is in our
countable collection, so by lemma 13.2 that collection generates the standard topology.

b Show that {[a, b)|a < b, a, b ∈ Q} generates a topology different from the lower limit
topology.

It is clear that this set satisfies the requirements to be a basis for some topology. Let x
be irrational and negative. We will show that the topology generated by this set does
not include [x, 0). Suppose otherwise. For this interval to be in the topology, it would
have to be a union of basis elements. Then one of the basis elements would contain x.
Since the endpoints of the basis intervals are rational, we would have a < x < b for
some [a, b) in the union, meaning the union would contain a < x and so would not have
lower endpoint x, a contradiction.

p92, #3: Consider Y = [−1, 1] as a subspace of R. We decide which of the following are open
in Y and in R :
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A = (−1,−1/2) ∪ (1/2, 1)
B = [−1,−1/2) ∪ (1/2, 1]
C = (−1,−1/2] ∪ [1/2, 1)
D = [−1,−1/2] ∪ [1/2, 1]
E = (−1, 0) ∪ (0, 1)\K = (−1, 0) ∪

⋃
( 1

n+1 , 1
n )

So, A and E are open in R and none of the others are, because they contain intervals
containing their endpoints (in R under the standard topology, if an open set contains a point
x it contains a basis element containing x, that is an interval around x).

Since A and E are open in R they are also open in Y. Since B = ((−2,−1/2) ∪ (1/2, 2)) ∩ Y
is the intersection of an open set in R with Y it is also open in Y.

For C and D, suppose either one was the intersection of Y with an open set U of R. Then
1/2 ∈ U so U would contain an interval around 1/2, meaning it would contain a point x less
than 1/2 and greater than 0. Then x ∈ Y so x ∈ U ∩ Y. Since neither C or D contain such a
point they cannot be open in Y.

4: A map f : X → Y is open if for every open U of X, f(U) is open in Y. Show that
π1 : X × Y → X and π2 : X × Y → Y are open.

The arguments are identical so we will only do the first one. Let U be open in the product.
Then it is a union of basis elements Vi ×Wi, where Vi,Wi are nonempty open sets of X, Y
respectively. So π1(U) = π1(∪Vi ×Wi) = ∪π1(Vi ×Wi) = ∪Vi which is open in X.

8: If L is a straight line in the plane, describe the topology it inherits as a subspace of R`×R
and of R` × R`.

A basis for the topology of the first product is given by [a, b) × (c, d). A line which is not
vertical intersects the vertical side of a rectangle at every point, so half-closed intervals are
open for such a line and it inherits the lower limit topology. A vertical line inherits the
standard topology.

For the second product, if the slope of the line is nonnegative or undefined, the line inherits
the lower limit topology by essentially the same argument. If the slope is negative, then an
open rectangle [a, b) × [c, d) can be chosen to intersect the line at only one point and the
topology is therefore discrete.

10: Let I = [0, 1]. Compare the product topology on I × I, the dictionary order topology,
and the subspace topology from the dictionary order topology on R× R.

The dictionary order topology and product topologies are contained strictly in the subspace
topology from the dictionary order on the plane, and are incomparable with one another.

If ((a, b), (c, d)) is open in the dictionary topology, then it can be written, if a = c, as
((a, b), (a, d)). Otherwise it is ((a, b), (a, 1))∪

⋃
a<x<c((x, 0), (x, 1))∪ ((c, 0), (c, d)). Both ways

of writing this are open in the subspace topology, so we have a topology inclusion. Example
3 on page 90 shows it to be strict.
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A basis set for the product topology is a rectangle U × V, where these are intervals open in
I. This can be written

⋃
x∈U x×V, as a union of sets open in the subspace topology. On the

other hand, the ray 1/2 × (1/3, 2/3) is open in the subspace topology but not the product
topology, so this is strict.

The same ray shows that the product topology does not contain the order topology. On the
other hand, the rectangle I × (0, 1] is open in the product topology, but not in the order
topology because an open set containing 0× 1 would have to contain everything up to (a, b)
for some (a, b), a > 0, and that would contain (a, 0).

p100, #7: Criticize this proof: If {Aα} is a collection of sets in X ond if x ∈ ∪Aα then every
neighborhood U of x intersects ∪Aα. Thus U intersects some Aα so x belongs to the closure
of some Aα.

The conclusion that U intersects some Aα is true but the particular α may vary with choice of
U, so there may be, for each α, a U disjoint from Aα. For instance, let X = R, An = [ 1

n+1 , 1
n ].

Then ∪Aα = (0, 1] with closure [0, 1]. Let x = 0. Then Un = (−1/n, 1/n) is a neighborhood
of x disjoint from every Am for m < n. If you try to pick an Am to have x in its closure you
run into trouble because of Un+1.

9: Let A ⊂ X, B ⊂ Y. Show that in X × Y, A×B = A×B.

First we show that A×B ⊂ A×B.

Now, (a, b) ∈ A×B implies a ∈ A, b ∈ B, which in turn implies a ∈ A, b ∈ B, which in turn
implies (a, b) ∈ A×B.

A and B are closed in X and Y respectively, so A × B is closed in X × Y. This is because
A × B = A × Y ∩ X × B. (The complements of the two sets in this intersection, namely,
(X −A)× Y and X × (Y −B) are the products of open sets, hence open. So the two sets in
the intersection are closed, so their intersection is closed.)

