
MAT 401: Undergraduate Seminar
Introduction to Enumerative Geometry

Fall 2008

Homework Assignment VI

Written Assignment due on Thursday, 12/11, at 11:20am in Physics P-117

Problem K

Let F = F (X,Y,Z) be a homogeneous polynomial of degree 2 which is not a product of linear
factors. Thus,

C ≡ Z(F ) ≡
{

[X,Y,Z]∈P
2 : F (X,Y,Z)=0

}

is a smooth curve of degree 2 in P
2. Show that there are homogeneous polynomials Pi =Pi(u, v) of

degree 2 so that the image of the map

f : P
1 −→ P

2, [u, v] −→
[

P0(u, v), P1(u, v), P2(u, v)
]

is the curve C.

There are at least two ways of going about this. The homogeneous polynomials P0, P1, P2 are
determined by 3 coefficients each; the homogeneous polynomial F is given by 6 coefficients. The
requirement f(P1)⊂Z(F ) is equivalent to

F
(

P0(u, v), P1(u, v), P2(u, v)
)

= 0 ∀u, v.

The left-hand side of this equation is a homogeneous polynomial of degree 2 · 2 in u and v. Col-
lecting the coefficients of the various terms uav4−a, one obtains 5 equations in 9 unknowns. The
extra 9−5 degrees of freedom correspond to the fact that if P0, P1, P2 work, so do the polynomials
Pi(au+bv, cu+dv) for any fixed a, b, c, d∈C. This approach is direct, but would be very messy.

Here is another approach. It is based on the following observation. Let M ∈GL3C be an invertible
3×3-matrix; it determines a bijective linear map M : C

3−→C
3 and induces a bijective map

M̄ : P
2 −→ P

2, [v] −→ [Mv].

If F =F (X,Y,Z) is homogeneous polynomial of degree 2, then so is F ◦M . Furthermore, F does
not split into linear factors if and only if F◦M does not (you can prove this either directly or using
the approach of Chapter 2, #8). If Z(F ) = f(P1), then Z(F ◦M) = {M̄−1 ◦f}(P1), and M̄−1 ◦f
is given by the polynomials M−1(P0 P1 P2)

tr. Thus, it is sufficient to prove the statement with F
replaced by F ◦M for some M ∈GL3C, perhaps repeating the replacement process several times.

For example, if F (X,Y,Z)=X2+Y 2+Z2, we could take

M =





1 i 0
1 −i 0
0 0 i




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This replaces X+iY with X, X−iY with Y , and Z with iZ, so that F is replaced with XY −Z 2.
So it is sufficient to do the following steps.
(a) Find f as above that works for F (X,Y,Z)=XY −Z 2.
(b) If F does not split into linear factors, show that there exists M ∈ GLnC so that F ◦M is
X2+Y 2+Z2 or XY −Z2.

Discussion Problems for 12/11
Counting plane rational curves

Please read the attached note, even if you are not presenting, and make sure to actively participate
in the discussion, with questions or comments.

If you are presenting,
(1) State formula (1), recalling what nd is.
(2) Describe how you are going to prove it; this is essentially Sections 1 and 2.
(3) Prove the formula; this is Section 3 plus you need to derive formula (1) from (6). If time
permits, use (1) to compute a few of the numbers nd. What is the analogue of this for P

3?
Please draw pictures, more of them than in the note, and do not just copy the formulas!

Some of this material is related to some of the material in Chapter 3 of the book.

Please prepare your presentation ahead of time so that it fits in 1 hour and 10 minutes. You should
come to my office hours on Tuesday 5-7 or Wednesday 9-10 with any questions you might have.
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Counting Plane Rational Curves:

a modern approach

Aleksey Zinger

December 3, 2008

Enumerative geometry of algebraic varieties is a field of mathematics that dates back to the nine-
teenth century. The general goal of this subject is to determine the number of geometric objects
that satisfy pre-specified geometric conditions. The objects are typically (complex) curves in a
smooth algebraic manifold. Such curves are usually required to represent the given homology
class, to have certain singularities, and to satisfy various contact conditions with respect to a
collection of subvarieties. One of the most well-known examples of an enumerative problem is

Question 1 If d is a positive integer, what is the number nd of degree d rational curves that pass

through 3d−1 points in general position in the complex projective plane P
2?

