Chapter 2

Smooth Vector Bundles

7 Definitions and Examples

A (smooth) real vector bundle V' of rank k over a smooth manifold M is a smoothly varying family
of k-dimensional real vector spaces which is locally trivial. Formally, it is a triple (M, V, ), where
M and V are smooth manifolds and

TV —M

is a surjective submersion. For each p€ M, the fiber szw_l(p) of V over p is a real k-dimensional
vector space; see Figure 2.1. The vector-space structures in V), vary smoothly with p € M. This
means that the scalar multiplication map

RxV —V, (c,v) — ¢ v, (7.1)
and the addition map
VxuV = {(vi,v2) €V xV:im(v)=mn(va) € M} —V, (v1,v2) — V1 +ve, (7.2)
are smooth. Note that we can add vi,vs €V only if they lie in the same fiber over M, i.e.
m(v1) =m(v2) = (v1,v2) € Vxp V.

The space V x 3/ V is a smooth submanifold of V xV by the Implicit Function Theorem for Maps
(Corollary 6.7). The local triviality condition means that for every point p € M there exist a
neighborhood U of p in M and a diffeomorphism

h: Vg =7 1(U) — UxRF

such that h takes every fiber of 7 to the corresponding fiber of the projection map 7 : UxRF — U,
i.e. moh=m on V|y so that the diagram

Vip=nr'(U) —2 U x RF

N4

U

commutes, and the restriction of A to each fiber is linear:

h(civ1+cova) = c1h(vy) + coh(ve) € x X R* Vi, c0€R, v1,v9€V,, xel.
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Figure 2.1: Fibers of a vector-bundle projection map are vector spaces of the same rank.

These conditions imply that the restriction of h to each fiber V, of w is an isomorphism of vector
spaces. In summary, V locally (and not just pointwise) looks like bundles of R*’s over open sets in
M glued together. This is in a sense analogous to an m-manifold being open subsets of R™ glued
together in a nice way. Here is a formal definition.

Definition 7.1. A real vector bundle of rank k is a tuple (M,V,n,-,+) such that
(RVB1) M and V are smooth manifolds and w: V — M is a smooth map;

RVB2) -: RxV —V is a map s.t. w(c-v)=n(v) for all (c,v) ERXV;

( )
(RVB3) +: VxyV—V is amap s.t. m(vi+ve)=m(v1)=m(ve) for all (vi,v2) EV X V;
( )

RVB4) for every point p € M there exist a neighborhood U of p in M and a diffeomorphism

h: Vg —UxRF such that

(RVB4-a) moh=m on V|y and

(RVB4-b) the map hly,: Vo, — xxR¥ is an isomorphism of vector spaces for all x€U.
The spaces M and V are called the base and the total space of the vector bundle (M, V,r). It is
customary to call m: V — M a vector bundle and V' a vector bundle over M. If M is an m-
manifold and V' — M is a real vector bundle of rank k, then V' is an (m+k)-manifold. Its smooth

charts are obtained by restricting the trivialization maps h for V', as above, to small coordinate
charts in M.

Example 7.2. If M is a smooth manifold and k is a nonnegative integer, then

w1 MxRF — M
is a real vector bundle of rank k over M. It is called the trivial rank k real vector bundle over M and
denoted 7: TE — M or simply 7: 7, — M if there is no ambiguity.

Example 7.3. Let M =S! be the unit circle and V =MB the infinite Mobius band of Example 1.8.
With notation as in Example 1.8, the map
TV —M, [s,t] — e2™*
defines a real line bundle (i.e. rank 1 bundle) over S!. Trivializations of this vector bundle can be
constructed as follows. With Uy =S —{41}, let
hi: Vg, — Up xR, [s,8] — (*™5,2);
2ms ¢ if s € (1/2,1];
he: Vg — U_xR,  [s,] — (62 ), ise(l/2 1]
(e*™s, —t), if s €[0,1/2).
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Both maps are diffeomorphisms, with respect to the smooth structures of Example 1.8 on MB and
of Example 1.7 on S'. Furthermore, m oh4 =7 and the restriction of h4 to each fiber of 7 is a
linear map to R.

Example 7.4. Let RP" be the real projective space of dimension n described in Example 1.9 and
Y = {(£,v) ERP" xR : per},

where £ C R"*! denotes a one-dimensional linear subspace. If U; CRP™ is as in Example 1.9, the
map
hit vy NU; xR — U; xR, (Z, (Uo,...,vn)) — (0, v;),

is a homeomorphism. The overlap maps,
hioh;': UinU; x R — U;NU; X R, (4, c) — (0, (X;/X;)c),

are smooth. By Lemma 2.6, the collection {(v, N U; x R"*! h;)} of generalized smooth charts
then induces a smooth structure on the topological subspace 7, C RP" x R"*!. With this smooth
structure, 7, is an embedded submanifold of RP"xR"*! and the projection on the first component,

T=m Y — RP™,

defines a smooth real line bundle. The fiber over a point £€RP"™ is the one-dimensional subspace
¢ of R™1! For this reason, v, is called the tautological line bundle over RP™. Note that ; — S!
is the infinite Mobius band of Example 7.3.

Example 7.5. If M is a smooth m-manifold, let

T™ = | | T,M, m:TM — M, =(v)=p if veT,M.
pEM

If po: Uy —>R™ is a smooth chart on M, let
Go: TM|y, =11 (Uy) — Uy x R™, Pa(v) = (T(v), dr(r)Pav). (7.3)
If pg: Us—+R™ is another smooth chart, the overlap map
FaoPy': UaNUs X R™ — UaNUp x R™

is a smooth map between open subsets of R?". By Corollary 2.7, the collection of generalized
smooth charts

{(x7"(Ua), 8a): (Uas 0a) €Frr}

where Fjs is the smooth structure of M, then induces a manifold structure on the set TM. With
this smooth structure on T'M, the projection 7: T'M — M defines a smooth real vector bundle of
rank m, called the tangent bundle of M.

Definition 7.6. A complex vector bundle of rank k is a tuple (M,V, =, ,+) such that
(CVB1) M and V are smooth manifolds and w: V — M is a smooth map;

(CVB2) -:CxV —V is a map s.t. w(c-v)=n(v) for all (c,v)eCxV;
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(CVB3) +: VxpyV—V is a map s.t. m(vi+v2)=7(vy)=m(va) for all (v1,v2) EV X7/ V;

(CVB4) for every point p € M there exists a neighborhood U of p in M and a diffeomorphism
h: Vg —UxCF such that

(CVB4-a) moh=m on V|y and

(CVB4-b) the map hly, : Vi — 2 xC¥ is an isomorphism of complex vector spaces for all
reU.

Similarly to a real vector bundle, a complex vector bundle over M locally looks like bundles of
C?’s over open sets in M glued together. If M is an m-manifold and V — M is a complex vector
bundle of rank k, then V is an (m+2k)-manifold. A complex vector bundle of rank k is also a real
vector bundle of rank 2k, but a real vector bundle of rank 2k need not in general admit a complex
structure.

Example 7.7. If M is a smooth manifold and k is a nonnegative integer, then
7y M x Cct— M

is a complex vector bundle of rank k over M. It is called the trivial rank-k complex vector bundle
over M and denoted 7: T,;C — M or simply mw: 7, — M if there is no ambiguity.

Example 7.8. Let CP™ be the complex projective space of dimension n described in Example 1.10

and
Y = {(£,v) ECP"xC"t!: vel}.

The projection 7: vy, —» CP™ defines a smooth complex line bundle. The fiber over a point £ € CP™
is the one-dimensional complex subspace ¢ of C"t!. For this reason, 7, is called the tautological
line bundle over CP™.

Example 7.9. If M is a complex m-manifold, the tangent bundle TM of M is a complex vector
bundle of rank m over M.

8 Sections and Homomorphisms

Definition 8.1. (1) A (smooth) section of a (real or complex) vector bundle m: V — M is a
(smooth) map s: M —V such that mos=idyy, i.e. s(x) €V, for allze M.

(2) A vector field on a smooth manifold is a section of the tangent bundle TM — M.

If 7: V=M xRF — M is the trivial bundle of rank k, a section of 7 is a map s: M — V of

the form
s=(idps, f): M — M xRF

for some map f: M — R¥. This section is smooth if and only if f is a smooth map. Thus,
a (smooth) section of the trivial vector bundle of rank k over M is essentially a (smooth) map
M —RF.

If s is a smooth section, then s(M) is an embedded submanifold of V: the injectivity of s and ds is

immediate from mos=1ids, while the embedding property follows from the continuity of w. Every
fiber V,, of V is a vector space and thus has a distinguished element, the zero vector in V,, which
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Figure 2.2: The image of a vector-bundle section is an embedded submanifold of the total space.

we denote by 0,. It follows that every vector bundle admits a canonical section, called the zero
section,
so(z) = (z,0,) € V.

This section is smooth, since on a trivialization of V' over an open subset U of M it is given by the
inclusion of U as U x0 into U xR¥ or U x C¥. Thus, M can be thought of as sitting inside of V as
the zero section, which is a deformation retract of V; see Figure 2.2.

If s: M —V is a section of a vector bundle V — M and h: V| — U xR is a trivialization of V'
over an open subset U C M, then
hos=(idy,s): U — UxRF (8.1)

for some sp: U — RF. Since the trivializations h cover V and each trivialization h is a diffeomor-
phism, a section s: M —V is smooth if and only if the induced functions sp: U — R¥ are smooth
in all trivializations h: V]y — U xRF of V.

Every trivialization h: V| — U xR¥ of a vector bundle V. — M over an open subset U C M
corresponds to a k-tuple (s1,...,sg) of smooth sections of V' over U such that the set {s;(x)};
forms a basis for V, 57'('_1(56) for all z€U. Let ey, ..., ex be the standard coordinate vectors in R¥.
If h: V|y — U xRF is a trivialization of V, then each section

Si:h_lo(idUaei): U—>V|U7 51($) :h_l(xaei)v

is smooth. Since {e;} is a basis for RF and h: V, — 2 xR¥ is a vector-space isomorphism, {s;(x)};
is a basis for V, for all x € U. Conversely, if s1,...,s;: U — V| are smooth sections such that
{si(x)}; is a basis for V, for all x €U, then the map

V:UxRF — Vy, (x,c1,...,08) — c151(x) + ... + cpsp(x), (8.2)

is a diffeomorphism commuting with the projection maps; its inverse, h=1"", is thus a trivialization
of V over U. If in addition s: M — V is any bundle section and

Sp = (Sh,17"'7sh,k): U —)Rk
is as in (8.1), then
s(z) = h_l(:r, spi(z),. .., sh7k(m)) =spi(x)si(z) + ...+ spp(z)sp(x) Vael.

Thus, a bundle section s: M — V' is smooth if and only if for every open subset U C M and a
k-tuple of smooth sections si,...,s;: U— V| such that {s;(x)}; is a basis for V,, for all ze€U
the coefficient functions

1y U — R, s(z) = c1(x)s1(x) + ... + cp(x)sp(x) Vzel,

43



are smooth.

For example, let w: V=TM — M be the tangent bundle of a smooth m-manifold M. If @, is a
trivialization of TM over U, C M as in (7.3),

<1 0

si(z) = @, (z,6;) = e Vo e U,

xT

is the i-th coordinate vector field. Thus, a vector field X : M — T'M is smooth if and only if for

every smooth chart o= (x1,...,2n) : Uy —> R"™ the coefficient functions
0 0
Cly..yem: U — R, X(p)Ecl(p)a— +...+emp)=—| VpelU,
1|, O0xm »

are smooth. If X: M — T M is a vector field on M and p€ M, sometimes it will be convenient to
denote the value X (p) €T, M of X at p by X,. If in addition feC>(M), define

XfM—R by {X[}0) = X,(f)  VpeM.
A vector field X on M is smooth if and only if X fe€C*>(M) for every feC>(M).

The set of all smooth sections of a vector bundle 7 : V' — M is denoted by I'(M;V). This is
naturally a module over the ring C°*°(M) of smooth functions on M, since fse€I'(M;V) whenever
feC>®(M) and s e T'(M;V). We will denote the set I'(M;TM) of smooth vector fields on M
by VF(M). It carries a canonical structure of Lie algebra over R, with the Lie bracket defined by

[,/]: VF(M) x VF(M) — VF(M),

(X, Y],(f)=X,(Yf) =Y, (Xf) VpeM, feC>®U),U C M open, peU; (8:3)
see Exercise 5.

