MAT 530: Topology&Geometry, I Fall 2005

Problem Set 10

Solution to Problem p483, #2

- (a) Show that every continuous map $f: \mathbb{R}P^2 \longrightarrow S^1$ is null-homotopic.
- (b) Find a continuous map from the 2-dimensional torus to S^1 which is not null-homotopic.

(a) Let $q: \mathbb{R} \longrightarrow S^1$, $q(s) = e^{2\pi i s}$, be the standard covering map. Fix $x_0 \in \mathbb{R}P^2$. Let $b_0 = f(x_0)$. Choose $e_0 \in q^{-1}(b_0)$. Since

 $\pi_1(\mathbb{R}P^2, x_0) = \mathbb{Z}_2 \equiv \mathbb{Z}/2\mathbb{Z}$ and $\pi_1(S^1, b_0) = \mathbb{Z}$,

the homomorphism $f_*: \pi_1(\mathbb{R}P^2, x_0) \longrightarrow \pi_1(S^1, b_0)$ must be trivial. Thus,

$$f_*\pi_1(\mathbb{R}P^2, x_0) \subset q_*\pi_1(\mathbb{R}, e_0) \subset \pi_1(S^1, b_0)$$

and by the General Lifting Lemma the map $f: (\mathbb{R}P^2, x_0) \longrightarrow (S^1, b_0)$ lifts to a continuous map

$$\tilde{f}: (\mathbb{R}P^2, x_0) \longrightarrow (\mathbb{R}, e_0),$$

i.e. $f = \tilde{f} \circ q$ as indicated in Figure 1. Since \mathbb{R} is contractible, \tilde{f} is null-homotopic. If \tilde{H} is a homotopy from \tilde{f} to the map sending $\mathbb{R}P^2$ to some $e \in \mathbb{R}$, then $H \equiv q \circ \tilde{H}$ is a homotopy from f to the map sending $\mathbb{R}P^2$ to $q(e) \in S^1$. Thus, f is null-homotopic.

Figure 1: Diagrams for p483, #2

Remark: This argument depends only on the facts that the homomorphism f_* between the fundamental groups of the domain and the target of f is trivial and that the universal cover of the target is contractible.

(b) The 2-dimensional torus T is homeomorphic to $S^1 \times S^1$. Let

$$\pi_1 \colon (T, x_0 \times y_0) \longrightarrow (S^1, x_0)$$

be the projection onto the first component. Since the homomorphism

$$\pi_{1*} \colon \pi_1(T, x_0 \times y_0) \longrightarrow \pi_1(S^1, x_0) \approx \mathbb{Z}$$

is surjective, it is not trivial. Thus, π_1 is not null-homotopic.

Solution to Problem p483, #5

Suppose $T = S^1 \times S^1$, $x_0 \in S^1$, and $x_0 = b_0 \times b_0$.

(a) Show that every isomorphism of $\pi_1(T, x_0)$ with itself is induced by a homeomorphism of (T, x_0) with itself.

(b) If E is a covering space of T, then E is homeomorphic to \mathbb{R}^2 , $S^1 \times \mathbb{R}$, or $S^1 \times S^1$.

(a) Let

$$q \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \qquad q(u,v) = \left(e^{2\pi i u}, e^{2\pi i v}\right),$$

be the standard covering map. We assume that $x_0 = q(0)$. Let

$$\tilde{\alpha}, \tilde{\beta} \colon I \longrightarrow \mathbb{R}^2, \qquad \tilde{\alpha}(s) = (s, 0) \quad \text{and} \quad \tilde{\beta}(s) = (0, s),$$

be the horizontal path running from 0 to (1,0) and the vertical path running from 0 to (0,1). The group $\pi_1(T, x_0)$ is the free abelian group generated by the loops

$$\alpha \equiv q \circ \tilde{\alpha}$$
 and $\beta \equiv q \circ \tilde{\beta}$, i.e. $\pi_1(T, x_0) = \mathbb{Z}[\alpha] \oplus \mathbb{Z}[\beta]$.

Under this isomorphism, the class $m\alpha + n\beta$ corresponds to the equivalence class of the loop $\gamma \equiv q \circ \tilde{\gamma}$ in T, where $\tilde{\gamma}$ is any path in X from 0 to $(m, n) \in \mathbb{Z}^2 \subset \mathbb{R}^2$. Via this identification, an isomorphism Tof $\pi_1(T, x_0)$ with itself corresponds to a 2×2 integer matrix

$$A: \mathbb{Z}[\alpha] \oplus \mathbb{Z}[\beta] \longrightarrow \mathbb{Z}[\alpha] \oplus \mathbb{Z}[\beta]$$

which has an integer matrix inverse B. Define

$$\tilde{h}_A, \tilde{h}_B \colon (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$$
 by $\tilde{h}_A(v) = Av$ and $\tilde{h}_B(v) = Bv$.