Since the number of (complex) lines through any two distinct points is one, n1 =1. A little bit of
algebraic geometry and topology gives n2 = 1 and n3 = 12. It is far harder to find that n4 = 620,
but this number was computed as early as the middle of the nineteenth century; see [5, p378].

The higher-degree numbers nd remained unknown until the early 1990s, when a recursive formula
for the numbers nd was announced in [2] and [4]:

nd =
1

6(d−1)

∑

d1+d2=d

(

d1d2− 2
(d1−d2)

2

3d − 2

)

(

3d−2

3d1−1

)

d1d2nd1
nd2

. (1)

The argument of the latter paper is described below. It can also be used to solve the natural
generalization of Question 1 to the higher-dimensional projective spaces; see [4, Section 10].

We will define an invariant that counts holomorphic maps into P
2. A priori, the number we

describe depends on the cross ratio of the chosen four points on a sphere. However, it turns out
that this number is well-defined. We use its independence to express this invariant in terms of the
numbers nd in two different ways. By comparing the two expressions, we obtain (1).

1 The moduli space of four marked points on a sphere

Let x0, x1, x2 and x3 be the four points in P
2 given by

x0 = [1, 0, 0], x1 = [0, 1, 0], x2 = [0, 0, 1], x3 = [1, 1, 1].
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We denote by H0(P2; γ∗⊗2) the space of holomorphic sections of the holomorphic line bundle
γ∗⊗2−→P

2, or equivalently of the degree 2 homogeneous polynomials in three variables. Let

U =
{

([s], x)∈PH0(P2; γ∗⊗2)×P
2 : s(xi)=0 ∀i=0, 1, 2, 3; s(x)=0

}

≈
{(

[A,B]; [z0, z1, z2]
)

∈P
1×P

2 : (A−B)z0z1−Az1z2+Bz0z2 =0
}

.

The space U is a compact complex manifold of dimension 2.

Let π : U −→ M0,4 ≡ P
1 denote the projection onto the first component. If [A,B] ∈ M0,4, the

fiber π−1([A,B]) is the conic

CA,B =
{

[z0, z1, z2]∈P
2 : (A−B)z0z1−Az1z2+Bz0z2 =0

}

.

If [A,B] 6=[1, 0], [0, 1], [1, 1], CA,B is a smooth complex curve of genus zero; it is a sphere with four
distinct marked points. If [A,B]= [1, 0], [0, 1], [1, 1], CA,B is a union of two lines. One of the lines
contains two of the four points x0, . . . , x3, and the other line passes through the remaining two
points. The two lines intersect in a single point. Figure 1 shows the three singular fibers of the
projection map π : U−→M0,4. The other fibers are smooth conics. The fibers should be viewed as
lying in planes orthogonal to the horizontal line in the figure.

The following remarks concerning the family U−→M0,4 are not directly relevant for the purposes
of the next two sections and can be omitted. If [A,B]∈M0,4−{[1, 0], [0, 1], [1, 1]}, CA,B is a smooth
complex curve of genus zero, i.e. it is a sphere holomorphically embedded in P

2. Thus, there exists
a one-to-one holomorphic map f : P

1−→CA,B. It can be shown directly that if [ui, vi]=f−1(xi),

v0/u0 − v2/u2

v0/u0 − v3/u3
:

v1/u1 − v2/u2

v1/u1 − v3/u3
=

B

A
.

The cross-ratio is the only invariant of four distinct points on P
1; see [1], for example. Thus,

P
1−{[1, 0], [0, 1], [1, 1]} = M0,4 ≡

{

(x0, x1, x2, x3)∈(P1)4 : xi 6=xj if i 6=j
}/

∼,

where (x0, x1, x2, x3) ∼
(

τ(x0), τ(x1), τ(x2), τ(x3)
)

if τ ∈PSL2 ≡ Aut(P1).