Definition 8.2. (1) Suppose 7: V — M and ' V! — N are real (or complex) vector bundles.
A (smooth) map f:V —V' is a (smooth) vector-bundle homomorphism if f descends to a map
f: M — N, i.e. the diagram

(8.4)

commutes, and the restriction f: Vy —V(z) is linear (or C-linear, respectively) for all x€ M.

(2) If 7: V— M and 7' V! — M are vector bundles, “a smooth vector-bundle homomorphism
f:V—V' is an isomorphism of vector bundles if n'o f =7, i.e. the diagram

v/ (8.5)

commutes, and f is a diffeomorphism (or equivalently, its restriction to each fiber is an isomor-
phism of vector spaces). If such an isomorphism exists, then V and V' are said to be isomorphic
vector bundles.
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Let f : V — V' be a vector-bundle homomorphism between vector bundles over the same space M
that covers idys as in (8.5). If

h:Vlg — UxR¥  and  KW:V'|y — UxRF
are trivializations of V and V' over the same open subset U C M, then there exists
frn: U — Matg xR s.t. W ofo h=Y(z,v) = (:U, fh/h(m)v) VozeU, veRF. (8.6)

Since the trivializations h and A’ are diffeomorphisms that cover V and V', respectively, a vector-
bundle homomorphism as in (8.5) is smooth if and only if the induced function

]Ehh’: U — Matp R

is smooth for every pair, h: V| — UxR¥ and h/: V| — UxR¥ | of trivializations of V and V'
over U.

Example 8.3. The tangent bundle 7: TR™ — R" of R” is canonically trivial. The map
TR" — R" x R", v — (7(v);v(m), ..., v(m)),
where 7;: R” — R are the component projection maps, is a vector-bundle isomorphism.

Lemma 8.4. The real line bundle V. — S* given by the infinite Mobius band of Example 7.3 is
not isomorphic to the trivial line bundle S' xR —s ST,

Proof. In fact, (V,S1) is not even homeomorphic to (S! xR, S!). Since
STXR —50(S') = S'xR — S'x0 = S'xR™ U S xRT,

the space S xR — S! is not connected. On the other hand, V —s¢(S') is connected. If M B is
the standard Mobius Band and S' C M B is the central circle, M B—S! is a deformation retract of
V —S1. On the other hand, the boundary of M B has only one connected component (this is the
primary feature of M B) and is a deformation retract of M B—S'. Thus, V —S' is connected as
well. .

Lemma 8.5. If 7: V— M is a real (or complex) vector bundle of rank k, V is isomorphic to the
trivial real (or complex) vector bundle of rank k over M if and only if V admits k sections sq, ..., Sk
such that the vectors si(x),...,sg(x) are linearly independent over R (or over C, respectively) in
Vi for all ze M.

Proof. We consider the real case; the proof in the complex case is nearly identical.
(1) Suppose ¢ : M xR¥ — V' is an isomorphism of vector bundles over M. Let e1,...,e; be the
standard coordinate vectors in R¥. Define sections s, ..., s, of V over M by

si(x) = ¢ (z, €) Vi=1,...,k, x € M.

Since the maps x — (z, ¢;) are sections of M x R¥ over M and % is a bundle homomorphism, the
maps s; are sections of V. Since the vectors (z,e;) are linearly independent in z x R* and 4 is
an isomorphism on every fiber, the vectors si(z),...,sg(z) are linearly independent in V, for all
x €M, as needed.
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(2) Suppose s1, ..., sy are sections of V such that the vectors s1(z),. .., si(z) are linearly indepen-
dent in V, for all x€ M. Define the map

v: MxRF — v by (x,c1y...,c) =c1s1(x) + ...+ cgpsp(z) € V.

Since the sections s1,...,s; and the vector space operations on V are smooth, the map h is
smooth. It is immediate that 7(¢(z, c)) =2 and the restriction of 1) to z xR* is linear; thus, 1 is
a vector-bundle homomorphism. Since the vectors s1(z),. .., si(z) are linearly independent in V,,
the homomorphism ¢ is injective and thus an isomorphism on every fiber. We conclude that 1 is
an isomorphism between vector bundles over M. ]

9 Transition Data

Suppose m: V — M is a real vector bundle of rank k. By Definition 7.1, there exists a collection
{(Ua, ha)}aca of trivializations for V' such that |J,c 4 Ua = M. Since (Uy, hy) is a trivialization
for V,

ho: Vg, — Uy xRF

is a diffeomorphism such that mjoh, =7 and the restriction hq: Vy; — 2 xR¥ is linear for all z € U,.
Thus, for all a, B€ A,

hap=haohy': (UaNUp) x R¥ — (UaNUg) x R

is a diffeomorphism such that moh,g =1, i.e. hog maps x xRF to zxRF, and the restriction of
hag to zxRF defines an isomorphism of xR with itself. Such a diffeomorphism must be given by

(z,v) — (2, gap(z)v) Vv e R,
for a unique element g, s(z) € GLgR (the general linear group of R¥). The map hap is then given by
hap(x,v) = (w,gaﬁ(m)v) Vo € UsNUg, veRF,

and is completely determined by the map go5: UaNUs — GLiR (and gop is determined by hqp).
Since hog is smooth, so is gag.

Example 9.1. Let 7: V — S! be the Mobius band line bundle of Example 7.3. If {(Ux, h+)} is
the pair of trivializations described in Example 7.3, then

if Imp<0
h_ohT U NU_ xR — U NU_ xR, (p,v) — (p,g_4(p)v) = (p,v), i Imp<0,
(p, —v), if Imp>0,

-1, if Imp>0;

where g+ U nU_ = S'—{£1} — GLi1R=R*, g¢g_,(p) = )
1, if Imp<0.
In this case, the transition maps g,g are locally constant, which is rarely the case.

Suppose {(Ua,ha)}aca is a collection of trivializations of a rank k vector bundle 7 : V — M
covering M. Any (smooth) section s: M — V of 7 determines a collection of (smooth) maps
{54: Uy —+RF} 4c 4 such that

hoos(z) = (z,50(x)) VaeUs, = sa(x)=gap(®)sg(z) YzeUsNUs,a,feA,  (9.1)
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where {gos}apea is the transition data for the collection of trivializations {hq}aca of V. Con-
versely, a collection of (smooth) maps {s4: Uy — RF}4e4 satisfying the second condition in (9.1)
induces a well-defined (smooth) section of 7 via the first equation in (9.1). Similarly, suppose
{(Uq, h,) }aea is a collection of trivializations of a rank &’ vector bundle 7’: V! — M covering M.
A (smooth) vector-bundle homomorphism f : V —s V' covering idy; as in (8.5) determines a
collection of (smooth) maps

{fo: Us—MatpkR}aea st hipofohy'(z,v) = (2, fa(z)v) V(z,0)€UsxR"  (9.2)
— fo(2)gas(x) = ghs(2) fa(z) z€UNUs,a,BEA,

where {g;,5}a,pe4 is the transition data for the collection of trivializations {hg,}aea of V'. Con-
versely, a collection of (smooth) maps as in (9.2) satisfying (9.3) induces a well-defined (smooth)

vector-bundle homomorphism f: V — V'’ covering id,s as in (8.5) via the equation in (9.2).

By the above, starting with a real rank k vector bundle 7: V — M, we can obtain an open cover
{Ua}aca of M and a collection of smooth transition maps

{9ap: UaNUs — GLkR} 4 4.
These transition maps satisfy:
(VBT1) gaa = I, since hoo =hoohy !t =id;
(VBT2) gapgsa = Ik, since hogohg, =id;
(VBT3) 90898+9~va = Ik, since hoagohgyohyq=id.

The last condition is known as the (Cech) cocycle condition (more details in Chapter 5 of Warner).
It is sometimes written as

ganga_olazgaom =1 Yag, a1, a0 € A.
In light of (VBT2), the two versions of the cocycle condition are equivalent.
Conversely, given an open cover {Ug}aeca of M and a collection of smooth maps
{90p: UanNUs — GLyR} 4 4

that satisfy (VBT1)-(VBT3), we can assemble a rank k vector bundle 7’: V' — M as follows. Let

V' = < |_| aanka>/ ~, where

acA
(B,x,v) ~ (a,x,gaﬁ(m)v) Va,eA xcU,NUg, veERF.

The relation ~ is reflexive by (VBT1), symmetric by (VBT2), and transitive by (VBT3) and (VBT2).
Thus, ~ is an equivalence relation, and V' carries the quotient topology. Let

q: Uaanka—)V' and 7V — M, |a,z,v] — z,
acA
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be the quotient map and the natural projection map (which is well-defined). If f€.A and W is a
subset of Ug xR¥, then

( 6><W |_| axhag(W where
acA

hag: (UaﬂUg) x RF — (UaﬂUﬁ) x R, hag(z,v) = (a:,gag(x)v).

In particular, if 3 x W is an open subset of 3 x Upg xR*, then ¢! (q(ﬁx W)) is an open subset of
LpeqaxUs xR*. Thus, ¢ is an open continuous map. Since its restriction

o = Q|a><Ua><Rk

is injective, (g (ax U, xR¥), g7 1) is a smooth chart on V' in the sense of Lemma 2.6. The overlap
maps between these charts are the maps h,g and thus smooth.! Thus, by Lemma 2.6, these charts
induce a smooth structure on V’. The projection map 7’: V' — M is smooth with respect to this
smooth structure, since it induces projection maps on the charts. Since

T =7 0gy: axU,xRF — U, c M,

the diffeomorphism ¢, induces a vector-space structure in V for each x € U,, such that the restric-
tion of ¢, to each fiber is a vector-space isomorphism. Since the restriction of the overlap map hqg
to x xR*, with z € UaNUg, is a vector-space isomorphism, the vector space structures defined on
V. via the maps ¢, and gg are the same. We conclude that 7': V/— M is a real vector bundle of
rank k.

If {Us}aea and {gaﬁ : UaNUg — GLkR}a,ﬁGA are transition data arising from a vector bundle
7: V — M, then the vector bundle V' constructed in the previous paragraph is isomorphic to V.
Let {(Ua, ha)} be the trivializations as above, giving rise to the transition functions g,g. We define

fiV—V" by  f)=|ah(v)] if 7(v) € U,
If 7(v) e UaNUg, then

[8,h5(v)] = [0 hap(hs(v)] = [0, ha(v)] € V7,

i.e. the map f is well-defined (depends only on v and not on «). It is immediate that 7’0 f=m.
Since the map .
g lofohyt: UyxRF — axU, xRF

is the identity (and thus smooth), f is a smooth map. Since the restrictions of o and hg to every
fiber are vector-space isomorphisms, it follows that so is f We conclude that f is a vector-bundle
isomorphism.

In summary, a real rank k£ vector bundle over M determines a set of transition data with values
in GLR satisfying (VBT1)-(VBT3) above (many such sets, of course) and a set of transition data
satisfying (VBT1)-(VBT3) determines a real rank-k vector bundle over M. These two processes
are well-defined and are inverses of each other when applied to the set of equivalence classes of
vector bundles and the set of equivalence classes of transition data satisfying (VBT1)-(VBTS3).

!Formally, the overlap map is (8 — a) X hag.
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Two vector bundles over M are defined to be equivalent if they are isomorphic as vector bundles
over M. Two sets of transition data

{gaﬁ}a,BGA and {ggﬂ}a,BGA’

with A consisting of all sufficiently small open subsets of M, are said to be equivalent if there exists
a collection of smooth functions {f,: Uy —> GLgR}4e4 such that

g(lxﬁ:fagaﬁfg_l’ Va,ﬁeA,2

i.e. the two sets of transition data differ by the action of a Cech 0-chain (more in Chapter 5
of Warner). Along with the cocycle condition on the gluing data, this means that isomorphism
classes of real rank k vector bundles over M can be identified with H L(M; GLgR), the quotient of
the space of Cech cocycles of degree one by the subspace of Cech boundaries.

Remark 9.2. In Chapter 5 of Warner, Cech cohomology groups, H™, are defined for (sheafs of)
abelian groups. However, the first two groups, H and H', generalize to non-abelian groups as
well.

If 7: V— M is a complex rank k vector bundle over M, we can similarly obtain transition data
for V' consisting of an open cover {Ua}aeca of M and a collection of smooth maps

{gag : UaﬂUg —)GLkC}a?BeA
that satisfies (VBT1)-(VBT3). Conversely, given such transition data, we can construct a complex

rank k vector bundle over M. The set of isomorphism classes of complex rank k vector bundles
over M can be identified with H'(M; GL;C).

