MAT 530: Topology& Geometry, I
Fall 2005

Midterm Solutions

Note: These solutions are more detailed than solutions sufficient for full credit.

Problem 1 (5+5 pts)
Let X denote the set {a,b,c}. The collections
Ti= {0, X,{a}, {a,b}}  and  To={0,X, {b,c}}

are topologies on X.
(a) What is the largest topology on X which is smaller (coarser) than both Ty and T3?
(b) What is the smallest topology on X which is larger (finer) than both Ty and T3 %

(a) T={0, X}, i.e. the trivial topology. By assumption,
TCchnT,={0,X}.

Since {0, X} happens to be a topology on X, this is the largest topology contained in 7; and 7s.
Note: The intersection of any collection of topologies on a set is again a topology.

(b) T={0, X, {a},{b},{a,b},{b,c}}. By assumption,
TO>TiUT={0X,{a},{a,b},{b,c}}.

Since 7 is a topology and contains {a, b} and {b, c}, 7 must also contain their intersection, i.e. {b}.
Thus,

T > {0, X,{a},{b},{a,b},{b,c}}.

Since the collection on the right is closed under (finite) intersections and (arbitrary) unions of its
elements, it is a topology on X. Thus, this is the smallest topology containing 77 and 7.



Problem 2 (20 pts)

Show that the subset
A=(0,2)*= ] (0,2

kezZ+

of R¥ is not open in the uniform topology on R“.
Let p denote the uniform metric on R“. Let

It is sufficient to show that no ball B;(x,d) centered x is contained in A. Suppose 6 >0. Choose
n€Z* such that 1/n<§. Then,

y=(1,1/2,...,1/n,0,0,...) € Bs(x,0),

since
p(x,y) = sup { min(|zy—yi|,1): k€Z"} =1/(n+1) < 4.

However, y¢ A, since the (n+1)st coordinate of y does not lie in (0, 2)

Problem 3 (20 pts)

Suppose J is a set and X, is a compact Hausdorff space for each o € J. Show that the space
[IocsXa is normal in the product topology.

Since X, is Hausdorff for every a € J, [[,c;Xq is also Hausdorff. Since X, is compact for every
a € J, [[,ejXq is also compact (in the product topology), by the Tychonoff Theorem. Since
[I,c;Xa is compact and Hausdorff, it is normal.

Note: Since X, is compact Hausdorff, X, is normal for every a € J. However, since the product of
a collection of normal spaces may not be normal, it does not follow that [ ;Xa is normal. Thus,
the order of the argument matters here.

Problem 4 (20 pts)

Suppose that X is a topological space andY is a compact topological space. Show that the projection
map 7 : X XY — X is closed.

Let A be a closed subset of X xY. We show that m1(A) is closed by showing that X —m(A) is
open. Suppose £ € X —m1(A). Then
{2}xY =77 (2) C X xY — a7 (m1(A4)) € X xY — A.

Since the slice {z} xY is contained in the open subset X xY —A of X xY and Y is compact, by
the Tube Lemma there exists an open subset I/ of X such that

{z}xY CUXY CXXxY -A = ACXXxY-UxY=(X-U)xY = m(4) cCcX-U.



Thus, U is an open neighborhood of = in X which is contained in X —m(A).

Problem 5 (15+15 pts)

Suppose X is a paracompact Hausdorff space and (Uy)acs is an indexed collection of open subsets
of X whose union covers X.
(a) Show that there exists a locally finite indexed collection (Vy)acy of open subsets of X
whose union covers X such that Vo, CU, for all a€ J;
(b) Show that there exists a partition of unity (¢pa)acy subordinate to (Uy)ac-

(a) Since X is paracompact and Hausdorff, X is normal. Three approaches to (a) are described
below. They all use the Axiom of Choice (or the Well-Ordering Theorem), explicitly and implicitly.

Approach 1: Let
A= {UCX open: U CU, for some aEJ}.