Furthermore, the restriction of the projection map π : U|M0,4
−→ M0,4 to each fiber C[A,B] is the

cross ratio of the points x0, . . . , x3 on C[A,B], viewed as an element of P
1⊃C.

2 Counts of holomorphic maps

If d is an integer and C is a complex curve, which may be a wedge of spheres, let

Hd(C) =
{

f ∈C∞(C; P2) : f is holomorphic, deg f = d
}

. (2)

We give a more explicit description of the space Hd(C) in the relevant cases below.

Suppose `0, `1 and p2, . . . , p3d−1 are two lines and 3d−2 points in general position in P
2. If σ∈M0,4,

let Nσ
d (l0, l1, p2, . . . , p3d−1) denote the cardinality of the set

{

f ∈Hd(Cσ) : f(x0)∈`0, f(x1)∈`1, f(x2)=p2, f(x3)=p3, pi∈ Im f ∀i
}

. (3)
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M0,4≈P
1

U

π

[0, 1] [1, 0] [1, 1]

x0

x1 x3
x2 x0

x1
x3

x2 x0

x1
x3

x2

Figure 1: The Family U−→M0,4

Here Cσ denotes the rational curve with four marked points, x0, x1, x2, and x3, whose cross ratio
is σ; see Section 1. If σ 6=[1, 0], [0, 1], [1, 1], Cσ is a sphere with four, distinct, marked points. In this
case, the condition f ∈Hd(Cσ) means that f has the form

f([u, v]) =
[

P0(u, v), P1(u, v), P2(u, v)
]

∀[u, v]∈P
1,

for some degree d homogeneous polynomials P0, P1, P2 that have no common factor. If σ =
[1, 0], [0, 1], [1, 1], Cσ is a wedge of two spheres, Cσ,1 and Cσ,2, with two marked points each. In
this case, the first condition in (2) means that f is continuous and f |Cσ,1

and f |Cσ,2
are holomor-

phic. The second condition in (2) means that d= d1+d2 if the degrees of f |Cσ,1
and f |Cσ,2

are d1

and d2, respectively.

The requirement that the two lines, `0 and `1, and the 3d−2 points, p2, . . . , p3d−1, are in gen-
eral position means that they lie in a dense open subset Uσ of the space of all possible tuples
(`0, `1, p2, . . . , p3d−1):

X ≡ Gr2C
3 × Gr2C

3 ×
(

P
2
)3d−2

.

Here Gr2C
3 denotes the Grassmanian manifold of two-planes through the origin in C

3, or equiv-
alently of lines in P

2. The dense open subset Uσ of X consists of tuples (`0, `1, p2, . . . , p3d−1) that
satisfy a number of geometric conditions. In particular, `0 6= `1, none of the points p2, . . . , p3d−1

lies on either `0 or `1, the 3d−1 points `0 ∩ `1, p2, . . . , p3d−1 are distinct, no three of them lie on
the same line, and so on. In addition, we need to impose certain cross-ratio conditions on the
rational curves that pass through `0, `1, p2, p3, and a subset of the remaining 3d−4 points. These
conditions can be stated more formally. Define

evσ : Hd(Cσ) ×
(

Cσ

)3d−4
−→

(

P
2)3d by evσ

(

f ;x4, . . . , x3d−1

)

=
(

f(x0), f(x1), . . . , f(x3d−1)
)

.

The space Hd(Cσ) is a dense open subset of P
3d+2 and the evaluation map evσ is holomorphic.