10 Restrictions and Pullbacks

If N is a smooth manifold, M C N is an embedded submanifold, and 7w: V — N is a vector bundle
of rank k (real or complex) over N, then its restriction to M,

7 Vipy=rY(M) — M,

is a vector bundle of rank k over M. It inherits a smooth structure from V by the Slice Lemma
(Proposition 5.3) or the Implicit Function Theorem for Manifolds (Theorem 6.3). If {(Uq, hq)} is
a collection of trivializations for V'— N, then {(MNUq, halr-1(vnv,))} is a collection of trivial-
izations for V|, — M. Similarly, if {gas} is transition data for V — N, then {gas|mrv.nus} s
transition data for V|y — M.

If f: M — N is a smooth map and 7: V — N is a vector bundle of rank k, there is a pullback
bundle over M:
FV=MxyV={{pv)eMxV: f(p)=n(v)} =5 M. (10.1)

2According to the discussion around (9.3), such a collection {fa}aca corresponds, via trivializations, to an
isomorphism between the vector bundles determined by {gas}a,sca and {gns}ta,sca-
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Note that f*V is the maximal subspace of M xV so that the diagram

fvVEsvy

M —N

commutes. By the Implicit Function Theorem for Maps (Corollary 6.7), f*V is a smooth subman-
ifold of M x V. By construction, the fiber of 71 over p€ M is px V) C M xV, ie. the fiber of 7
over f(p)€N:

(f*V)p=pxVip  VpeM. (10.2)
If {(Uqy,ha)} is a collection of trivializations for V — N, then {(f~1(U,), haof)} is a collection
of trivializations for f*V — M. Similarly, if {g.g} is transition data for V'— N, then {gss0 f}

is transition data for f*V — M. The case discussed in the previous paragraph corresponds to f
being the inclusion map.

Lemma 10.1. If f: V — V" is a vector-bundle homomorphism covering a smooth map f: M —s N
as in (8.4), there exists a bundle homomorphism ¢: V — f*V' so that the diagram

A
1% ¢ Fv sy
\\\ % iﬂ-,
M ! N

commutes.
Proof. The map ¢ is defined by
p:V — MxV',  $v) = ((v), f(v)).
Since for=7o f,
¢(v) € V' =M xy V' ={(p,v)eMxV': f(p)=n"(v))}.

Since f*V' € M x V' is a smooth embedded submanifold, the map ¢ : V — f*V’ obtained
by restricting the range is smooth; see Proposition 5.5. The above diagram commutes by the
construction of ¢. Since f is linear on each fiber of V', so is ¢. O

If f: M — N is a smooth map, then dp,f: T,M — Ty, N is a linear map which varies smoothly
with p. It thus gives rises to a smooth map,

df: TM — TN, v — dr(y) f(v). (10.3)

However, this description of df gives no indication that df maps v € T,M to Ty N or that
this map is linear on each T,M. One way to fix this defect is to state that (10.3) is a bundle
homomorphism covering the map f: M — N, i.e. that the diagram

™ — Y 7N (10.4)
M ! N
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commutes. By Lemma 10.1, df then induces a vector-bundle homomorphism from T'M to f*I'N
so that the diagram

™ Y TN TN (10.5)
|
x % ; \LW,
M- oL - N

commutes. The triangular part of (10.5) is generally the preferred way of describing df. The
description (10.4) factors through the triangular part of (10.5), as indicated by the dashed arrows.
The triangular part of (10.5) also leads to a more precise statement of the Implicit Function The-
orem, which is rather useful in topology of manifolds; see Theorem 11.11 below.

If 7: V— N is a smooth vector bundle, f: M — N is a smooth map, and s: N —V is a bundle
section of V', then

frs: M — f*V, {f*s}(p) = (p,s(f(p))) € f'V=MxyV C MxV,

is a bundle section of f*V — M. If s is smooth, then f*s: M — M xV is a smooth map with
the image in M x V. Since M xnyV C M xV is an embedded submanifold, f*s: M — f*V is
a smooth map by Proposition 5.5. Thus, a smooth map f: M — N induces a homomorphism of

vector spaces
[ T(N; V) — T(M; f*V), s — f*s, (10.6)

which is also a homomorphism of modules with respect to the ring homomorphism
[P CF(N) — C*(M), g—rgof.

In the case of tangent bundles, the homomorphism (10.6) is compatible with the Lie algebra
structures on the spaces of vector fields, as described by the following lemma.

Lemma 10.2. Let f: M — N be a smooth map. If X1,Xs € VF(M) and Y1,Y2 € VE(N) are
smooth vector fields on M and N, respectively, such that df(X;)= f*Y;eT'(M; f*TN) fori=1,2,
then

df ([X1, Xa]) = f*[11, Ya).

This is checked directly from the relevant definitions.

The pullback operation on vector bundles also extends to homomorphisms. Let f: M — N
be a smooth map and nyy : V — N and my : W — N be vector bundles. Any vector-bundle
homomorphism ¢: V — W over N induces a vector-bundle homomorphism f*p: f*V — f*W
over M so that the diagram

v 1% (10.7)

\ fw—=
A

M
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commutes. The vector-bundle homomorphism f*p is given by
(frlp=idx ) (fV)p=px Vi) — (FW)p=px Wy, (p,0) — (p, ¢p(v)),

where ¢, is the restriction of ¢ to the fiber Vi, =7, (f(p)) over f(p)EN.

11 Subbundles and Quotient Bundles

Definition 11.1. Let M be a smooth manifold.

(1) A rank k' subbundle of a vector bundle w: V — M is a smooth submanifold V' of V' such that
|y V! — M is a vector bundle of rank k'.

(2) A rank k distribution on M is a rank k subbundle of TM — M.

A subbundle of course cannot have a larger rank than the ambient bundle; so rk V' < rkV in
Definition 11.1 and the equality holds if and only if V/=V. By Exercise 17, the requirement that
wlyr: V! — M is a vector bundle of rank k' can be replaced by the condition that V;=V,NV" is a
k’-dimensional linear subspace of V,, for all pe M.

If f: M — N is an immersion, the bundle homomorphism df as in (10.5) is injective and the
image of df in f*T'N is a subbundle of f*I'N. In the case M C N is an embedded submanifold and
f is the inclusion map, we identify 7'M with the image of d¢ in f*T'N =TN|y;. By Lemma 10.2,
if Y7,Y2€ VF(N) are smooth vector fields on N, then

Vi, Y|y, € VE(M) CT(M;TN|y) = [V1,Y2]|,, € VF(M) C D(M;TN|u).

s

Definition 11.2. Let N be a smooth manifold.

(1) A collection {1 : My —> N}aca of injective immersions from m-manifolds is a foliation
of N™ if the collection {Im o }aeca covers N and for every q € N there exists a smooth chart
V: V—=R™R"™™ around q such that the image under 1, of every connected subset U C 1 (V)
under 1 is contained in Y~ (R™xy) for some yER™™™ (dependent on U ).

(2) A foliation {to : My —> N}aca of N is proper if i is an embedding and the images of 4
partition N (their union covers M and any two of them are either disjoint or the same).

Thus, a foliation of N consists of regular immersions that cover N and are regular in a systematic
way (all of them correspond to horizontal slices in a single coordinate chart); see Figure 2.3. Since
manifolds are second-countable and the subset ¢ (V) C M,, in Definition 11.2 is open, to (15 (V)
is contained in at most countably many of the horizontal slices 1)1 (R™ x 7). The images of di, in
TN determine a rank m distribution D on N. By Lemma 10.2, if Y7, Yo € VF (V) are vector fields
on N, then

Y1,Y, e I'(N;D) C VF(N) = [Y1,Y3] € I'(V;D) C VF(N). (11.1)

Definition 11.3. Let DCTN be a distribution on a smooth manifold N. An injective immersion
t: M — N s integral for D if

ImdpL:DL(p) cT, )N VpeM.

(»
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R™—™m
L1 (M1) N V

LQ(MQ) Nnv R™

Figure 2.3: A foliation of N in a smooth chart V.

If t: M — N is an integrable injective immersion for a distribution D on N, then in particular
dim M =rkD.

If N admits a foliation {¢q : My —> N}aea by injective immersions integral to a distribution D
on N, then I'(N; D) C VF(N) is a Lie subalgebra. By Frobenius Theorem, the converse is also true.

Example 11.4. The collection of embeddings
lo: R — R"=R"xR"™™ | 14(x) = (z,), acR"™™,
is a proper foliation of R™ by m-manifolds. The corresponding distribution D C TR" is described by
D=R"x (R"x0) C R" x R" =TR".
Example 11.5. The collection of embeddings
Lot ST — g2t - ot La(ew) = e, ae St
is a proper foliation of S?"*! by circles. The corresponding distribution D C T'S?"*! is described by
D= {(p, irp): pe §2ntt, TER} c T8+ ¢ T(C”"'I‘SQ,Hr:l = §nFlycntt.
The embedded submanifolds of this foliations are the fibers of the quotient projection map
m: 8l g2ntl gl _ opn

of Example 1.10. This is an S'-bundle over CP™. In general, the fibers of the projection map
m: N — B of any smooth fiber bundle form a proper foliation of the total space N of the bundle.
The corresponding distribution D CT'N is then the vertical tangent bundle of 7:

D, = kerd,m C T,N VpeN.

Example 11.6. Let 7: V — M be a smooth vector bundle and D C TV the vertical tangent

bundle of 7 as in Example 11.5. For each pe M, let ¢,,: V, — V' be the inclusion of the fiber over p
and define

iV ={(v,w)eVXV: 7(v)=n(w)} — TV, i(v,w) = dytp(w) = %(v+tw) o € T,V.
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This map is linear on the fibers of 7*V, TV —V (i.e. linear in w above) and injective (since ¢, is an
immersion). If ¢: U —R™ is a smooth chart on M and (r, h): V|y — U xR¥ is a trivialization
of V,

h: Vv, — Vv x R”, fz(v,w) = (v,hg(w)),
H:TV|y, — Vg x R"xR*,  H(w) = ('(w), w(por), w(ha)),
are trivializations of the vector bundles 7*V —V and #’: TV — V. Since
Hoioh™: Vg xRF — V| x R™" xR, (v,w) — (v,0,w),

is a smooth map, it follows that 7 is a smooth injective bundle map over V. Since d,(i(v,w))=0
for all (v,w)en*V, ImiCD. Since 7*V and D are vector bundles over 7*V of the same rank k,
i: ™V — D is an isomorphism of vector bundles over (the total space of) V. In particular, there
is a short exact sequence

0— 7V -5 TV 5 2 TM — 0 (11.2)

of vector bundles over V.

Example 11.7. An example of a foliation, which is not proper, is provided by the skew lines on
the torus of the same irrational slope 7:

la: R — ST St 14(s) = (aeis,eins), aeStcc.

If n € Q, this foliation is proper. In either case, the corresponding distribution D on S!x 8! is
described by
Dieity oita) = d(tm)q({(r, nr) € R? :T(tl,tg)Rz: rER}),

where ¢: R2 — 5! x S! the usual covering map.

If V is a vector space (over R or C) and V' CV is a linear subspace, then we can form the quotient
vector space, V/V'. If W is another vector space, W/ CW is a linear subspace, and g: V— W is
a linear map such that g(V’) CW’, then g descends to a linear map between the quotient spaces:

g: VIV — W/W.

If we choose bases for V and W such that the first few vectors in each basis form bases for V'
and W', then the matrix for g with respect to these bases is of the form:

(A B
9=\ 0o bp )
The matrix for g is then D. If g is an isomorphism from V' to W that restricts to an isomorphism

from V' to W, then g is an isomorphism from V/V’ to W/W’. Any vector-space homomorphism
@: V—W such that V' C ker ¢ descends to a homomorphism ¢ so that the diagram

V2w

l 7

q Ve
o

P

V/V!
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comimutes.

If V/'CV is a subbundle, we can form a quotient bundle, V/V’/— M, such that
(V/V’)p:V;)/Vp' VpeM.