Since (Uy)acs covers X and X is regular, A also covers X. Thus, A is an open cover of X. Since
X is paracompact, A has a locally finite open refinement B covering X. In particular, for every
V € B there exists U € A such that V CU. Since for every U € A, there exists o € J such that
U CU,, it follows that for every V € B there exists f(V)&.J such that V CUy(v). For every a€J,

let
Vo= UV
F(V)=a
Since the collection {V €B: f(V)=a} CB is locally finite and VCZ/If(V) for all V €B,

Vo = U V= U V CU,.
fV)=a  f(V)=c
Since the collection B is an open cover of X, so is the indexed collection (Vg )aes. Since B is locally

finite, so is (Vi )acs. In fact, if W is any subset of X, then

{aeJ: WV, #£0} = {f(V): VeB; WNV#£0}.

Approach 2: Well-order the set J. Since X is paracompact, there exists an indexed locally finite
open collection (W, )qes that refines (Uy)acs, i.e. Wy CU, for all a€J, and covers X; see below.
We will now shrink the sets W,. Suppose o€ J and for every § <, we have constructed an open
subset V3 of X such that Vg CWps and

X = LJ‘VbLJ LJI@%.
B<a B>a

Thus,

X- - JWs cWe
B<a B>«
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Since X is normal, there exists an open subset V,, of X such that V,, C W, and

X-Uwm-Umscva = x=wmulJws
B<a B>« B<a B>a

Thus, we can construct inductively an indexed collection {V,}qes of open subset of X such that
for all aeJ
VaCWaCVa and X =[JVau | JWs
BLla B>a
Since (Wq)aes is locally finite, so is (Vi )acs. It remains to check that (V,)acs covers X. Given
reX, let
Jr = {aEJ: xEWa}.

Since (W4 )aes is a locally finite cover of X, J, is a finite non-empty subset of J. Let a be the
largest element of J,. If

zeX - Jv— [Jws,
B<a B>a

then x €V,. On the other hand, if
ze X — | Jvs— [Jws,

B<a B>a

then x € Vj for some 3 <a, since x ¢ W for all 3> a.

Note: The second sentence of the previous paragraph is not what the definition of paracompactness
says, but the two statements are equivalent. If X is paracompact, the open cover

A= {Ua: ac J}
has a locally finite open refinement B that covers X. In particular, for every V € B there exists
f(V)€J such that V CUyyy. Let
Wo= |JV Clh
f(V)=a

Then, (W4 )aes is an open cover of X, because B is. Similarly to end of Approach 1, (Wy)acy is
locally finite, because B is.

Approach 3: Since X is regular and paracompact, there exists an indexed locally finite closed col-
lection (Cy)aes that refines (Uy)acs, i.e. Co CU, for all a € J, and covers X; see below. Since X
is normal, for every a € J there exists an open subset W, of X such that C, C W, and W, CU,.
Since (Cq)aecs covers X, (Wy)aes is an open cover of X. Since X is paracompact, (Wy)aecs has
a locally finite open refinement (Vg)aes that covers X; see the note above. Since V, C W, and
WaoCly, Vo CU, for all a€J, as needed.

Note: By the equivalence-of-covering-conditions Lemma 41.3 for regular spaces, the open cover

A= {Ua: aGJ}
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has a locally finite closed refinement B that covers X. In particular, for every C € B there exists
f(C) e J such that C CUy(cy. Let

Co= |JC U
J(€)=a

Similarly to the previous note, (Cy)qcs is an indexed locally finite cover of X. Since B is a locally

finite closed collection,
= YYo= Yc=c.
f(O)=a  f(C)=a  [f(C)=a

Thus, (Cy)acs is a closed collection.

Ca

(b) By (a), there exist indexed locally finite collections (Vu)aes and (W )aes that cover X such
that
WoCV, and V, CU, Vo e J.

Since X is normal, by the Urysohn Lemma for every a € J there exists a continuous function
fa: X —[0,1] st fo(Wa)={1} and fo(X-V,)={0}.

Since (Vy)aes is point finite, for every x

D(a) = 3 fal2)

acd

is well-defined, being the sum of a finite collection of nonzero numbers. Since (Vg)aes is locally
finite,
P: X — R

is continuous, since on all sufficiently small opens sets @ is the sum of a finitely collection of nonzero
functions. Since (Wy)aes covers X

d(x) > 1 Vo e X.
Thus, for every a€J, the function
a=fa/P: X — [0,1]

is continuous. Furthermore, for all x € X

> ta(@) = Y (fal@)/@(@) = (D fale)) /2(@) = B(2) /B(x) = 1.

acJ acJ aceJ



