MAT 401: Undergraduate Seminar Introduction to Enumerative Geometry Fall 2008

Homework Assignment V

Written Assignment due on Thursday, 12/2, at 11:20am in Physics P-117

Please write up solutions to all of the following:

- Chapter 6, #6, 7 or Problem J below (one of the three);
- Problem I below, Chapter 7, #2,6 (all three);
- Chapter 7, #5,9, or 10 (one of the three).

Problem I

Recall that an element ℓ of \mathbb{P}^n is a complex one-dimensional linear subspace of \mathbb{C}^{n+1} , i.e. a complex line through the origin in \mathbb{C}^{n+1} . Let

$$\gamma = \{(\ell, v) \in \mathbb{P}^n \times \mathbb{C}^{n+1} \colon v \in \ell \subset \mathbb{C}^{n+1}\}.$$

Thus, γ is a subset of the complex manifold $\mathbb{P}^n \times \mathbb{C}^{n+1}$. Show that the projection to the first component

$$\pi_1: \gamma \longrightarrow \mathbb{P}^n, \qquad (\ell, v) \longrightarrow \ell,$$

defines a holomorphic line bundle. In particular, describe trivializations of γ over the open subsets

$$\mathcal{U}_i \equiv \left\{ [X_0, \dots, X_n] \colon X_i \neq 0 \right\}$$

and compute all the transition maps $g_{ij}: \mathcal{U}_i \cap \mathcal{U}_j \longrightarrow \mathbb{C} - \{0\}$; these maps should be analytic. The line bundle $\gamma \longrightarrow \mathbb{P}^n$ is called the tautological line bundle over \mathbb{P}^n .

Problem J (roughly Chapter 7, #8)

Recall that an element P of G(2, n) is a complex two-dimensional linear subspace of \mathbb{C}^n , i.e. a complex plane through the origin in \mathbb{C}^n . Let

$$\gamma = \{ (P, v) \in G(2, n) \times \mathbb{C}^n \colon v \in P \subset \mathbb{C}^n \}.$$

Thus, γ is a subset of the complex manifold $G(2, n) \times \mathbb{C}^n$. Show that the projection to the first component

$$\pi_1 \colon \gamma \longrightarrow G(2, n), \qquad (P, v) \longrightarrow P,$$

defines a vector bundle of rank 2. The vector bundle $\gamma \longrightarrow G(2, n)$ is called the tautological two-plane bundle over G(2, n).

Discussion Problems for 12/2,4

Lines in projective spaces

Day 1: Review the definition of the Schubert cycles σ_{ab} in G(2, n). Verify Pieri's formula:

$$\sigma_{a_1} \cdot \sigma_{a_2} = \sum_{c \ge a_1, a_2} a_{c, a_1 + a_2 - c}$$

Recall the other formulas from the previous discussion (state them without re-proving). Describe a solution to Exercise 5 in Chapter 7.

Day 2: Review the definition of the Schubert cycles σ_{ab} in G(2, n) and the intersection formulas for them. Describe a solution to Exercise 10 in Chapter 7. Find the number of lines that lie on a general quintic hypersurface in \mathbb{P}^4 (this is mostly done in the book, but not completely).

We should finish all of the relevant material for this homework assignment by Thursday, 11/20. Please try to complete the written assignment and study the discussion part before Tuesday, 11/25, and come to the office hours then with any questions.