MAT 401: Undergraduate Seminar Introduction to Enumerative Geometry Fall 2018

Homework Assignment III

Written Assignment due on Tuesday, 9/25, at 1pm in ESS 181

(or by 9/25, noon, in Math 3-111)

Please do 6 of the following problems: Chapter 4, #1,2,3,5, and B-D below, with B-D counted as 2 problems each; B-D are also for presentation on 9/25.

Problem B $(9/25, \sim 15 \text{mins})$

Let $U \subset \mathbb{C}^4 \times \mathbb{C}^4$ be the subspace consisting of pairs of linearly independent vectors and $A \subset U$ of pairs of vectors that are orthonormal with respect to the standard Hermitian inner-product on \mathbb{C}^4 . Thus, each element of U and A determines a two-dimensional linear subspace of \mathbb{C}^4 ; this induces surjective maps

 $\pi: U \longrightarrow G(2,4), \qquad \pi': A \longrightarrow G(2,4).$

Show that these maps induce the same topology on G(2, 4).

Problem C $(9/25, \sim 20 \text{mins})$

(a) For each i = 0, 1, ..., n, let

$$U_i = \{ [X_0, X_1, \dots, X_n] \in \mathbb{C}P^n \colon X_i \neq 0 \},$$

$$\phi_i \colon U_i \longrightarrow \mathbb{C}^n, \quad [X_0, X_1, \dots, X_n] \longrightarrow (X_0/X_i, X_1/X_i, \dots, X_{i-1}/X_i, X_{i+1}/X_i, \dots, X_n/X_i).$$

Show that the maps ϕ_i are homeomorphisms, while

 $\phi_i \circ \phi_i^{-1} \colon \phi_j(U_i \cap U_j) \longrightarrow \phi_i(U_i \cap U_j)$

are analytic/holomorphic maps between open subspaces of \mathbb{C}^n .

(b) Describe manifold charts for G(2, 4) (for the quotient topology of Problem B) and show that G(2, 4) is also a complex manifold (the overlap maps are analytic/holomorphic).

Problem D $(9/25, \sim 15 \text{mins})$

Let $F = F(X_0, \ldots, X_n)$ be a homogeneous polynomial of degree $d \in \mathbb{Z}^+$ and $(Y_0, \ldots, Y_n) \in \mathbb{C}^{n+1} - 0$. If $F(Y_0, \ldots, Y_n) = 0$, but $\frac{\partial F}{\partial X_i}|_{(Y_0, \ldots, Y_n)} \neq 0$ for some $i = 0, 1, \ldots, n$, show that the hypersurface $Z(F) \subset \mathbb{C}P^n$ is a complex manifold in a neighborhood of $[Y_0, \ldots, Y_n] \in Z(F)$. Show that the tangent hyperplane to Z(F) at $[Y_0, \ldots, Y_n]$ is given by the equation

$$G(X_0,\ldots,X_n) = \frac{\partial F}{\partial X_0}\Big|_{(Y_0,\ldots,Y_n)} X_0 + \ldots + \frac{\partial F}{\partial X_n}\Big|_{(Y_0,\ldots,Y_n)} X_n = 0.$$

Further Discussion Problems for 9/25, 10/2

Bezoit's Theorem for $\mathbb{C}P^2$: If $C, D \subset \mathbb{C}P^2$ are curves of degrees $c, d \in \mathbb{Z}^+$ such that $C \cap D$ is finite, then the cardinality of the set $C \cap D$ counted with multiplicity $m_p(C, D) \in \mathbb{Z}^+$ for each point $p \in C \cap D$ is cd.

The number $m_p(C, D)$ is defined so that if the curves C and D are deformed slightly and generically (by deforming the homogeneous polynomials defining C and D), then $m_p(C, D)$ is the number of points in the intersection of the deformed curves that lie near p. Thus, the weighted cardinality of $C \cap D$ does not change under small changes in (C, D). It thus must be independent of C and D provided the space

$$\mathfrak{X}_{c,d} \equiv \left\{ (F,G) \in HP_c(\mathbb{C}^3) \times HP_d(\mathbb{C}^3) \colon Z(F) \cap Z(G) \text{ is finite} \right\}$$

is connected (as in class $HP_c(\mathbb{C}^3)$ is the space of homogeneous polynomials on \mathbb{C}^3 of degree c). We can thus determine the weighted cardinality of $C \cap D$ by determining it for a specific pair in $\mathfrak{X}_{c,d}$; in class, C and D were taken to consist of c and d lines, respectively, with all c+d lines being distinct, obtaining Bezoit's Theorem. The aim of this discussion problem is to fill in some of the gaps in the argument.