The topology on V/V' is the quotient topology for the natural surjective map ¢ : V.—V/V’. The
vector-bundle structure on V/V’ is determined from those of V' and V' by requiring that ¢ be a
smooth vector-bundle homomorphism. Thus, if s is a smooth section of V', then gos is a smooth
section of V/V’; so, there is a homomorphism

L(M;V) — T(M;V/V'), s —>qos,
of C°°(M)-modules. There is also a short exact sequence® of vector bundles over M,
0—V —Vv-Lv/iv —o,

where the zeros denote the zero vector bundle Mx0— M. We can choose a system of trivializations
{(Uasha)}aca of V such that

ha(V'[0,) = Ua x (RF' x0) € Uy xR Vac A (11.3)

Let g : RF — R¥* be the projection onto the last (k—k’) coordinates. The trivializations for
V/V' are then given by {(Ua,{id X g} 0 hqa)}. Alternatively, if {gog} is transition data for V/
such that the upper-left &’ x k’-submatrices of g, correspond to V' (as is the case for the above
trivializations hy) and gag is the lower-right (k—k')x(k—k") matrix of g,s, then {gns} is transition
data for V/V'. Any vector-bundle homomorphism ¢ : V. — W over M such that ¢(v) =0 for
all v €V’ descends to a vector-bundle homomorphism ¢ so that ¢ = @oq. We leave proofs of the
following lemmas as an exercise.

Lemma 11.8. If f: M — N is a smooth map and W, W' — N are smooth vector bundles,
Fr(W/W') = (fW)/(f*W')
as vector bundles over M.

Lemma 11.9. Let V— M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A vector-bundle homomorphism f:V — W covering f as in (8.4) and vanishing
on a subbundle V' CV induces a vector-bundle homomorphism

vV —w
covering f; this induced homomorphism is smooth if the homomorphism f 18 smooth.

If ©: X — M is an immersion, the image of d¢ in +*T'M is a subbundle of (*T'M. In this case, the

quotient bundle,
Nyt = L*TM/ImdL — X,

3exact means that at each position the kernel of the outgoing vector-bundle homomorphism equals the image of
the incoming one; short means that it consists of five terms with zeros (rank 0 vector bundles) at the ends
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is called the normal bundle for the immersion ¢. If X is an embedded submanifold and ¢ is the
inclusion map, T'X is a subbundle of (*T'M =T M |x and the quotient subbundle,

NuX =Ny =0TM /Inde =TM|x /TX — X,
is called the normal bundle of X in M; its rank is the codimension of X in M.

The following lemma provides a geometric way to identify the normal bundle to a submanifold. Its
converse is known as the Tubular Neighborhood Theorem; see [3, (12.11)] for the general case and
Proposition 16.9 below for the compact case.

Lemma 11.10. Suppose X is an embedded submanifold of M and V — X is a vector bundle. If
there exists a diffeomorphism between neighborhoods W and W' of X in'V and in M, respectively,

fwW—w s.t. f(p)=p VpeX,

then V is isomorphic to the mormal bundle Ny X of X in M. If in addition, M is a complex
manifold, X is a complex submanifold, V — X is a complex vector bundle, and the linear map

dpf: T,V/T,X — T,M/T,X

is C-linear for allpe X (as is the case if f is a holomorphic map between complex manifolds), then
V and Ny X are isomorphic as complex vector bundles.

Proof. The bundle map ¢ of Example 11.6 induces an isomorphism
V— NxV =TV|x/TX

of (complex) vector bundles over X; so, it is sufficient to show that NxV,NxM — X are
isomorphic vector bundles. If f is a diffeomorphism as above, the differential

df‘XS TV‘X — TM|X
is an isomorphism that restricts to the identity on TX. Thus, df|x induces an isomorphism
TV|x/TX — TM|x/TX = NuX (11.4)

of vector bundles over X. If V, TM, and TX are complex bundles and df|x is C-linear, then the
bundle isomorphism between the quotient bundles above is also C-linear. Combining (11.4) with
the first isomorphism, we obtain the lemma. O

If f: M — N is a smooth map and X C M is an embedded submanifold, the vector-bundle
homomorphism df in (10.5) restricts (pulls back by the inclusion map) to a vector-bundle homo-
morphism

df\X:TM|X—>(f*TN){X

over X, which can be composed with the inclusion homomorphism T'X — T M| x,

X — TM|x X (p7TN)|
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If in addition Y C N is an embedded submanifold and f(X) C Y, the above sequence can be
composed with the f*-pullback of the projection homomorphism ¢: TN|y — NNY,

dflx

TX — TM|x L5 (f7N)|, 25 prany . (11.5)

This composite vector-bundle homomorphism is 0, since d, f(v) € Tf(,)Y for all z € X. Thus, it
descends to a vector-bundle homomorphism

df: NuX — f*NyY (11.6)

over X. If fMyY as in (6.1), then the map TM|x — f*NyY in (11.5) is onto and thus the
vector-bundle homomorphism (11.6) is surjective on every fiber. Finally, if X = f~1(Y), the ranks
of the two bundles in (11.6) are the same by the last statement in Theorem 6.3, and so (11.6) is an
isomorphism of vector bundles over X. Combining this observation with Theorem 6.3, we obtain
a more precise statement of the latter.

Theorem 11.11. Let f: M — N be a smooth map and Y C N an embedded submanifold. If
fANY as in (6.1), then X = f~1(Y) is an embedded submanifold of M and the differential df
induces a vector-bundle isomorphism

NuX F*(NNY) (11.7)
\ /

Since the ranks of Ny X and f*(NyY) are the codimensions of X in M and Y in N, respectively,
this theorem implies Theorem 6.3. If Y ={q} for some ¢€ N, then NyY is a trivial vector bundle
and thus so is Ny X ~ f*(NyY). For example, the unit sphere S™ C R™*! has trivial normal
bundle, because

Sm = (1), where f:R™ — R, f(z)=|z%
A trivialization of the normal bundle to S™ is given by
TR™/TS™ — S xR, (x,v) — (z,z-v).

Corollary 11.12. Let f: X — M and g: Y — M be smooth maps. If fMyrg as in (6.5), then
the space

XxyY ={(z,y)eXxY: f(z)=g(y)}

18 an embedded submanifold of X XY and the differential df induces a vector-bundle isomorphism

d(form d(gom
Ny (X x 3 V) —ImHAGm)_ o euppg — oz g* T (11.8)
XXMY

Furthermore, the projection map m1=7nx: X XY — X is injective (immersion) if g: Y — M
is injective (immersion).

This corollary is obtained by applying Theorem 11.11 to the smooth map
fxg: XxY — MxM.

All other versions of the Implicit Function Theorem stated in these notes are special cases of this
corollary.
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12 Direct Sums and Duals

If V and V' are two vector spaces, we can form a new vector space, VAV’ =V xV’, the direct sum
of V and V’. There are natural inclusions V, V' — V@&V’ and projections V@V’ — V, V', Linear
maps f: V—W and f': V/— W' induce a linear map

fof:veV — Waoew'.

If we choose bases for V., V!, W, and W’ so that f and f’ correspond to some matrices A and D,
then with respect to the induced bases for V@V’ and Wa W/,

ea(15)

If 7: V— M and 7’: V' — M are smooth vector bundles, we can form their direct sum, VoV,
so that
(VaeV),=V,aV, VpeM.

The vector-bundle structure on V&V’ is determined from those of V and V' by requiring that
either the natural inclusion maps V, V' — V@V’ or the projections V@V’ — V, V' be smooth
vector-bundle homomorphisms over M. Thus, if s and s’ are sections of V and V', then s®s’ is a
smooth section of V@ V' if and only if s and s are smooth. So, the map

D(M;V)eD(M; V') — T(M; VeV,
(5,8") — 5@, {s®s'}(p) =s(p) @' (p) VpeM,

is an isomorphism of C°°(M)-modules. If {gos} and {g[z} are transition data for V' and V7,
transition data for V@&V is given by {gas® gfw}, i.e. we put the first matrix in the top left corner
and the second matrix in the bottom right corner. Alternatively,

axa VXV —s MxM
is a smooth vector bundle with respect to the product structures and
VoV =d(VxV), (12.1)
where d: M — M x M, d(p) = (p,p) is the diagonal embedding.

The operation @ is easily seen to be commutative and associative (the resulting vector bundles are
isomorphic). If 7o=M — M is trivial rank 0 bundle,

T®VxV
for every vector bundle V. — M. If n€Z=0, let

nWw=Vo..eV;
—_———

n

by convention; 0V =75. We leave proofs of the following lemmas as an exercise.
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Lemma 12.1. If f: M — N is a smooth map and W, W' — N are smooth vector bundles,
fFrwew)=(fw)e (W)
as vector bundles over M.

Lemma 12.2. Let V,V' — M and W,W' — N be vector bundles over smooth manifolds and
f: M — N a smooth map. Vector-bundle homomorphisms

fV—W  and f:V —W
covering f as in (8.4) induce a vector-bundle homomorphism
fof - vev — waew’
covering f; this induced homomorphism is smooth if and only z'ff and f’ are smooth.

If V, V' — M are vector bundles, then V' and V' are vector subbundles of V@ V', It is immediate
that
VeV V=V and (VeV)/V' =V.

These equalities hold in the holomorphic category as well (i.e. when the bundles and the base
manifold carry complex structures and all trivializations and transition maps are holomorphic).
Conversely, if V' is a subbundle of V', by Section 14 below

VaV/iVieV

as smooth vector bundles, real or complex. However, if V and V' are holomorphic bundles, V' may
not have the same holomorphic structure as (V/V')&V’ (i.e. the two bundles are isomorphic as
smooth vector bundles, but not as holomorphic ones).

If V is a vector space (over R or C), the dual vector space is the space of the linear homomorphisms
to the field (R or C, respectively):

V* = Homg (V,R) or V* = Homc(V, C).
A linear map g: V — W between two vector spaces induces a dual map in the “opposite” direction:
g W — V¥, {g*(L)}(v) =L(g(v)) VLeW* veV.

If V=RF and W =R", then ¢ is given by an n x k-matrix, and its dual is given by the transposed
k X n-matrix.

If m: V— M is a smooth vector bundle of rank k (say, over R), the dual bundle of V' is a vector
bundle V* — M such that
V)=V, VpeM.

The vector-bundle structure on V* is determined from that of V' by requiring that the natural map

VeV =V xyV* —R(or C),  (v,L) — L(v), (12.2)
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be smooth. Thus, if s and v are smooth sections of V and V*,

P(s): M —R,  {i(s)}p) = {v(p)}(s(p)).

is a smooth function on M. So, the map
D(M; V) x T'(M;V*) — C*(M), (s,9) — ¥(s),

is a nondegenerate pairing of C°°(M)-modules. If {g,g} is transition data for V, i.e. the transitions
between smooth trivializations are given by

haohgl: UaNUg x RF — UaNUg x R*, (p,v) — (p, gaﬂ(p)v),
the dual transition maps are then given by
UaNUgz x RF — UaNUg x R*, (p,v) — (p, gag(p)trv).

However, these maps reverse the direction, i.e. they go from the a-side to the S-side. To fix this
problem, we simply take the inverse of g,s(p)™:

UaNUs x R¥ — U,nUs x RE, (p,0) — (p, {gap(p)™} 1v).

So, transition data for V* is {(ggﬁ)*l}. As an example, if V' is a line bundle, then g4 is a smooth
nowhere-zero function on U,NUg and (g*),g is the smooth function given by 1/g.3. We leave
proofs of the following lemmas as an exercise.

Lemma 12.3. If f: M — N is a smooth map and W — N is a smooth vector bundle,
[TV = (frw)
as vector bundles over M.

Lemma 12.4. Let V— M and W — N be vector bundles over smooth manifolds and f: M — N
a diffeomorphism. A vector-bundle homomorphism f:V — W covering f as in (8.4) induces a
vector-bundle homomorphism 3

ffowr —= v
covering f~1; this induced homomorphism is smooth if and only if the homomorphism [ is.
The cotangent bundle of a smooth manifold M, w: T M — M, is the dual of its tangent bundle,
TM — M, ie. T*M = (TM)*. For each p € M, the fiber of the cotangent bundle over p is the

cotangent space Ty M of M at p; see Definition 3.7. A section a: M —T*M of T*M is called a
1-form on M; it assigns to each p€ M a linear map

ap=a(p): T,M — R.
If in addition X is a vector field, then
a(X): M — R, {a(X)}(p) = ap(X(p)),

is a function on M. The section « is smooth if and only if a(X) € C>°(M) for every smooth vector
field X on M. If p=(x1,...,2p): U—R™ is a smooth chart, the sections

0 0
Ory 7 Oz, € VF(U)
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form a basis for VF(U) as a C*°(U)-module. Since
da:~i = 0;j Vi,g=1,2 m
pL 81;] - Y1 7]_ Y Syt I
dz;(X) € C*(U) for all X € VF(U) and {dpz;}; is a basis for Ty M for all pe U. Thus, dz; is a
smooth section of T*M over U and the inverse of the map

UxR™ — T*M|y, (p,c1,y... em) — adpzr + ... 4+ edpz,,

is a trivialization of T*M over U; see Section 8. By (4.16), this inverse is given by

TM|U—>U><R s U—><W(U),U<am>,,u<%)>,

where 7: T*"M — M is the projection map. Thus, a 1-form o on M is smooth if and only if for
every smooth chart @, =(x1,...,2n) : Uy —>R"™ the coefficient functions

0 0
Cl:a(@m)"“’cm: (axm) U — R, ap = c1(p)dpzr + ... + em(p)dpa, VpeU,

are smooth. The C°°(M)-module of 1-forms on M is denoted by E'(M).