There is a natural compactification Mσ(P2, d) of Hd(Cσ), which consists spaces of holomorphic
maps from various wedges of spheres into P

2. The complex dimension of each such boundary
stratum is less than that of Hd(Cσ). The evaluation map evσ admits a continuous extension over
∂Mσ(P2, d), whose restriction to each stratum is holomorphic. The elements (`0, `1, p2, . . . , p3d−1)
of the subspace Uσ of X are characterized by the condition that the restriction of the evaluation
map to each stratum of Mσ(P2, d) is transversal to the submanifold

`0 × `1 ×p2×. . .×p3d−1 ⊂ (P2)3d.
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This condition implies that

ev−1
σ

(

`0 × `1 ×p2×. . .×p3d−1

)

∩ ∂Mσ(P2, d) = ∅

and the set in (3) is a finite subset of Hd(Cσ).

The set Uσ of “general” tuples (`0, `1, p2, . . . , p3d−1) is path-connected. Indeed, it is the complement
of a finite number of proper complex submanifolds in X. It follows that the number in (3) is
independent of the choice of two lines and 3d−2 points in general position in P

2. We thus may
simply denote it by Nσ

d . If σ 6=[1, 0], [0, 1], [1, 1], Cσ is a sphere with four distinct points. In such a
case, it is fairly easy to show that the number N σ

d does not change under small variations of σ, or
equivalently of the four points on the sphere. Thus, N σ

d is independent of

σ ∈ M0,4 = P
1 −

{

[1, 0], [0, 1], [1, 1]
}

= M0,4 −
{

[1, 0], [0, 1], [1, 1]
}

.

It is far harder to prove

Proposition 2 The function σ−→N σ
d is constant on M0,4.

This proposition is a special case of the gluing theorems first proved in [3] and [4].

3 Holomorphic maps vs. complex curves

In this subsection, we express the numbers N
[0,1]
d and N

[1,1]
d of Subsections 2 in terms of the num-

bers nd′ , with d′ ≤ d, of Question 1. By Proposition 2, N
[0,1]
d = N

[1,1]
d . We obtain a recursion for

the numbers of Question 1 by comparing the expressions for N
[0,1]
d and N

[1,1]
d .

Let C1 denote the component of C[0,1] containing the marked points x0 and x3; see Figure 1. We
denote by C2 the other component of C[0,1]. By definition,

N
[0,1]
d =

∑

d1+d2=d

N
[0,1]
d1,d2

where

N
[0,1]
d1,d2

=
∣

∣

{

f ∈Hd(C[0,1]; P
2) : deg f |C1

= d1, deg f |C2
= d2; pi∈ Im f ∀i;

f(x0)∈`0, f(x1)∈`1, f(x2)=p2, f(x3)=p3

}∣

∣.

Since the group PSL2 of holomorphic automorphisms acts transitively on triples of distinct points
on the sphere,

N
[0,1]
d1,d2

=
∣

∣

{

(f1, f2)∈Hd1
(S2)×Hd2

(S2) : f1(∞)=f2(∞), pi∈f1(S
2) ∪ f2(S

2) ∀i;

f1(0)∈`0, f1(1)=p3, f2(0)∈`1, f2(1)=p2

}∣

∣.

Since the maps f1 and f2 above are holomorphic, d1, d2 ≥ 0 if N
[0,1]
d1,d2

6= 0. Since every degree 0

holomorphic map is constant and p3 6∈ `0, N
[0,1]
0,d = 0. Similarly, N

[0,1]
d,0 = 0. Thus, we assume that

d1, d2 >0. Since the points p3, . . . , p3d−1 are in general position, f1(S
2) contains at most 3d1−2 of

6



the points p4, . . . , p3d−1. Similarly, the curve f2(S
2) passes through at most 3d2−2 of the points

p4, . . . , p3d−1. Thus, if I ={4, . . . , 3d−1},

N
[0,1]
d1,d2

=
∑

I=I1tI2,|I1|=3d1−2

N
[0,1]
d1,d2

(I1, I2),

where N
[0,1]
d1,d2

(I1, I2) is the cardinality of the set

S
[0,1]
d1,d2

(I1, I2) =
{

(f1, f2)∈Hd1
(S2)×Hd2

(S2) : pi∈f1(S
2) ∀i∈I1, pi∈f2(S

2) ∀i∈I2;

f1(∞)=f2(∞), f1(0)∈`0, f1(1)=p3, f2(0)∈`1, f2(1)=p2

}

.