Since the maps

$$q \circ \tilde{h}_A, q \circ \tilde{h}_B \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \longrightarrow T$$

are constant along the fibers of quotient projection map $q: \mathbb{R}^2 \longrightarrow T$, they induce maps

$$h_A, h_B: T \longrightarrow T$$
 s.t $q \circ \tilde{h}_A = h_A \circ q$ and $q \circ \tilde{h}_B = h_B \circ q;$

see Figure 2.

$$(\mathbb{R}^{2},0) \xrightarrow{\tilde{h}_{A}} (\mathbb{R}^{2},0) \qquad \qquad (\mathbb{R}^{2},0) \xrightarrow{\tilde{h}_{B}} (\mathbb{R}^{2},0)$$

$$\downarrow q \qquad \qquad \downarrow q \qquad \qquad \downarrow q \qquad \qquad \downarrow q$$

$$(\mathbb{R}^{2},0) \xrightarrow{h_{A}} (\mathbb{R}^{2},0) \qquad \qquad (\mathbb{R}^{2},0) \xrightarrow{\tilde{h}_{B}} (\mathbb{R}^{2},0)$$

Figure 2: Diagrams for p483, #5a

Since q (on the left of each diagram) is a quotient map and the maps $q \circ \tilde{h}_A$ and $q \circ \tilde{h}_B$ are continuous (and open), so are the maps h_A and h_B . Since

$$h_A \circ h_B = AB = \mathrm{Id} = \mathrm{id}_{\mathbb{R}^2}$$
 and $h_B \circ h_A = BA = \mathrm{Id} = \mathrm{id}_{\mathbb{R}^2}$

 $h_A \circ h_B = \operatorname{id}_T$ and $h_B \circ h_A = \operatorname{id}_T$. In particular, $h_A \colon (T, x_0) \longrightarrow (T, x_0)$ is a homeomorphism. Since

$$\tilde{h}_A(0) = 0 \qquad q \circ \tilde{h}_A \circ \tilde{\alpha} = h_A \circ q \circ \tilde{\alpha}, \qquad q \circ \tilde{h}_A \circ \tilde{\beta} = h_A \circ q \circ \tilde{\beta}, \{\tilde{h}_A \circ \tilde{\alpha}\}(1) = A\tilde{\alpha}(1) = A(1,0)^t, \qquad \{\tilde{h}_A \circ \tilde{\beta}\}(1) = A\tilde{\beta}(1) = A(0,1)^t,$$

it follows that

$$h_{A*}[\alpha] = [q \circ \tilde{h}_A \circ \tilde{\alpha}] = A(1,0)^t = T\alpha \quad \text{and} \quad h_{A*}[\beta] = [q \circ \tilde{h}_A \circ \tilde{\beta}] = A(0,1)^t = T\beta.$$

Thus, $h_* = T$ as needed.

(b) If $p: E \longrightarrow T$ is covering map, choose $e_0 \in p^{-1}(x_0)$. Let

$$H_{e_0} = p_* \pi_1(E, e_0) \subset \pi_1(T, x_0).$$

Since $\pi_1(T, x_0)$ is a free abelian group of rank 2, there exists a basis $\{e_1, e_2\}$ for $\pi_1(T, x_0)$ such that

- (i) $\{me_1, ne_2\}$ is a basis for H_{e_0} for some $m, n \in \mathbb{Z}^+$, or
- (ii) $\{me_1\}$ is a basis for H_{e_0} for some $m \in \mathbb{Z}^+$, or
- (iii) $H_{e_0} = \{0\}.$

By part (a), there exists a homeomorphism $h: (T, x_0) \longrightarrow (T, x_0)$ such that

$$h_*e_1 = [\alpha]$$
 and $h_*e_2 = [\beta].$

Then, $p' \equiv h \circ p \colon (E, e_0) \longrightarrow (T, x_0)$ is a covering map and

- (i) $\{m\alpha, n\beta\}$ is a basis for $p'_*\pi_1(E, e_0)$ for some $m, n \in \mathbb{Z}^+$, or
- (ii) $\{m\alpha\}$ is a basis for $p'_*\pi_1(E, e_0)$ for some $m \in \mathbb{Z}^+$, or
- (iii) $p'_*\pi_1(E, e_0) = \{0\}.$

Let $\bar{p}: (\bar{E}, \bar{e}_0) \longrightarrow (T, x_0)$, be the covering map given by

- (i) $\tilde{E} = S^1 \times S^1$, $\tilde{p}(w, z) = (w^m, z^n) \implies \bar{p}_* \pi_1(\bar{E}, \bar{e}_0) = \mathbb{Z}\{m\alpha, n\beta\};$
- (ii) $\tilde{E} = S^1 \times \mathbb{R}, \ \tilde{p}(w,v) = (w^m, e^{2\pi i v}) \implies \bar{p}_* \pi_1(\bar{E}, \bar{e}_0) = \mathbb{Z}\{m\alpha\};$
- (iii) $\tilde{E} = \mathbb{R} \times \mathbb{R}, \, \tilde{p}(u, v) = (e^{2\pi i u}, e^{2\pi i v}) \implies \bar{p}_* \pi_1(\bar{E}, \bar{e}_0) = \{0\}.$

