
MAT 401: Undergraduate Seminar
Introduction to Enumerative Geometry

Fall 2018

Homework Assignment III

Written Assignment due on Tuesday, 9/25, at 1pm in ESS 181
(or by 9/25, noon, in Math 3-111)

Please do 6 of the following problems: Chapter 4, #1,2,3,5, and B-D below, with B-D counted as 2
problems each; B-D are also for presentation on 9/25.

Problem B (9/25, ∼15mins)

Let U ⊂ C
4×C4 be the subspace consisting of pairs of linearly independent vectors and A⊂U of pairs of

vectors that are orthonormal with respect to the standard Hermitian inner-product on C
4. Thus, each

element of U and A determines a two-dimensional linear subspace of C4; this induces surjective maps

π : U −→ G(2, 4), π′ : A −→ G(2, 4).

Show that these maps induce the same topology on G(2, 4).

Problem C (9/25, ∼20mins)

(a) For each i=0, 1, . . . , n, let

Ui =
{

[X0, X1, . . . , Xn]∈CPn : Xi 6=0
}

,

φi : Ui −→ C
n, [X0, X1, . . . , Xn] −→ (X0/Xi, X1/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi).

Show that the maps φi are homeomorphisms, while

φi ◦ φ
−1
j : φj(Ui∩Uj) −→ φi(Ui∩Uj)

are analytic/holomorphic maps between open subspaces of Cn.

(b) Describe manifold charts for G(2, 4) (for the quotient topology of Problem B) and show that G(2, 4)
is also a complex manifold (the overlap maps are analytic/holomorphic).

Problem D (9/25, ∼15mins)

Let F =F (X0, . . . , Xn) be a homogeneous polynomial of degree d∈Z
+ and (Y0, . . . , Yn)∈C

n+1−0. If
F (Y0, . . . , Yn)=0, but ∂F

∂Xi
|(Y0,...,Yn) 6= 0 for some i=0, 1, . . . , n, show that the hypersurface Z(F )⊂CPn

is a complex manifold in a neighborhood of [Y0, . . . , Yn]∈Z(F ). Show that the tangent hyperplane to
Z(F ) at [Y0, . . . , Yn] is given by the equation

G(X0, . . . , Xn) =
∂F

∂X0
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Further Discussion Problems for 9/25, 10/2

Bezoit’s Theorem for CP 2: If C,D⊂CP 2 are curves of degrees c, d∈Z
+ such that C ∩D is finite, then

the cardinality of the set C∩D counted with multiplicity mp(C,D) ∈ Z
+ for each point p ∈ C∩D is cd.

The number mp(C,D) is defined so that if the curves C and D are deformed slightly and generically
(by deforming the homogeneous polynomials defining C and D), then mp(C,D) is the number of points
in the intersection of the deformed curves that lie near p. Thus, the weighted cardinality of C ∩D does
not change under small changes in (C,D). It thus must be independent of C and D provided the space

Xc,d ≡
{

(F,G) ∈ HPc(C
3)×HPd(C

3) : Z(F ) ∩ Z(G) is finite
}

is connected (as in class HPc(C
3) is the space of homogeneous polynomials on C

3 of degree c). We can
thus determine the weighted cardinality of C∩D by determining it for a specific pair in Xc,d; in class,
C and D were taken to consist of c and d lines, respectively, with all c+d lines being distinct, obtaining
Bezoit’s Theorem. The aim of this discussion problem is to fill in some of the gaps in the argument.

Part I (9/25, ∼20mins): A topological space X is called connected if it can’t be written as a disjoint
union of two nonempty open subset, X 6= U ⊔V ; X is called path-connected if for any p, q ∈ X there
exists a continuous map f : [0, 1]−→X such that f(0)=p and f(1)=q (thus every two points in X are
connected by a path). Show that
(a) any continuous map from a connected space to Z is constant;
(b) any path-connected space is connected and thus Cn is connected;
(c) if A⊂X is connected (in the subspace topology) and A⊂B⊂A, then B⊂X is also connected.

Part II (10/2, ∼30mins): Show that
(a) if f : Cn−→C is a non-constant analytic function (analytic in each variable), then for every p∈f−1(0)
there exists r>0 such that Br(p)−f−1(0), where Br(p) is the r-ball centered at p, is path-connected;
(b) if f : Cn−→C is a non-constant analytic function, then C

n−f−1(0) is path-connected;
(c) Xc,d is connected.

Part III (10/2, ∼40mins): Let f, g : C2 −→ C be two polynomials of degrees at most c and d (not
necessarily homogeneous) such that f(0), g(0)=0 and there exists r>0 such that Br(0)−0 contains no
points f−1(0)∩g−1(0). For p∈C

2, let ∇f |p : C
2−→C be the gradient of f at p. If c∈Z

+, denote by
Pc(C

2) the space of polynomials on C
2 of degree at most c; there is a natural norm on Pc(C

2), since
such polynomials correspond to tuples of elements of C. Show that
(a) if (ker∇f |0) ∩ (ker∇g|0) = {0}, there exists ǫ>0 such that the set

{f+f̃}−1(0) ∩ {g+g̃}−1(0) ∩Br/2(0) ⊂ C
2

consists of precisely one element whenever |f̃ |, |g̃|<ǫ (in such a case, 0 is said to be a simple intersection

point, or point of intersection multiplicity 1, of f−1(0) and g−1(0));

(b) the set Xc,d(f, g) ≡
{

(f̃ , g̃) ∈ Pc(C
2)×Pd(C

2) : Z(f+f̃) ∩ Z(g+g̃) is finite;

(ker∇(f+f̃)|p) ∩ (ker∇(g+g̃)|p) = {0} ∀ p∈Z(f+f̃) ∩ Z(g+g̃)
}

is connected and non-empty;
(c) there exists ǫ>0 such that the cardinality of the set

{f+f̃}−1(0) ∩ {g+g̃}−1(0) ∩Br/2(0) ⊂ C
2

is independent of f̃ , g̃∈Xc,d(f, g) with |f̃ |, |g̃|<ǫ. (This number is called the multiplicity of 0∈C
2 as an

intersection point of the curves Z(f) and Z(g) and is denoted by m0(f, g) or m0(Z(f), Z(g))).
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