13 Tensor and Exterior Products

If V and V' are two vector spaces, we can form a new vector space, V®V’, the tensor product of
Vand V. If g: V—W and ¢': V' — W' are linear maps, they induce a linear map

g4 VeV — WeW'.

If we choose bases {e;}, {e},}, {fi}, and {f;,} for V, V', W, and W, respectively, then {e;®e], }(;n)
and {f;® f,’n}(Lm) are bases for V@V’ and W @W’. If the matrices for g and ¢’ with respect to the
chosen bases for V, V', W, and W' are (gi;)i,; and (g,,,,)m,n, then the matrix for g®g¢’ with respect
to the induced bases for V&V’ and WeW” is (gi9n) (i,m),(j,n)- The rows of this matrix are indexed
by the pairs (7, m) and the columns by the pairs (j,n). In order to actually write down the matrix,
we need to order all pairs (i,m) and (j,n). If the vector spaces V and W are one-dimensional, g
corresponds to a single number g;;, while g®g¢’ corresponds to the matrix (gmn)m,» multiplied by
this number.

Ifr:V— M and n’: V' — M are smooth vector bundles, we can form their tensor product,
V@V’ so that
VeV, =VeV, VpeM.

The topology and smooth structure on V®V’ are determined from those of V' and V'’ by requiring
that if s and s’ are smooth sections of V' and V', then s ® s’ is a smooth section of V®V’. So,
the map

L(M;V)@T(M; V') — T(M; VaV'),
(5,8") — s®4, {s®s’}(p) =s(p) @ s (p) VpeM,
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is a homomorphism of C'°°(M)-modules (but not an isomorphism). If {gas} and {g,;} are transi-
tion data for V' and V', then transition data for V@V’ is given by {gag®g,s}, i.e. we construct a
matrix-valued function gas®g,,5 from {gas} and {g/ 5} as in the previous paragraph. If V' and V’
are line bundles, then g,s and g5 are smooth nowhere-zero functions on UaNUps and (9®g')ag is
the smooth function given by gasg,s-

The operation ® is easily seen to be commutative and associative (the resulting vector bundles are
isomorphic). If 71 — M is the trivial line bundle,

VsV
for every vector bundle V — M is a vector bundle. If n€Z™, let

VI=Veg..eV, V= =yrig..eV
——— ~—_——

n n

by convention, V®°=7;. We leave proofs of the following lemmas as an exercise.

Lemma 13.1. If f: M — N is a smooth map and W, W' — N are smooth vector bundles,
fFrwew)=(fw)e(f'W)

as vector bundles over M.

Lemma 13.2. Let V,V' — M and W,W' — N be vector bundles over smooth manifolds and
f: M — N a smooth map. Vector-bundle homomorphisms

f:V—WwW and [V —W
covering f as in (8.4) induce a vector-bundle homomorphism
fof veV — WaWw’
covering f; this induced homomorphism is smooth iff and f’ are smooth.

Lemma 13.3. Let V,V/ — M and W — N be vector bundles over smooth manifolds and f :
M — N a smooth map. A bundle map

VeV =VxyV —W

covering [ as in (8.4) such that the restriction of f to each fiber Vpx V), is linear in each component
induces a vector-bundle homomorphism

VeV —Ww
covering f; this induced homomorphism is smooth if the homomorphism f 18.

If V is a vector space and k is a nonnegative integer, we can form the k-th exterior power, AV,
of V. A linear map g: V— W induces a linear map

Afg: APV — AW
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If n is a nonnegative integer, let Si(n) be the set of increasing k-tuples of integers between 1 and n:

Sk(n) = {(il, L ,’ik)EZk: 1< <in<... < ’kan}
If {e;}j=1,..n and {fi}i=1,...m are bases for V and W, then {en}nesk(n) and {fu}uesk(m) are bases
for A¥V and A*W, where
€ segn) = Em N N Eny and f(m,..-,uk) = fuy Ao N fupe

If (gij)i=1,...m,j=1,..n is the matrix for g with respect to the chosen bases for V and W, then

(det ((gﬂrﬂs)m=1~-»’f))(umefk(m)xfk(n)

is the matrix for A*g with respect to the induced bases for A¥V and A*IW. The rows and columns of
this matrix are indexed by the sets Si(m) and Sk(n), respectively. The (i, n)-entry of the matrix
is the determinant of the k x k-submatrix of (gi;);; with the rows and columns indexed by the
entries of 1 and 7, respectively. In order to actually write down the matrix, we need to order the
sets Sp(m) and Si(n). If k=m=n, then A*V and A*W are one-dimensional vector spaces, called
the top exterior power of V' and W, with bases

{61/\.../\6k} and {fl/\.../\fk}.

With respect to these bases, the homomorphism A¥g corresponds to the number det (9ij)ij- fk>n
(or k>m), then A*V (or A¥W) is the zero vector space and the corresponding matrix is empty.

If 7: V— M is a smooth vector bundle, we can form its k-th exterior power, A¥V, so that
(A*V), = A%V,  VpeM.

The topology and smooth structure on A*V are determined from those of A*V by requiring that
if s1,..., s, are smooth sections of V, then sy A...Asy, is a smooth section of A¥V. Thus, the map

A (D(M;V)) — T(M; AFV),
(S1y--+,8K) —> SIA... NSk, {s1A...Asp}(p) = s1(p)A.. . Ask(p) VpeM,

is a homomorphism of C°°(M)-modules (but not an isomorphism). If {g,s} is transition data for
V, then transition data for AV is given by {Akgag}, i.e. we construct a matrix-valued function
Akgag from each matrix g,g as in the previous paragraph. As an example, if the rank of V' is k,
then the transition data for the line bundle AV, called the top exterior power of V, is {det GaB}-
By definition, AOV:T]lR is the trivial line bundle over M.

It follows directly from the definitions that if V — M is a vector bundle of rank k£ and L — M is
a line bundle (vector bundle of rank one), then

APP(VaL) =AM Y VeL) = A"V @ L= APV L.
More generally, if V, W — M are any two vector bundles, then

APP(VOW) = (APV) @ (APW)  and  AF(VeW)= @ AV)a(WW).
i+j=k

We leave proofs of the following lemmas as exercises.
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Lemma 13.4. If f: M — N is a smooth map, W — N is a smooth vector bundle, and k € Z=°,
JH(AMW) = AR (W)
as vector bundles over M.
Lemma 13.5. Let V— M be a vector bundle. If k,1€Z>°, the map
D(M; A*V) @ T(M; AWV) — T(M; A*V)
(s1,82) — s1/As2, {s1A\s2}(p) = s1(p)As2(p) VpeM,
is a well-defined homomorphism of C°°(M )-modules.

Lemma 13.6. Let V— M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A vector-bundle homomorphism f: V — W covering f as in (8.4) induces a vector-

bundle homomorphism 3
AR F ARV — AP

covering f; this induced homomorphism is smooth if the homomorphism f 18.

Lemma 13.7. Let V— M and W — N be vector bundles over smooth manifolds and f: M — N
a smooth map. A bundle homomorphism

fikV=Vxy.. xuV —W
N————
k

covering [ as in (8.4) such that the restriction off to each fiber Vpk s linear in each component
and alternating induces a vector-bundle homomorphism

fANV — W
covering f; this induced homomorphism is smooth if the homomorphism f is.

Remark 13.8. For complex vector bundles, the above constructions (exterior power, tensor prod-
uct, direct sum, etc.) are always done over C, unless specified otherwise. So if V' is a complex
vector bundle of rank k over M, the top exterior power of V' is the complex line bundle AV over M
(could also be denoted as A(’EV). In contrast, if we forget the complex structure of V' (so that it
becomes a real vector bundle of rank 2k), then its top exterior power is the real line bundle A2V
(could also be denoted as AZFV).

If M is a smooth manifold, a section of the bundle A*(T*M) — M is called a k-form on M. A
smooth nowhere-vanishing section s of A*P(T*M), i.e.

s(p) € AP(TEM) =0 VpeM,

is called a volume form on M; Corollary 15.2 below provides necessary and sufficient conditions for
such a section to exist. The space of smooth k-forms on M is often denoted by E¥(M), rather
than T'(M; AF(T*M)).
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14 Metrics on Fibers

Definition 14.1. A Riemannian metric in a smooth real vector bundle w: V — M s a smooth
map
() VxyV ={(v,w)eVxV: r(v)=r(w)} — R

such that the restriction
(,): VaxVy — R, (v,w) — (v,w),
is an inner-product on V, for every x€ M.

Thus, a Riemannian metric in 7: V — M is a smoothly varying family of inner-products in the
fibers V, ~R* of V. We leave a proof of the following lemma as an exercise.

Lemma 14.2. Let m: V— M be a real vector bundle and (,): VxpyV — R a map such that the
restriction
(,): VaxVy — R, (v,w) — (v,w),

s an inner-product on Vy for every x € M. The following statements are equivalent:
(1) the map (,) is a Riemannian metric in V;
(2) the section {,) of the vector bundle (V@V)* — M is smooth;

(3) if s1,s2 are smooth sections of the vector bundle V.— M, then the map

<31,32>:M—>R, p— <sl(p),32(p)>,
is smooth;

(4) if h: V]g — U xRF is a trivialization of V', then the matriz-valued function,
B: U — MatiR  s.t. <h*1(p, v),hil(p,w)> =v'B(p)w V¥ pel, v,weRF,
18 smooth.

Every real vector bundle admits a Riemannian metric. Such a metric can be constructed by
covering M by a locally finite collection of trivializations for V' and patching together inner-products
on each trivialization using a partition of unity; see Definition 14.3 below.

Definition 14.3. A smooth partition of unity subordinate to the open cover {Uy}aca of a smooth
manifold M is a collection {ny}aca of smooth functions on M with values in [0,1] such that

(PU1) the collection {suppna}aca is locally finite;

(PU2) suppno CU, for every a€ A;

(PU3) Z No = 1.

acA
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If (,) is a Riemannian metric on a vector bundle 7: V — M and W CV is a vector subbundle,
then the orthogonal complement

Wt = {veV: (v,w)=0 Vwe W}
of W in V is also a vector subbundle of V and
V=wWaew

Furthermore, the quotient projection map ¢g: V. — V/W induces a vector bundle isomorphism
from W+ to V/W so that
VaWae (V/W).

Definition 14.4. A Hermitian metric in a smooth complex vector bundle w: V — M is a smooth
map (,): VXV — C such that the restriction

(,): VoxV, — C, (v,w) — (v, w),
s a hermitian inner-product on V, for every xe€ M.

Thus, a Hermitian metric in 7: V — M is a smoothly varying family of Hermitian inner-products
in the fibers V,~CF of V. We leave a proof of the following lemma as an exercise.

Lemma 14.5. Let w: V. — M be a complex vector bundle and (,): V x pyV — C a map such
that the restriction
(,): VoxV, — C, (v,w) — (v,w),

is an inner-product on Vy for every x€ M. The following statements are equivalent:
(1) the map (,) is a Hermitian metric in V;
(2) the section (,) of the vector bundle (V@rV)* — M is smooth;
(3) if s1,82 are smooth sections of the vector bundle V.— M, then the map
<51,52>:M—>C, p— <sl(p),52(p)>,
is smooth;
(4) if h: V|y — U xCF is a trivialization of V, then the matriz-valued function,
B:U — Mat;C s.t. <h_1(p, U),h_l(p,w)> =v'B(p)w VY peU, v,weCF,
15 smooth.

Similarly to the real case, every complex vector bundle admits a Hermitian metric. If (,) is a
Hermitian metric on a complex vector bundle 7w : V. — M and W C V is a complex vector
subbundle, then the orthogonal complement

wt= {veV: (v,w)=0 VwEWW(U)}
of W in V is also a complex vector subbundle of V' and

V=Waow.
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Furthermore, the quotient projection map ¢: V. — V/W induces a vector bundle isomorphism
from W+ to V/W so that V ~ W & (V/W).