Part I (9/25, ~20mins): A topological space \mathfrak{X} is called **connected** if it can't be written as a disjoint union of two nonempty open subset, $\mathfrak{X} \neq U \sqcup V$; \mathfrak{X} is called **path-connected** if for any $p, q \in \mathfrak{X}$ there exists a continuous map $f: [0,1] \longrightarrow \mathfrak{X}$ such that f(0) = p and f(1) = q (thus every two points in \mathfrak{X} are connected by a path). Show that

(a) any continuous map from a connected space to \mathbb{Z} is constant;

(b) any path-connected space is connected and thus \mathbb{C}^n is connected;

(c) if $A \subset \mathfrak{X}$ is connected (in the subspace topology) and $A \subset B \subset \overline{A}$, then $B \subset \mathfrak{X}$ is also connected.

Part II $(10/2, \sim 30 \text{mins})$: Show that

(a) if $f: \mathbb{C}^n \longrightarrow \mathbb{C}$ is a non-constant analytic function (analytic in each variable), then for every $p \in f^{-1}(0)$ there exists r > 0 such that $B_r(p) - f^{-1}(0)$, where $B_r(p)$ is the r-ball centered at p, is path-connected; (b) if $f: \mathbb{C}^n \longrightarrow \mathbb{C}$ is a non-constant analytic function, then $\mathbb{C}^n - f^{-1}(0)$ is path-connected; (c) $\mathfrak{X}_{c,d}$ is connected.

Part III (10/2, ~40mins): Let $f, g: \mathbb{C}^2 \longrightarrow \mathbb{C}$ be two polynomials of degrees at most c and d (not necessarily homogeneous) such that f(0), g(0) = 0 and there exists r > 0 such that $B_r(0) - 0$ contains no points $f^{-1}(0) \cap g^{-1}(0)$. For $p \in \mathbb{C}^2$, let $\nabla f|_p: \mathbb{C}^2 \longrightarrow \mathbb{C}$ be the gradient of f at p. If $c \in \mathbb{Z}^+$, denote by $P_c(\mathbb{C}^2)$ the space of polynomials on \mathbb{C}^2 of degree at most c; there is a natural norm on $P_c(\mathbb{C}^2)$, since such polynomials correspond to tuples of elements of \mathbb{C} . Show that

(a) if $(\ker \nabla f|_0) \cap (\ker \nabla g|_0) = \{0\}$, there exists $\epsilon > 0$ such that the set

$${f+\tilde{f}}^{-1}(0) \cap {g+\tilde{g}}^{-1}(0) \cap B_{r/2}(0) \subset \mathbb{C}^2$$

consists of precisely one element whenever $|\tilde{f}|, |\tilde{g}| < \epsilon$ (in such a case, 0 is said to be a simple intersection point, or point of intersection multiplicity 1, of $f^{-1}(0)$ and $g^{-1}(0)$);

(b) the set
$$\mathfrak{X}_{c,d}(f,g) \equiv \left\{ (\tilde{f},\tilde{g}) \in P_c(\mathbb{C}^2) \times P_d(\mathbb{C}^2) \colon Z(f+\tilde{f}) \cap Z(g+\tilde{g}) \text{ is finite;} \\ (\ker \nabla (f+\tilde{f})|_p) \cap (\ker \nabla (g+\tilde{g})|_p) = \{0\} \ \forall \, p \in Z(f+\tilde{f}) \cap Z(g+\tilde{g}) \right\}$$

is connected and non-empty;

(c) there exists $\epsilon > 0$ such that the cardinality of the set

$$\{f+\tilde{f}\}^{-1}(0) \cap \{g+\tilde{g}\}^{-1}(0) \cap B_{r/2}(0) \subset \mathbb{C}^2$$

is independent of $\tilde{f}, \tilde{g} \in \mathfrak{X}_{c,d}(f,g)$ with $|\tilde{f}|, |\tilde{g}| < \epsilon$. (This number is called the multiplicity of $0 \in \mathbb{C}^2$ as an intersection point of the curves Z(f) and Z(g) and is denoted by $m_0(f,g)$ or $m_0(Z(f), Z(g))$).