
MAT 530: Topology&Geometry, I
Fall 2005

Problem Set 10

Solution to Problem p483, #2

(a) Show that every continuous map f : RP 2−→S1 is null-homotopic.
(b) Find a continuous map from the 2-dimensional torus to S1 which is not null-homotopic.

(a) Let q : R −→ S1, q(s) = e2πis, be the standard covering map. Fix x0 ∈ RP 2. Let b0 = f(x0).
Choose e0∈q−1(b0). Since

π1(RP 2, x0) = Z2 ≡ Z/2Z and π1(S
1, b0) = Z,

the homomorphism f∗ : π1(RP 2, x0)−→π1(S
1, b0) must be trivial. Thus,

f∗π1(RP 2, x0) ⊂ q∗π1(R, e0) ⊂ π1(S
1, b0)

and by the General Lifting Lemma the map f : (RP 2, x0)−→(S1, b0) lifts to a continuous map

f̃ : (RP 2, x0) −→ (R, e0),

i.e. f = f̃ ◦q as indicated in Figure 1. Since R is contractible, f̃ is null-homotopic. If H̃ is a
homotopy from f̃ to the map sending RP 2 to some e∈R, then H≡q◦H̃ is a homotopy from f to
the map sending RP 2 to q(e)∈S1. Thus, f is null-homotopic.
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Figure 1: Diagrams for p483, #2

Remark: This argument depends only on the facts that the homomorphism f∗ between the fun-
damental groups of the domain and the target of f is trivial and that the universal cover of the
target is contractible.

(b) The 2-dimensional torus T is homeomorphic to S1×S1. Let

π1 : (T, x0×y0) −→ (S1, x0)

be the projection onto the first component. Since the homomorphism

π1∗ : π1(T, x0×y0) −→ π1(S
1, x0) ≈ Z

is surjective, it is not trivial. Thus, π1 is not null-homotopic.



Solution to Problem p483, #5

Suppose T =S1×S1, x0∈S1, and x0 =b0×b0.
(a) Show that every isomorphism of π1(T, x0) with itself is induced by a homeomorphism of (T, x0)
with itself.
(b) If E is a covering space of T , then E is homeomorphic to R

2, S1×R, or S1×S1.

(a) Let
q : R

2 −→ R
2, q(u, v) =

(

e2πiu, e2πiv
)

,

be the standard covering map. We assume that x0 =q(0). Let

α̃, β̃ : I −→ R
2, α̃(s) = (s, 0) and β̃(s) = (0, s),

be the horizontal path running from 0 to (1, 0) and the vertical path running from 0 to (0, 1). The
group π1(T, x0) is the free abelian group generated by the loops

α ≡ q ◦ α̃ and β ≡ q ◦ β̃, i.e. π1(T, x0) = Z[α] ⊕ Z[β].

Under this isomorphism, the class mα+nβ corresponds to the equivalence class of the loop γ≡q◦γ̃
in T , where γ̃ is any path in X from 0 to (m,n)∈Z

2⊂R
2. Via this identification, an isomorphism T

of π1(T, x0) with itself corresponds to a 2×2 integer matrix

A : Z[α] ⊕ Z[β] −→ Z[α] ⊕ Z[β]

which has an integer matrix inverse B. Define

h̃A, h̃B : (R2, 0) −→ (R2, 0) by h̃A(v) = Av and h̃B(v) = Bv.

Since the maps
q ◦ h̃A, q ◦ h̃B : R

2 −→ R
2 −→ T

are constant along the fibers of quotient projection map q : R
2−→T , they induce maps

hA, hB : T −→ T s.t q ◦ h̃A = hA ◦ q and q ◦ h̃B = hB ◦ q;

see Figure 2.
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Figure 2: Diagrams for p483, #5a

Since q (on the left of each diagram) is a quotient map and the maps q◦h̃A and q◦h̃B are continuous
(and open), so are the maps hA and hB . Since

h̃A ◦ h̃B = AB = Id = idR2 and h̃B ◦ h̃A = BA = Id = idR2 ,
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hA◦hB =idT and hB◦hA =idT . In particular, hA : (T, x0)−→(T, x0) is a homeomorphism. Since

h̃A(0) = 0 q ◦ h̃A ◦ α̃ = hA ◦ q ◦ α̃, q ◦ h̃A ◦ β̃ = hA ◦ q ◦ β̃,

{h̃A ◦ α̃}(1) = Aα̃(1) = A(1, 0)t, {h̃A ◦ β̃}(1) = Aβ̃(1) = A(0, 1)t,

it follows that

hA∗[α] = [q ◦ h̃A ◦ α̃] = A(1, 0)t = Tα and hA∗[β] = [q ◦ h̃A ◦ β̃] = A(0, 1)t = Tβ.

Thus, h∗=T as needed.

(b) If p : E−→T is covering map, choose e0∈p−1(x0). Let

He0
= p∗π1(E, e0) ⊂ π1(T, x0).