If V— M is a real vector bundle of rank k£ with a Riemannian metric (,) or a complex vector
bundle of rank k with a Hermitian metric (,), let

SV ={veV:(vv)=1} — M

be the sphere bundle of V. In the real case, the fiber of SV over every point of M is S*~1.
Furthermore, if U is a small open subset of M, then SV|U%U><S]€_1 as bundles over U, i.e. SV is
an S*~1-fiber bundle over M. In the complex case, SV is an S%~!-fiber bundle over M. If V— M
is a real line bundle (vector bundle of rank one) with a Riemannian metric (,), then SV — M
is an SO-fiber bundle. In particular, if U is a small open subset of M, SV|y is diffeomorphic to
U x{+£1}. Thus, SV — M is a 2: 1-covering map. If M is connected, the covering space SV is
connected if and only if V is not orientable; see Section 15 below.

15 Orientations
If V is a real vector space of dimension k, the top exterior power of V, i.e.
APy = AFYV

is a one-dimensional vector space. Thus, APV —0 has exactly two connected components. An
orientation on V' is a component C of A*PV —0. If C is an orientation on V, then a basis {e;} for V'
is called oriented (with respect to C) if

et N...Neg €C.

If {f;} is another basis for V" and A is the change-of-basis matrix from {e;} to {f;}, i.e.

i=k
(fla"'ufk):(ela'”vek)A <~ f]:ZAlje’Lv
i=1

then
fiN A fre=(det A)es A... Neg.

Thus, two different bases for V' belong to the same orientation on V' if and only if the determinant
of the corresponding change-of-basis matrix is positive.

Suppose V — M 1is a real vector bundle of rank k. An orientation for V' is an orientation for each
fiber V, ~R¥, which varies smoothly (or continuously, or is locally constant) with x € M. This
means that if

h:V]y — UxRF

is a trivialization of V and U is connected, then h is either orientation-preserving or orientation-
reversing (with respect to the standard orientation of R¥) on every fiber. If V admits an orientation,
V is called orientable.

Lemma 15.1. Suppose V. — M is a smooth real vector bundle.
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(1) V is orientable if and only if V* is orientable.

(2) V is orientable if and only if there exists a collection {Uy, ho} of trivializations that covers M
such that
det gog: UsNUg — R,

where {gag} is the corresponding transition data.
(3) V is orientable if and only if the line bundle A**PV —s M is orientable.

(4) If V is a line bundle, V is orientable if and only if V is (isomorphic to) the trivial line
bundle M xR.

(5) If M is connected and V' is a line bundle, V is orientable if and only if the sphere bundle SV
(with respect to any Riemann metric on V') is not connected.

Proof. (1) Since A*P(V*) ~ (A*PV)* and a line bundle L is trivial if and only if L* is trivial, this
claim follows from (3) and (4).

(2) If V has an orientation, we can choose a collection {Uy, hq } of trivializations that covers M such
that the restriction of h, to each fiber is orientation-preserving (if a trivialization is orientation-
reversing, simply multiply its first component by —1). Then, the corresponding transition data
{gap} is orientation-preserving, i.e.

det gog: UsNUz — RT.
Conversely, suppose {U,, hqo} is a collection of trivializations that covers M such that
det gog: UoNUg — RT.
Then, if z €U, for some «, define an orientation on V, by requiring that
ho: Ve — X RF

is orientation-preserving. Since det gop is RT-valued, the orientation on V, is independent of «
such that x € U,. Each of the trivializations h,, is then orientation-preserving on each fiber.

(3) An orientation for V is the same as an orientation for APV since
APy = AtoP (AtOPV).

Furthermore, if {(Uy, hq)} is a collection of trivializations for V' such that the corresponding tran-
sition functions g, have positive determinant, then {(U,, A*Ph,)} is a collection of trivializations
for A*PV such that the corresponding transition functions A*Pg,3 = det(go3) have positive de-
terminant as well.

(4) The trivial line bundle M xR is orientable, with an orientation determined by the standard ori-
entation on R. Thus, if V' is isomorphic to the trivial line bundle, then V is orientable. Conversely,
suppose V is an oriented line bundle. For each x € M, let

Cr, C APV =V
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be the chosen orientation of the fiber. Choose a Riemannian metric on V and define a section s of
V' by requiring that for all x€ M

(s(z),s(z)) =1 and s(z) € Cy.

This section is well-defined and smooth (as can be seen by looking on a trivialization). Since it
does not vanish, the line bundle V is trivial by Lemma 8.5.

(5) If V is orientable, then V' is isomorphic to M xR, and thus
SV =S(MxR) =MxS>=MuM

is not connected. Conversely, if M is connected and SV is not connected, let SV be one of the
components of SV. Since SV — M is a covering projection, so is SV — M. Since the latter is
one-to-one, it is a diffeomorphism, and its inverse determines a nowhere-zero section of V. Thus,
V' is isomorphic to the trivial line bundle by Lemma 8.5. O

If V is a complex vector space of dimension k, V' has a canonical orientation as a real vector space
of dimension 2k. If {e;} is a basis for V' over C, then

{el,iel, .. .,ek,iek}

is a basis for V over R. The orientation determined by such a basis is the canonical orientation
for the underlying real vector space V. If {f;} is another basis for V over C, B is the complex
change-of-basis matrix from {e;} to {f;}, A is the real change-of-basis matrix from

{el,iel,...,ek,iek} to {fl,ifl,...,fk,ifk},

then
det A = (det B)det B € R™.

Thus, the two bases over R induced by complex bases for V' determine the same orientation for V.
This implies that every complex vector bundle V — M is orientable as a real vector bundle.

A smooth manifold M is called orientable if its tangent bundle, TM — M, is orientable.
Corollary 15.2. Let M be a smooth manifold. The following statements are equivalent:
(1) M s orientable;

(2) the bundle T*M — M is orientable;

(8) M admits a volume form;

(4) there exists a collection of smooth charts {(Uy, 9a)}aca that covers M such that

det j((paowgl)z >0 Vaeeps(UaNUp), a, B A.

Proof. The equivalence of the first three conditions follows immediately from Lemma 15.1. If
{(Ua, ¥a)}aca is a collection of charts as in (4), then

ha=@¢a: TM|y, — Ug xR™, v — (ﬂ(v),v(goa)),
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is a collection of trivializations of TM as in Lemma 15.1-(2) for V=TM, since
gbaogégl: UsNUg x R™ — U,NUg x R™ | (p,v) — (p, j(gpaogpfgl)%(p)v),
haohg': UaNUg x R™ — UaNUg X R™,  (p,v) — (P, gap(p)v)-

In particular, if such a collection of charts exists, then T'M is orientable. Conversely, suppose
{(Uq;s ha)aca is a collection of trivializations of TM as in Lemma 15.1-(2), {(Uy, ¢a)}aca is any
collection of smooth charts on M, and U, is connected. In particular,

P © h;lz Uy xR™ — Uy xR™ | (p,v) — (p, {h;l(p,v)}(goa)),
is a smooth vector-bundle isomorphism. Thus, there is a smooth map
Ay: Uy — GL,R s.t. {(h Y (p,0)} (pa) = Aa(p)v YoeER™.

Since U, is connected, det A, does not change sign on U,. By changing the sign of the first
component of ¢, if necessary, it can be assumed that det A, (p) >0 for all pe U, and o€ A. Thus,

det j(apaogpgl)%(p) = det Ay (p) - det gos(p) - det Agl(p) >0 VpeU,NUg, a, B A.
Thus, the collection {(Uy, ¢a)}aca satisfies (4). O

An orientation for a smooth manifold M is an orientation for the vector bundle TM — M: a
manifold with a choice of orientation is called oriented. A diffeomorphism f: M — N between
oriented manifolds is called orientation-preserving (orientation-reversing) if the differential

dpf: TpM — Tf(p)N

is an orientation-preserving (orientation-reversing) isomorphism for every p € M; if M is connected,
this is the case if and only if d,, f is orientation-preserving (orientation-reversing) for a single point
peM.

If M is a smooth manifold, the sphere bundle
T S(AtOPT*M) — M

is a two-to-one covering map. By Lemma 15.1 and Corollary 15.2, if M is connected, the domain
of 7 is connected if and only if M is not orientable. For each p€ M,

7r—1(p) = {QIH _Qp} C S(AtOpT;M) - AtOpT;M

is a pair on nonzero top forms on 7,;M, which define opposite orientations of T,,M. Thus,
S(AYPT*M) can be thought as the set of orientations on the fibers of M; it is called the ori-
entation double cover of M.

Smooth maps f,g: M — N are called smoothly homotopic if there exists a smooth map

H:Mx[0,1]] — N  s.t. H(p,0) = f(p), H(p,1)=g(p) VpeM.

Diffeomorphisms f,g: M — N are called isotopic if there exists a smooth map H as above such
that the map
Ht:M—>Na p—>(pat)7

is a diffeomorphism for every t € [0, 1]. We leave proofs of the following lemmas as an exercise; both
can be proved using Corollary 15.2.
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Lemma 15.3. The orientation double cover of any smooth manifold is orientable.

Lemma 15.4. Let f,g: M — N be isotopic diffeomorphisms between oriented manifolds. If f is
orientation-preserving (orientation-reversing), then so is g.

16 Connections

Definition 16.1. A connection in a smooth real vector bundle V. — M is an R-linear map
V:I'(M;V) —T(M;T*"M®V) s.t.
V(fs)=df®s+ fVs VYV feC®(M), seT'(M;V). (16.1)

If f is a smooth function on M supported in a neighborhood U of x € M such that f(z)=1 and
sel’(M;V), then
Vs|, = V(f9)], — def@s(2) (16.2)

by (16.1). The right-hand side of (16.2) depends only on &|y. Thus, a connection V in V' is a
local operator, i.e. the value of Vs at a point © € M depends only on the restriction of s to any
neighborhood U of z.

Let hq: V]y, — Uy xRF be a trivialization of V and
Sails - Sask € D'(Uas V), Seii(x) = h;l(x, €;), (16.3)

be a frame for V. By definition of V, there exist
i=k i=k
07 € T(Un; T*M) s.t. Vsaj = Zsaﬁf‘j = ZG%@Sa;i Vi=1,...,k.
i=1 i=1

We will call

0 = (9'94

)ijet.n € T(Uai T* M @ MatgiR) (16.4)

the connection one-form of V for the trivialization h,. For an arbitrary section of V— U,, by (16.1)

j=k i=k Jj=k
V<ij3a;j> = Zsa;i(dfi+29%fj) . (165)
j=1 i=1 j=1

Conversely, any 0% as in (16.4) defines a connection in V|, — Uy by (16.5). Thus, every vector
bundle V — M admits a connection, since one can be obtained by patching together connections
over trivializations via partitions of unity.

If hg: V|y, — UgxR¥ is another trivialization of V and
he © hEl(iL‘, w) = (z, gap(x)w) V (2,w) €U,NUz x RE,
then by (16.3) and (16.5)

=k i—k =k
Sﬁ?l‘UamUﬁ = Z(gaﬁ)jlsa;j‘uam(]ﬁ = Vsﬁ;l‘UamUB = Z Sa;i((dgaﬁ)il + Z 05 (gaﬂ)jl>
j=1 i=1 j=1

= 0% = 9660“90s + 950dgas - (16.6)
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Conversely, if {(Uqa,ha)}aca is a collection of trivializations covering M with transition data

{9ap}ta,peA, a collection
[0° €T (Ua; T* M @Maty 4 R) b aca

satisfying (16.6) determines a connection in V' by (16.5).

If V is a connection in a vector bundle w: V — M, a smooth map f: X — M induces a connection
VDX V) = T(X; T X FV)

in the vector bundle f*V — X as follows. Let {(Uq,ha)}aca be a collection of trivializations
for V' covering M with transition data {gns}asca and {6%},ca the corresponding collection of
connection one-forms. Then, {(f~1(U,), f*ha)}aca is a collection of trivializations for the vector
bundle f*V — X covering X with transition data {f*g.g}agea, while

{0 € T(f ' (Ua); T* X @ MatyxxR) faca

is a collection satisfying

F20° = (F*980) (F70)(F*9ap) + (F980)A(f* gas)

since f*d = df*. Thus, the collection {f*#4}aca determines a connection V7 in f*V. The connec-
tion V/ is independent of the choice of the collection {(Uy, ha)}aca, Since any two such collections
can be joined into one, while V/ is completely determined by any subcollection covering M.