Since $p'_*\pi_1(E, e_0) = \bar{p}_*\pi_1(\bar{E}, \bar{e}_0) \subset \pi_1(T, x_0)$, the covering maps (E, p', T) and (\bar{E}, \bar{p}, T) are equivalent. In particular, there exists a homeomorphism $g: E \longrightarrow \bar{E}$. Thus, E is homeomorphic to $S^1 \times S^1$, $S^1 \times \mathbb{R}$, or \mathbb{R}^2 depending on the case.

Solution to Problem p493, #5

If n and k are relatively prime positive numbers, let h be the map of $S^3 \subset \mathbb{C}^2$ to itself given by

$$h: S^3 \longrightarrow S^3, \qquad h(z_1, z_2) = (e^{2\pi i/n} z_1, e^{2\pi i k/n} z_2).$$

(a) Show that h generates a subgroup G of the homeomorphism group of S^3 and that the action of G is fixed-point free.

(b) The lens space L(n,k) is the quotient space S^3/G . Show that if L(n,k) is homeomorphic to L(n',k'), then n=n'.

(c) Show that L(n,k) is a (smooth) compact 3-manifold.

(a) If $m \in \mathbb{Z}^+$, then the map h^m is given by

$$h^m : S^3 \longrightarrow S^3, \qquad h(z_1, z_2) = \left(e^{2\pi i m/n} z_1, e^{2\pi i k m/n} z_2\right).$$

In particular, h^n is the identity map on S^3 and thus $(h^m)^{-1} = h^{n-m}$. Since h is continuous, so are its composites h^m . Thus, all maps h^m are homeomorphisms, and h generates a subgroup G of the homeomorphism group of S^3 . Furthermore,

$$h^{m}(z_{1}, z_{2}) = (z_{1}, z_{2}) \quad \forall (z_{1}, z_{2}) \in S^{3} \quad \Longleftrightarrow \quad e^{2\pi i m/n} z_{1} = z_{1}, \ e^{2\pi i k m/n} z_{2} = z_{2} \quad \forall (z_{1}, z_{2}) \in S^{3} \\ \Leftrightarrow \quad e^{2\pi i m/n} = 1, \ e^{2\pi i k m/n} = 1.$$

Thus, $h^m = \text{id}$ if and only if m is divisible by n, i.e. G is a cyclic group of order n. Finally, if $(z_1, z_2) \in S^3$,

$$h^m(z_1, z_2) = (z_1, z_2) \qquad \iff \qquad e^{2\pi i m/n} z_1 = z_1, \ e^{2\pi i k m/n} z_2 = z_2.$$

Since either $z_1 \neq 0$ or $z_2 \neq 0$, this implies that either $e^{2\pi i m/n} = 1$ or $e^{2\pi i k m/n} = 1$. Since k and n are relatively prime, the two conditions are equivalent to m being divisible by n, i.e. $h^m = id$. So, the action of G is fixed point-free.

(b) Since the action of the *finite* group G on the *Hausdorff* space S^3 is fixed-point free, by p493, #4 this action is properly discontinuous as well. Thus, the quotient map

$$q: S^3 \longrightarrow L(n,k) = S^3/G$$

is a covering map. Since S^3 is simply connected,

$$\pi_1(L(n,k),x_0) = G \approx \mathbb{Z}_n \equiv Z/n\mathbb{Z}.$$

If L(n,k) is homeomorphic to L(n',k'), $\pi_1(L(n,k),x_0)$ and $\pi_1(L(n',k'),x'_0)$ must be isomorphic and in particular must have the same cardinality, i.e. n=n'.

(c) Since the map q in part (b) is a quotient map and S^3 is compact, so is L(n,k). Since q is a covering map and S^3 is Hausdorff, so is L(n,k). If $V \subset L(n,k)$ is an open set evenly covered by q, V is homeomorphic to a proper open subset U of S^3 . Since $S^3 - \{pt\}$ is homeomorphic to \mathbb{R}^3 , it follows that every point in L(n,k) has a neighborhood homeomorphic to an open subset of \mathbb{R}^3 . We conclude that S^3 is a compact topological 3-manifold.

Remark: In contrast to higher-dimensional manifolds, every 3-dimensional topological manifold admits a unique smooth structure (this was proved by Munkres). So, L(n,k) with its unique smooth structure is a compact smooth 3-manifold. In fact, h is a diffeomorphism of S^3 . Thus, the group G is a subgroup of the diffeomorphism group of S^3 and the smooth structure on S^3 induces a smooth structure on L(n,k).