Since π1(T, x0) is a free abelian group of rank 2, there exists a basis {e1, e2} for π1(T, x0) such that
(i) {me1, ne2} is a basis for He0

for some m,n∈Z
+, or

(ii) {me1} is a basis for He0
for some m∈Z

+, or
(iii) He0

= {0}.
By part (a), there exists a homeomorphism h : (T, x0)−→(T, x0) such that

h∗e1 = [α] and h∗e2 = [β].

Then, p′≡h◦p : (E, e0)−→(T, x0) is a covering map and
(i) {mα,nβ} is a basis for p′

∗
π1(E, e0) for some m,n∈Z

+, or
(ii) {mα} is a basis for p′

∗
π1(E, e0) for some m∈Z

+, or
(iii) p′

∗
π1(E, e0) = {0}.

Let p̄ : (Ē, ē0)−→(T, x0), be the covering map given by
(i) Ẽ =S1×S1, p̃(w, z)=(wm, zn) =⇒ p̄∗π1(Ē, ē0)=Z{mα,nβ};
(ii) Ẽ =S1×R, p̃(w, v)=(wm, e2πiv) =⇒ p̄∗π1(Ē, ē0)=Z{mα};
(iii) Ẽ =R×R, p̃(u, v)=(e2πiu, e2πiv) =⇒ p̄∗π1(Ē, ē0)={0}.

Since p′
∗
π1(E, e0)= p̄∗π1(Ē, ē0) ⊂ π1(T, x0), the covering maps (E, p′, T ) and (Ē, p̄, T ) are equiva-

lent. In particular, there exists a homeomorphism g : E−→ Ē. Thus, E is homeomorphic to S1×S1,
S1×R, or R

2 depending on the case.

Solution to Problem p493, #5

If n and k are relatively prime positive numbers, let h be the map of S3⊂C
2 to itself given by

h : S3 −→ S3, h(z1, z2) =
(

e2πi/nz1, e
2πik/nz2

)

.

(a) Show that h generates a subgroup G of the homeomorphism group of S3 and that the action of
G is fixed-point free.
(b) The lens space L(n, k) is the quotient space S3/G. Show that if L(n, k) is homeomorphic to
L(n′, k′), then n=n′.
(c) Show that L(n, k) is a (smooth) compact 3-manifold.
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(a) If m∈Z
+, then the map hm is given by

hm : S3 −→ S3, h(z1, z2) =
(

e2πim/nz1, e
2πikm/nz2

)

.

In particular, hn is the identity map on S3 and thus (hm)−1 =hn−m. Since h is continuous, so are
its composites hm. Thus, all maps hm are homeomorphisms, and h generates a subgroup G of the
homeomorphism group of S3. Furthermore,

hm(z1, z2) = (z1, z2) ∀ (z1, z2) ∈ S3 ⇐⇒ e2πim/nz1 = z1, e2πikm/nz2 = z2 ∀ (z1, z2) ∈ S3

⇐⇒ e2πim/n = 1, e2πikm/n = 1.

Thus, hm = id if and only if m is divisible by n, i.e. G is a cyclic group of order n. Finally, if
(z1, z2)∈S3,

hm(z1, z2) = (z1, z2) ⇐⇒ e2πim/nz1 = z1, e2πikm/nz2 = z2.

Since either z1 6=0 or z2 6=0, this implies that either e2πim/n =1 or e2πikm/n =1. Since k and n are
relatively prime, the two conditions are equivalent to m being divisible by n, i.e. hm =id. So, the
action of G is fixed point-free.

(b) Since the action of the finite group G on the Hausdorff space S3 is fixed-point free, by p493, #4
this action is properly discontinuous as well. Thus, the quotient map

q : S3 −→ L(n, k) = S3/G

is a covering map. Since S3 is simply connected,

π1

(

L(n, k), x0

)

= G ≈ Zn ≡ Z/nZ.

If L(n, k) is homeomorphic to L(n′, k′), π1(L(n, k), x0) and π1(L(n′, k′), x′

0) must be isomorphic
and in particular must have the same cardinality, i.e. n=n′.

(c) Since the map q in part (b) is a quotient map and S3 is compact, so is L(n, k). Since q is a
covering map and S3 is Hausdorff, so is L(n, k). If V ⊂L(n, k) is an open set evenly covered by q,
V is homeomorphic to a proper open subset U of S3. Since S3−{pt} is homeomorphic to R

3, it
follows that every point in L(n, k) has a neighborhood homeomorphic to an open subset of R

3. We
conclude that S3 is a compact topological 3-manifold.

Remark: In contrast to higher-dimensional manifolds, every 3-dimensional topological manifold
admits a unique smooth structure (this was proved by Munkres). So, L(n, k) with its unique
smooth structure is a compact smooth 3-manifold. In fact, h is a diffeomorphism of S3. Thus, the
group G is a subgroup of the diffeomorphism group of S3 and the smooth structure on S3 induces
a smooth structure on L(n, k).
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