Recall from Section 4 that a smooth curve on M is a smooth map ~: (a,b) — M. For t € (a,b),

the tangent vector to a smooth curve v at ¢ is the vector

d

7/(t) - a’}/(t) = dt’)’(ael‘t) € T’y(t)Mﬂ

where e; =1€R! is the oriented unit vector. In particular, v/ €T'((a,b); v*TM).

Definition 16.2. Let M be a smooth manifold and V a connection in the tangent bundle TM — M
of M. A V-geodesic is a smooth curve

v:(a,b) — M s.t. VY| =0 Vte (a,b). (16.7)

If V is a connection in TM and p=(x1,...,2y): U—R"™ is a smooth chart on M, there exists
Ffj € C*(U) such that

k=m i=m

8% => ) Tidr® Vi=1,2,....,m.

k=1 i=1

For any smooth map ~: (a,b) — U C M, let

(’yla'”?’ym) = pory: ((I,b) _>Rm

By the construction of V7 above,

k=mi=m k=mi= 9
(o) = & e (o) - & S (i)

k=1 i=1 k=1 =1
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for all j =1,2,...,m. Thus, by (16.5),

k=m d27k i=m j=m N d’)/ d,}/ . 0
Y~ (1) = —= Ty )= ' ) 16.
V4 (t) 321 2 +;j§( ”07)<dt><dt> dt ® <’Y 8xk> (16.8)

Thus, if to€R and 7: (a,b) — M is a V-geodesic, then so is
¥: (a—to,b—to) — M, 3(t) = ~v(t+2o).

Lemma 16.3. Let V be a connection in the tangent bundle TM — M of a smooth manifold M.
For every veTM, there exists a V-geodesic v: (—e,€) —> M such that 7' (0)=v. If

’77:7 : (_676) — M
are two such V-geodesics, then v=-y.

Proof. Let o= (z1,...,2m): (U,p)— (R™,0) be a smooth chart on M. By (16.8), v: (—¢,e) — U
is a V-geodesic such that v(0)=p and +/(0)=v if and only if

12 i=m j=m s dvys
= -y T o (%) (%

i=1 j=1

Vk=1,2,....m. (16.9)
W(0) =0, Q| =y(ay)
t=0

This system of m second-order ODEs is equivalent to a system of 2m first-order ODEs. By the
Ezistence Theorem for First-Order Differential Equations [1, A.2], this system has a solution

(’yla--')’)/m): (7656) — R™

for some € > 0. By the Uniqueness Theorem for First-Order Differential Equations [1, A.1], any
two solutions of this initial-value problem must agree on the intersection of the domains of their
definition. O

Corollary 16.4. Let V be a connection in the tangent bundle TM — M of a smooth manifold M.
If a,a € R™, b,b € RT, and v : (a,b) — M and 7 : (a,b) — M are V-geodesics such that
7/(0)=7(0), then

Proof. The subset 3 ~
A= {te(a,b)N(a,b): yv(t)=7(t)} C (a,b) N (a,b)

is nonempty (as it contains 0) and closed (as v and 7 are continuous). Since (a,b) N (a,b) is
connected, it is sufficient to show that S is open. If

toe S  and (to—e€, to+e€) C (a,b) N (a,b),
define smooth curves
a,B:(—e,e) — M by  aft) =7(t+t0), B(t) =7(t+1o).
Since v and 4 are V-geodesics, so are a and f3; see the sentence preceding Lemma 16.3. Since
o/(0) =/ (to) =¥ (to) = £'(0),
a=p by Lemma 16.3 and thus (to—e, to+e€) C (a,b) N (a@,b). O
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Corollary 16.5. Let V be a connection in the tangent bundle TM — M of a smooth manifold M .
For every veTM, there exists a unique mazximal V-geodesic vy : (ay, by) — M such that ~,,(0)=
where a, € [—00,0) and by, € (0,00]. If t € (ay,by), then

(a'}’{;(t)7 b’yqu(t)) = (av—t, bv—t), ’Y'/Yz,;(t)(_t) = . (1610)

Proof. (1) Let {va: (aa,ba) —> M}aca be the collection of all V-geodesics such that 4/, (0) = v.
Define

(a0, bo) = [ (@arba)s 0t (a0,00) — M, 75(t) = a(t) VEE (da,ba), @€ A.
acA

By Corollary 16.4, 7,(t) is independent of the choice of « € A such that ¢ € (aq,bs). Thus, v, is
well-defined. It is smooth, since its restriction to each open subset (aq,bs) is smooth and these
subsets cover (a,,by). It is a V-geodesic, since this is the case on the open subsets (aq, by ). It is
immediate that ] (0)=v. By construction, 7, is a maximal V-geodesic.

(2) If te (ay, by), define
vi(ay—t,by—t) — M by  (7) =y (T+1).
By the sentence preceding Lemma 16.3, v is a V-geodesic. Furthermore,
Y (0) =), A (=t) =7(0) =

Thus, by the first statement of Corollary 16.5,

(@02 ) 2 (@0 =800 =0, gl gy =7 = 1€ (agy byy)s Yy (D) =

= (@wbo) = (ay, 00y, 0) 2 (a0 +H by )
This confirms (16.10). O
If V is a connection in the tangent bundle TM — M of a smooth manifold M and t€R, let
Domy(V) = {veTM: te(ay,by)}, Ui Domy (V) — TM, W (v) =~ (t).

Proposition 16.6. If V is a connection in the tangent bundle w: TM — M of a smooth mani-
fold M, then

(1) Domg(V)=TM, expy=idryr, M CDomy(V) for all teR, and

TM = U Domy(V) = U Domy(V
>0 <0

(2) for all s,teR, Vepy=V,0U;: Dom(\I/So\I/t):\I/t_l(Doms(V)) —TM;
(3) for allveTM, there exist an open neighborhood U of v in TM and e ER™ such that the map
U: (—€,e)xU — TM, (t,0") — U, (V) = ~L(t), (16.11)

1s defined and smooth;
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(4) for all teR, Dom(V) C TM is an open subset;
(5) for all teR, V;: Domy(V) — Dom_+(V) is a diffeomorphism with inverse V_;.

Proof. (1) By Lemma 16.3, for each v €T M there exists a V-geodesic v: (—¢,€) — M such that
7'(0) =v. Thus, v € Dom/5(V) C Domg(V); this implies the first and last claims in (1). For the
third claim, note that any constant map R — M is a V-geodesic. The second claim follows from
the requirement that Wy(v)=+,(0)=v for all ve T M.

(2) Since Dom(¥,)=Dom,(V), Dom(¥,0¥;) =V, ! (Dom,(V)). If v€ ¥, ! (Dom,(V)),

s € (aw,w): buuw) = (@y 0, by 0)-
Thus, s+t € (ay, b,) by (16.10) and ¥; ! (Dom,(V)) € Dom(¥, ;). Define

Vi (@w, () bwyw)) — TM by (1) = (T+t);
by (16.10), v, (7+t) is defined for all 7€ (ay,(v), by, (v)). By the sentence preceding Lemma 16.3, ~
is a V-geodesic. Furthermore, v'(0)=",(t)=W;(v). Thus, by Corollary 16.5, 7=y, () and so
Ueii(v) = y(s+t) =v(s) = ’yq,(v)(s) = \IIS(\IIt(v))

for all s€ (ay, (), b\Ilt(v))'

(3) As in the proof of Lemma 16.3, the requirement for a smooth map ~: (a,b) — M to be
a V-geodesic with 7/(0) = v corresponds to an initial-value problem (16.9) in a smooth chart
around 7(v). Thus, the claim follows from the smooth dependence of solutions of (16.9) on the
parameters [1, A.4].

(4) Since Domy(V)=TM, it is sufficient to prove this statement for ¢ € R*. We consider the case
teRT; the case t €R™ is proved similarly. Let v € Dom;(V) and W C TM be an open neighborhood
of Uy(v)=~/(t) in TM. Since the interval [0,¢] is compact, by (3) and Lebesgue Number Lemma
(Lemma B.1.2), there exist € >0 and a neighborhood U of 7,(]0,t]) such that the map (16.11) is
defined and smooth. Let n€Z™ be such that t/n<e. We inductively define subsets W; CTM by

Wo =W, W, =W, (W)U = {, v} (Wip1) ¥i=0,1,...,n—1

By induction, W; CU is an open neighborhood of ~, (it/n), W; C \IJ;/; (Dom (¥ (,,—1—4)¢/n)), and thus
Vin—iytn = YimoVin_1-pm: Wi — U CTM

by (2). It follows that Wy CT'M is an open neighborhood of v in T'M such that Wy C Domy (V).

(5) By (16.10) and (2), Im ¥; = Dom_4(V) and ¥_, is the inverse of ¥;. If v € Dom;(V) and Wy
is a neighborhood of v in T'M as in the proof of (4), ¥¢|w, is a smooth map. Thus, ¥; is smooth
on the open subset Dom(V)CTM. O

Definition 16.7. Let V be a connection in the tangent bundle m: TM — M of M of a smooth
manifold M. The exponential map for V is the map

exp" : Dom; (V) — M, v— m(¥1(v)) =7 (1).
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Remark 16.8. A connection V in a vector bundle 7: V — M provides a splitting of the short
exact sequence (11.2), i.e. a vector-bundle homomorphism

jv: 7 TM — TV s.t. drm o jv = idpras
over (the total space of) V, as follows. If seI'(M; V), pe M, and weT,M, let
v (s(p), w) = dps(w) —1(Vys).

By a direct check in a trivialization, jv(fs(p),w)=jv(s(p),w) for any fe€ C>®(M) with f(p)=1.
Thus, the bundle homomorphism j is well-defined. A connection V in TM — M also determines
a smooth vector field Xy on T'M by

XV('U) :jv<vav) € Tv(TM>'

A smooth curve 7: (a,b) — M is a V-geodesic if and only if ': (a,b) — T'M is an integral flow
for vector field Xy on T'M; see Definition 17.1. Thus, Lemma 16.3, Corollaries 16.4 and 16.5, and
Proposition 16.6 are special cases of Lemma 17.2, Corollaries 17.3 and 17.4, and Proposition 17.7,
respectively. We include their proofs for the same of completeness, since the primary purpose of
Section 17 is completely independent of the primary purpose of this section.

By Proposition 16.6, expV is a smooth map from an open neighborhood of M in TM to M restricts
to the identity on M. By the construction of expV,

dpexpY = (idr, s, idr,ar) : Tp(TM) ~ T,M & T,M — T,M  VpeM (16.12)
under the canonical isomorphism T,(T'M) ~ T, M &T,M induced by the map ¢ of Example 11.6.

Proposition 16.9. If X is a compact submanifold of a smooth manifold M, there exists a diffeo-
morphism between neighborhoods W and W' of X in NxM and in M, respectively,

fwW—w s.t. flp)=p VpeX.

Proof. (1) Let V be a connection in the tangent bundle 7: TM — M and exp" : U — M its
exponential map, where U is a neighborhood of M in T'M. Let

TXt ={veTM|x: (v,w)=0 VweT X}

be the orthogonal complement of the subbundle TX C T'M|x with respect to a Riemannian met-
ric (,) in TM|x. Since TX+NU CU is a smooth submanifold, the restriction

exp: TX+*NU — M
is a smooth map which restricts to the identity on X. By (16.12),
dyexp: T,(TX*) = T,X 0T, X+ — T,M

is the inclusion map on each component and thus an isomorphism. By the Inverse Function
Theorem for Manifolds (Corollary 4.9), for each p € X there are neighborhoods U, and UI’) of p

in TX' and M, respectively, such that the restriction expV : Uy —>U]’3 is a diffeomorphism. Let

Uo=|JUp  Up={velp: (v,0)<1/k} Vk=1,2,...;
peX
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these are neighborhoods of X in TX*. Since exp is a local diffeomorphism on Uy, exp(Uy) C M
is an open subset. We show below that exp is injective on Uy, if k is sufficiently large and thus a
diffeomorphism from the neighborhood Uy, of X in TX" to the neighborhood exp(Ug) of X in M.
Since Nx M, TX+— X are isomorphic vector bundles, this implies the claim.