Then A×B is a closed set which contains A×B, so it contains the intersection of all closed
sets containing it, namely A×B.

Now we show that A×B ⊃ A×B.
Say (a, b) ∈ A×B, so that a ∈ A = A ∪A′, b ∈ B = B ∪B′.

If a ∈ A, b ∈ B, then (a, b) ∈ A × B ⊂ A×B and we’re done. Otherwise, examine a
neighborhood U of (a, b) ∈ X × Y. This neighborhood is the union of basis sets of form
UX × UY with UX , UY open in X, Y, respectively.

Then for some UX , UY , (a, b) ∈ UX × UY . By definition, this means that a ∈ UX , b ∈ UY .
Returning to a particular case, if a ∈ A′, b ∈ B, then UX contains a point a′ ∈ A− {a} and
as above, UY contains b. Then the arbitrary neighborhood of (a, b) containing some UX ×UY

must contain a point of A×B, namely (a′, b). So (a, b) ∈ (A×B)′.

The case where a ∈ A, b ∈ B′ is equivalent by symmetry. Finally, if a ∈ A′, b ∈ B′ then UX

contains an a′ as above and UY contains a corresponding b′ ∈ B because b is a limit point
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of B. Then U ⊃ UX × UY 3 a′ × b′ ∈ A× B and once again, (a, b) ∈ (A× B)′. In all of the
cases, (a, b) ∈ (A×B) ∪ (A×B)′ = A×B and the desired result holds.

11: Show that the product of two Hausdorff spaces is Hausdorff.

Let X, Y be Hausdorff, and (a, b), (c, d) be disjoint points of X × Y.
If a = c then b 6= d so there exist disjoint open U, V in Y containing them, respectively. Then
X × U,X × V are disjoint open sets of the product containing the original two points.
If a 6= c then there are disjoint open U, V in X containing them, and U×Y, V ×Y are disjoint
open sets of the product containing the original two points.

21: Done by Zinger

p111, #2: Suppose that f : X → Y is continuous. If x is a limit point of A ⊂ X is f(x)
necessarily a limit point of f(A)?

No. Let f be a constant map. Then for any A, f(A) is a single point, which cannot be its
own limit point, so cannot have the limit point f(x).

3: Let X and X ′ denote a single set in the two topologies T and T ′ respectively. Let
i : X ′ → X be the identity.

a Show i is continuous if and only if T is coarser.

For every open set U in X, i−1(U) = U is open in X ′. So T ⊂ T ′, and thus T ′ is finer
than T .

On the other hand, say T ′ is finer than T so that T ⊂ T ′. Then every set U in T has
preimage i−1(U) = U which must be in the superset T ′. This satisfies the requirements
for continuity.

b Show i is a homeomorphism if and only if the topologies are equal.

If i is a homeomorphism, then i is continuous and i−1, the identity from X to X ′, is
continuous. Then part a gives us that each of T and T ′ includes the other. Therefore
they are equal.

On the other hand, if the topologies are equal, then U is open in X ′ if and only if
U = i(U) is open in X, which makes i a homeomorphism.

6: Find a function R → R that is continuous at only one point.

Let f : R → R be f(x) =
{

x x ∈ Q
0 x /∈ Q

We will show that f is continuous only at 0.
Say x is rational, x 6= 0. Then f(x) = x and f(x) is in the neighborhood (x/2, 2x) if x >
0, (2x, x/2) if x < 0. But neither of these neighborhoods include 0, so their preimages under f
do not include any irrational number. Since every neighborhood of x must include irrational
numbers, the preimage of a neighborhood of f(x) does not include any neighborhood of x
and therefore f is not continuous at x.
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Now say x is irrational. Then f(x) = 0 is in the neighborhood (−|x/2|, |x/2|). Any neigh-
borhood of x must contain rational numbers arbitrarily close to x, but the closest rational
numbers in the preimage of the given neighborhood are over |x/2| away. So there is no
neighborhood of x contained in the preimage of this neighborhood and so f is again not
continuous at x.

Finally consider a neighborhood V of 0 = f(0). This neighborhood must contain (−ε, ε) for
some ε > 0.

Then (−ε, ε) is a neighborhood of 0 and f(U), which consists of 0 and the rationals with
absolute value at most ε, is contained in V. The criterion for continuity at 0 is thus satisfied.

12: Let F : R× R → R be given by xy
x2+y2 except that F ((0, 0)) = 0.

a Show that F is continuous in each variable separately.

This function is symmetric in x and y so we will only treat x. There are two cases.
If y = 0 the function is identically zero, and a constant function is continuous.
If y 6= 0 the function is xy

x2+y2 , the quotient with nonzero denominator of (continuous)
polynomials.

b We compute i : R → R given by g(x) = F ((x, x)).

If x = 0 then g(x) = 0. Otherwise it is x2

2x2 = 1/2.

c We show F is not continuous.

g is not continuous: The preimage of the open set (−1/2, 1/2) is the single point 0,
which is not open. Then we can write g = F ◦ ∆, where ∆ is the diagonal map
x 7→ (x, x), which is easily seen to be continuous. The composition of continuous maps
is continuous, so since g is not, f is not.
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