If (f1, f2)∈S
[1,0]
d1,d2

(I1, I2), f1(S
2) is one of the nd1

curves passing through the points {pi : i∈{3}tI1}.

Similarly, f2(S
2) is one of the nd2

curves passing through the points {pi : i∈{2} t I2}. The point
f1(∞) = f2(∞) must be one of the points of f1(S

2) ∩ f2(S
2); by Bezoit’s theorem there are d1d2

such points. Finally, f1(0) must be one of the d1 points of f1(S
2) ∩ `0, while f2(0) must be one of

the d2 points of f2(S
2) ∩ `1. Thus, we conclude that

N
[0,1]
d =

∑

d1+d2=d

N
[0,1]
d1,d2

=
∑

d1+d2=d

∑

I=I1tI2,|I1|=3d1−2

N
[0,1]
d1,d2

(I1, I2)

=
∑

d1+d2=d

∑

I1⊂I,|I1|=3d1−2

(d1d2)(d1nd1
)(d2nd2

)

=
∑

d1+d2=d

(

3d−4

3d1−2

)

d2
1d

2
2nd1

nd2
;

(4)

where I ={4, . . . , 3d−1}.

We compute the number N
[1,1]
d similarly. We denote by C1 the component of C[1,1] containing the

points x0 and x1 and by C2 the other component of C[1,1]. By definition,

N
[1,1]
d =

∑

d1+d2=d

N
[1,1]
d1,d2

, where

N
[1,1]
d1,d2

=
∣

∣

{

(f1, f2)∈Hd1
(S2)×Hd2

(S2) : f1(∞)=f2(∞), pi∈f1(S
2) ∪ f2(S

2) ∀i;

f1(0)∈`0, f1(1)∈`1, f2(0)=p2, f2(1)=p3

}∣

∣.

Since every degree-zero holomorphic map is constant, N
[1,1]
d,0 =0 as before. However,

N
[1,1]
0,d =

∣

∣

{

f2∈Hd(S
2) : f2(∞)∈`0 ∩ `1, f2(0)=p2, f2(1)=p3;

pi∈f2(S
2) ∀i=4, . . . , 3d−1

}∣

∣.

Thus, N
[1,1]
0,d = nd. If d1, d2 >0,

N
[1,1]
d1,d2

=
∑

I=I1tI2,|I1|=3d1−1

N
[1,1]
d1,d2

(I1, I2),
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where N
[1,1]
d1,d2

(I1, I2) is the cardinality of the set

S
[1,1]
d1,d2

(I1, I2) =
{

(f1, f2)∈Hd1
(S2)×Hd2

(S2) : pi∈f1(S
2) ∀i∈I1, pi∈f2(S

2) ∀i∈I2;

f1(∞)=f2(∞), f1(0)∈`0, f1(1)∈`1, f2(0)=p2, f2(1)=p3

}

.

Proceeding as in the previous paragraph, we conclude that

N
[1,1]
d =

∑

d1+d2=d

N
[1,1]
d1,d2

= nd +
∑

d1+d2=d

∑

I=I1tI2,|I1|=3d1−1

N
[1,1]
d1,d2

(I1, I2)

= nd +
∑

d1+d2=d

∑

I1⊂I,|I1|=3d1−1

(d1d2)(d
2
1nd1

)(nd2
)

= nd +
∑

d1+d2=d

(

3d−4

3d1−1

)

d3
1d2nd1

nd2
;

(5)

Comparing equations (4) and (5), we obtain

nd =
∑

d1+d2=d

(

(

3d−4

3d1−2

)

d1d2 −

(

3d−4

3d1−1

)

d2
1

)

d1d2nd1
nd2

. (6)

The recursive formula (1) is the symmetrized version of (6).
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