(2) Let vk, wy, € Uy, be two sequences such that vy #wy, but exp(vg) =exp(wy). Since X is compact,
after passing to subsequences if necessary, we can assume that vy — p and wr — ¢ for some
p,q € X. Since exp is injective on U, and v € U), for all k sufficiently large, wy & U, for all k
sufficiently large and thus p#q. Let Uzl) and Ué be disjoint neighborhoods of p and ¢ in M. Since
v € exp 1 (U}) and wy, € exp™(U)) for all k sufficiently large, exp(uvy) # exp(wy,) for such values
of k, contrary to the assumption. O

Exercises

1. Let m: V— M Dbe a vector bundle. Show that

(a) the scalar-multiplication map (7.1) is smooth;
(b) the space V x/V is a smooth submanifold of V' xV and the addition map (7.2) is smooth.

2. Let m: V. — M be a smooth vector bundle of rank k and {(Ug,ha)}aca a collection of
trivializations covering M. Show that a section s of 7 is continuous (smooth) if and only if the
map

So = Ta0hgos: Uy — R¥

where 79 : Uy xRF — R is the projection on the second component, is continuous (smooth) for
every a€ A.

3. Let m: V— M be a submersion satisfying (RVB1)-(RVB3) in Definition 7.1. Show that

(a) if s1,...,8,: U—V|y are smooth sections over an open subset U C M such that {s;(z)};
is a basis for V,, for all z€ U, then the map (8.2) is a diffeomorphism;

(b) m: V. — M is a vector bundle of rank k if and only if for every p € M there exist a
neighborhood U of p in M and smooth sections sy, ..., sx: U—V|y such that {s;(p)}; is
a basis for V.

4. Show that the two versions of the last condition on f in (2) in Definition 8.2 are indeed equiv-
alent.

5. Let M be a smooth manifold and X,Y, Z€ VF(M). Show that

(a) [X,Y] is indeed a smooth vector field on M and
[fX,gY] = flX, Y]+ f(Xg)Y —g(Y /)X  VfgeC®(M);
(b) [, is bilinear, anti-symmetric, and
(X, [V, Z]] + [V,[Z,X]] + [Z,[X,Y]] =0.

6. Verify all claims made in Example 7.5, thus establishing that the tangent bundle T'M of a
smooth manifold is indeed a vector bundle. What is its transition data?
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10.

11.

12.

13.

14.

15.

16.

Show that the tangent bundle T'S' of S! is isomorphic to the trivial real line bundle over S'.

. Show that the tautological line bundle v, — RP"™ is non-trivial for n>1.

. Show that the complex tautological line bundle 7, — CP" is indeed a complex line bundle as

claimed in Example 7.8. What is its transition data? Why is it non-trivial for n>17

Let q: M —s M be a smooth covering projection. Show that

(a) the map dg: M—Misa covering projection and a bundle homomorphism covering ¢ as
in (8.4);

(b) there is a natural isomorphism
VF(M) ~ VF(M)dq = {XGVF: dp, (X (p1)) =dp,q(X (p2)) Vp1,p2€ M s.t. q(pl):q(pg)}.
Let M be a smooth m-manifold. Show that

(TM1) the topology on T'M constructed in Example 7.5 is the unique one so that 7: T'M — M
is a topological vector bundle with the canonical vector-space structure on the fibers
and so that for every vector field X on T'M and smooth function f: U — R, where U
is an open subset of R, the function X (f): U — R is continuous if and only if X is
continuous;

(TM2) the smooth structure on 7'M constructed in Example 7.5 is the unique one so that
m: TM — M is a smooth vector bundle with the canonical vector-space structure on
the fibers and so that for every vector field X on T'M and smooth function f: U —R,
where U is an open subset of R, the function X (f): U — R is smooth if and only if X
is smooth.

Suppose that f: M — N is a smooth map and 7: V — N is a smooth vector bundle of rank &
with transition data {gng: UsNUg — GL,R}, gea. Show that

(a) the space f*V defined by (10.1) is a smooth submanifold of M xV and the projection
m: f*V — M is a vector bundle of rank k£ with transition data

{f*gaﬂ:gaﬁof: fﬁl(Ua)mfil(Uﬂ) — GLnR}a,BEA ;

(b) if M is an embedded submanifold of N and f is the inclusion map, then the projection
mo: f*V —V induces an isomorphism f*V — V|5 of vector bundles over M.

Let f: M —V be a smooth map and V' — N a vector bundle. Show that

(a) if V— N is a trivial vector bundle, then so is f*V — M;
(b) f*V — M may be trivial even if V— N is not.

Let f: M — N be a smooth map. Show that the bundle homomorphisms in diagrams (10.4)
and (10.5) are indeed smooth.

Verify Lemma 10.2.

Let f: M — N be a smooth map and ¢: V — W a smooth vector-bundle homomorphism
over N. Show that the pullback vector-bundle homomorphism f*p : f*V — f*W is also
smooth.
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17.

18.

19.

20.

21.
22,
23.

24.
25.
26.

Let m: V — M be a smooth vector bundle of rank k& and V' CV a smooth submanifold so that
V,=V,NV" is a k'-dimensional linear subspace of V,, for every p€ M. Show that

(a) for every pe M =so(M) there exist an open neighborhood U of p in V’ and smooth charts
0: U —R™"xR¥ and ¢:UNM —R™  st. tYor=moyp,

where 71: R x RF —R™ is the projection on the first component;
(b) V/CV is a vector subbundle of rank &’.

Let ¢ : V — W be a smooth surjective vector-bundle homomorphism over a smooth mani-
fold M. Show that
kerp = {veV: p(v)=0} — M

is a subbundle of V.

Let DCTM a rank 1 distribution on a smooth manifold M. Show that I'(M;D) C VF(M) is
a Lie subalgebra. Hint: use Exercise 5.

Let {to: My —> N}aca be a foliation of N™ by immersions from m-manifolds. Show that

D= ) | Imdpua TN
a€ApeEMy

is a subbundle of rank m.

Verify all claims made in Examples 11.4 and 11.5.

Verify all claims made in Example 11.7.

Let V — M be a vector bundle of rank k£ and V' CV a smooth subbundle of rank &’. Show that

(a) there exists a collection {(Uy, ha)}aca of trivializations for V' covering M so that (11.3)
holds and thus the corresponding transition data has the form

ga5:<3 I)IUaﬂUﬁﬂGLkR,

where the top left block is k' x k/;

(b) the vector-bundle structure on V/V’ described in Section 11 is the unique one so that the
natural projection map V —V/V’ is a smooth vector-bundle homomorphism;

(c) if ¢: V— W is a vector-bundle homomorphism over M such that ¢(v)=0 for all ve V’,
then the induced vector-bundle homomorphism @: V/V/— W is smooth.

Verify Lemmas 11.8 and 11.9.
Obtain Corollary 11.12 from Theorem 11.11.

Let f=(f1,..., fx) : R™ —R* be a smooth map, ¢ €R* a regular value of f, and X = f~1(q).
Denote by V f; the gradient of f;. Show that

TX ={(p,v) eXxR™: Vfil,v=0Vi=1,2,...,k}
under the canonical identifications TX C TR™|x and TR™ =R" xR"™. Use this description of
TX to give a trivialization of Ngm X.
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27.

28.

29.
30.

31.
32.

33.
34.

35.

36.
37.

Let V,V/ — M be smooth vector bundles. Show that the two constructions of V@V’ in
Section 12 produce the same vector bundle and that this is the unique vector-bundle structure
on the total space of
veV' = | | eV,
peEM
so that

(VBE@1) the projection maps V@V’ —V, V' are smooth bundle homomorphisms over M:;
(VBE2) the inclusion maps V, V' — V@V’ are smooth bundle homomorphisms over M.

Let 7y : V— M and my : W — N be smooth vector bundles and 7y, 7y : M XN — M, N
the component projection maps. Show that the total of the vector bundle

momyV e nyW — MxN
is VxW (with the product smooth structure) and ©=my X my .
Verify Lemmas 12.1 and 12.2.

Let M and N be smooth manifolds and wps, 7 : M x N — M, N the projection maps. Show
that dmys and dmy viewed as maps from T (M x N) to

(a) TM and T'N, respectively, induce a diffeomorphism T'(MxN) — TMxTN that commutes
with the projections from the tangent bundles to the manifolds and is linear on the fibers
of these projections;

(b) m3,TM and wTN, respectively, induce a vector-bundle isomorphism
T(MxN)— myTMo®nNTN.

Why are the above two statements the same?

Verify Lemmas 12.3 and 12.4.

Show that the vector-bundle structure on the total space of V* constructed in Section 12 is the
unique one so that the map (12.2) is smooth.

Verify Lemmas 13.1-13.3.

Show that the sets of isomorphism classes of real and complex line bundles form abelian group
under the tensor product.

Let V — M be a smooth vector bundle of rank k¥ and W C V' a smooth subbundle of V' of
rank k’. Show that
Ann(W) = {aEV;‘: a(w)=0YweW, pe M}

is a smooth subbundle of V* of rank k—k’.

Verify Lemmas 13.4-13.7.

Let m: V— M be a vector bundle. Show that there is an isomorphism
ARV — (AFV)*

of vector bundles over M.
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38.

39.
40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

Let Q be a volume form an m-manifold M. Show that for every p € M there exists a chart
(x1,...,@m): U—R™ around p such that

Qly =dz1 A ... Adzy,.

Verify Lemmas 14.2 and 14.5.

Show that every real vector bundle over a smooth manifold admits a Riemannian metric and
every complex vector bundle over a smooth manifold admits a Hermitian metric.

Let : L— M be a real line bundle over a smooth manifold. Show that L®2 ~ 7 as real line
bundles over M.

Let V,W — M be vector bundles. Show that

(a) if V' is orientable, then W is orientable if and only if VO W is;
(b) if V and W are non-orientable, then V@&W may be orientable or non-orientable.

Let M be a connected manifold. Show that every real line bundle L — M is orientable if and
only if 71 (M) contains no subgroup of index 2.

Let M and N be nonempty smooth manifolds. Show that M x NV is orientable if and only if M
and N are.

(a) Let p: M — RY be an immersion. Show that M is orientable if and only if the normal
bundle to the immersion ¢ is orientable.

(b) Show that the unit sphere S™ with its natural smooth structure is orientable.
Verify Lemmas 15.3 and 15.4.

(a) Show that the antipodal map on S” CR"! (i.e. x — —x) is orientation-preserving if n is
odd and orientation-reversing if n is even.

(b) Show that RP™ is orientable if and only if n is odd.
(c¢) Describe the orientable double cover of RP™ xRP™ with n even.

Let v, — CP"™ be the tautological line bundle as in Example 7.8. If P: C"*! — C is a
homogeneous polynomial of degree d >0, let

sp: CP"—~7, {sp(0)}(¢, v®) = P(v) Y (£,v) €y, C CP"xC"HL,
Show that
(a) sp is a well-defined holomorphic section of ~*®¢;

n_
(b) if s is a holomorphic section of ~*®?

polynomial P: C"*! — C of degree d;

with d > 0, then s = sp for some homogeneous

(c) the line bundle 42 — CP™ admits no nonzero holomorphic section for any de€Z*.

Let v, — CP"™ be the tautological line bundle as in Example 7.8. Show that there is a short
exact sequence

0 — CP"XC —» (n+1)y% — TCP" —» 0

of complex (even holomorphic) vector bundles over CP™.
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50.

51.

Suppose k<n and let 7, — CP* be the tautological line bundle as in Example 7.8. Show that

the map
1: CP* — cP?, [Xo, ..., X3] — [Xo,..., Xk,0,...,0],

n—k

is a complex embedding (i.e. a smooth embedding that induces holomorphic maps between the
charts that determine the complex structures on CP* and CP") and that the normal bundle to
this immersion, J,, is isomorphic to

=k =39 &
—_———
n—k
as a complex (even holomorphic) vector bundle over CP*. Hint: there are a number of ways of
doing this, including:
(i) use Exercise 49;
(ii) construct an isomorphism between the two vector bundles;
(ili) determine transition data for N, and (n—Fk)v;;
(iv) show that there exists a holomorphic diffecomorphism between (n — k)v} and a neighbor-

hood of ((CP¥) in CP", fixing +(CP¥), and use Lemma 11.10.

Let v, — CP"™ and APTCP™ — CP"™ be the tautological line bundle as in Example 7.8 and
the top exterior power of the vector bundle TCP"™ taken over C, respectively. Show that there

is an isomorphism
BTCP™ ~ 200t = o @~
—_——

n+1

of complex (even holomorphic) line bundles over CP™. Hint: see suggestions for Exercise 50.
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