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CHAPTER

EIGHT

INTEGRATION ON PRODUCT SPACES

This chapter is devoted to the proof and discussion of the theorem of Fubini
concerning integration of functions of two variables. We first present the theorem
in its abstract form.

Measurability on Cartesian Products

8.1 Definitions If X and Y are two sets, their cartesian product X x Y is the
set of all ordered pairs (x, y), with xe X and ye Y. If Ac X and B< VY, it
follows that 4 x B < X x Y. We call any set of the form 4 x B a rectangle
inX xY.

Suppose now that (X, &) and (Y, ) are measurable spaces. Recall that
this simply means that & is a ¢-algebra in X and 7 is a g-algebra in Y.

A measurable rectangle is any set of the form A x B, where 4 € & and
Be 7.

IfQ =R, U -+ U R,, where each R; is a measurable rectangle and R; N
R; = & for i # j, we say that Q € &, the class of all elementary sets.

& x 7 is defined to be the smallest o-algebra in X x Y which contains
every measurable rectangle.

A monotone class M is a collection of sets with the following properties:
IfA;e 0, B,e M A, < A;,,,B;2B;,,,fori=1,23 ...,and if

A=) A, B=ﬁ3,., (1)

e

]
-

L[}
-

then A € M and B € IN.
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IfEcX xY,xe X,ye Y, we define
E.={y: (x,y)eE}, FE ={x:(x,y)eE). Q)

We call E, and E” the x-section and y-section, respectively, of E. Note that
E.cY EcX.

8.2 Theorem If E€ ¥ x T, then E. € I and E’ € &, for every x € X and
yeY.

ProOOF Let Q be the class of all Ee€ & x 7 such that E, €  for every
xe X.IfE=Ax B, then E,=Bifxe A, E, = & if x ¢ A. Therefore every
measurable rectangle belongs to Q. Since 7 is a o¢-algebra, the following
three statements are true. They prove that Q is a g-algebra and hence that
Q=¥ %x7:

(@) X xYeQ.
(b) If E € Q, then (E°), = (E,), hence E° € Q.
(c) WE,eQ(i=1,23,..)and E = | E;, then E, = | J (E)),, hence E € Q.

The proof is the same for E”. /"

8.3 Theorem & x 7 is the smallest monotone class which contains all elemen-
tary sets.

PrROOF Let M be the smallest monotone class which contains &; the proof
that this class exists is exactly like that of Theorem 1.10. Since & x J is a
monotone class, we have M < ¥ x 7.

The identities

(Ay x By) n (A4, x By) = (A4, n A4;) X (B, N By),
(Ay x By) — (4, x By) =[(4, — 4;) x B;] U [(4; n 4;) x (B, — B,)]

show that the intersection of two measurable rectangles is a measurable rec-
tangle and that their difference is the union of two disjoint measurable rec-
tangles, hence is an elementary set. If P € & and Q € &, it follows easily that
PnQeé&and P— Q€ &. Since

PUQ=(P-0QuQ

and(P—- Q) n Q = &, wealsohave P U Q e §.

For any set P < X x Y, define Q(P) to be the class of all Q = X x Y such
that P—QeM Q—PeM and P U Q € M. The following properties are
obvious:

(a) Q € Q(P)if and only if P € Q(Q).
(b) Since M is a monotone class, so is each Q(P).
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Fix P € &. Our preceding remarks about & show that Q € Q(P) for all
0 € &, hence & = Q(P), and now (b) implies that MM < Q(P).

Next, fix 0 € M. We just saw that Q € Q(P) if P € &. By (a), P € Q(Q),
hence & = Q(Q), and if we refer to (b) once more we obtain M < Q(Q).

Summing up: If Pand Q € M, then P — Q e Mand P u Q € M.

It now follows that M is a g-algebrain X x Y:

() X xYeé& Hence X x Y e M.
(1) If Q@ € M, then Q° € M, since the difference of any two members of IM is
in M.
(iii) If P, e Mfori=1,2,3,...,and P =) P, put

Q.,=P,u---uP,.

Since M is closed under the formation of finite unions, Q, € M.
Since Q, < Q,+, and P =) Q,, the monotonicity of M shows that
P e M.

Thus 9 is a o-algebra, § « M <= & x 7, and (by definition) ¥ x I is
the smallest g-algebra which contains &. Hence M = & x 7. /]

8.4 Definition With each function f on X x Y and with each x € X we
associate a function f, defined on Y by f,(y) = f(x, y).

Similarly, if y € Y, f” is the function defined on X by f¥(x) = f(x, y).

Since we are now dealing with three g-algebras, &, 7, and & x I, we
shall, for the sake of clarity, indicate in the sequel to which of these three
g-algebras the word “ measurable ” refers.

8.5 Theorem Let f be an (& x T )-measurable function on X x Y. Then

(a) For each x € X, f, is a T -measurable function.
(b) ForeachyeY,f?isan ¥-measurable function.

ProoF For any open set V, put
0 ={(x,y):f(x, y) e V}.
Then Q € & x J,and
Q.= {y: /iy eV}

Theorem 8.2 shows that Q. e 7. This proves (a); the proof of (b) is
similar. "
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Product Measures

8.6 Theorem Let (X, &, y) and (Y, T, A) be a-finite measure spaces. Suppose
Qe xT.If

e(x) =AQ), ¥ = uQ’) (1)
for every x € X and y € Y, then ¢ is & -measurable, y is T -measurable, and
fq»du=fwdx, 2)
X Y

Notes: The assumptions on the measure spaces are, more explicitly, that g and 2
are positive measures on & and 7, respectively, that X is the union of countably
many disjoint sets X, with u(X,) < oo, and that Y is the union of countably
many disjoint sets Y,, with A(Y,,) < co.

Theorem 8.2 shows that the definitions (1) make sense. Since

AMQx) = ng(x, y)diy)  (x € X), ©)
Y

with a similar statement for p(Q”), the conclusion (2) can be written in the form
{ du(x) jxq(x, y) dAy) = J dA(y) J Xolx, y) du(x). (4)
X Y Y X

Proor Let Q be the class of all Q € & x Z for which the conclusion of the
theorem holds. We claim that Q has the following four properties:

(¢) Every measurable rectangle belongs to Q.

(b) 1Q, =cQ,=Qyc -, ifeach Q; e Q,andif Q =] Q;,then Q € Q.

(c) If {Q;} is a disjoint countable collection of members of Q, and if
Q=) Q. thenQeQ.

(d If y(A) < o and A(B) < 0,if Ax B2Q, 20, 2Q3> -, ifQ=[)0Q;
and Q, e Qfori=1,2,3,...,thenQ € Q.

IfQ=A4 x B,where 4 € &, Be 7, then

AMQ,) = AB)xalx) and u(Q”) = u(A)xs(y), (%)

and therefore each of the integrals in (2) is equal to u(A)A(B). This gives (a).
To prove (b), let @, and ; be associated with Q; in the way in which (1)
associates @ and Y with Q. The countable additivity of u and 4 shows that

@dx) > o(x), YY) (i ), (6)

the convergence being monotone increasing at every point. Since ¢; and ¥,
are assumed to satisfy the conclusion of the theorem, (b) follows from the
monotone convergence theorem.
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For finite unions of disjoint sets, (c) is clear, because the characteristic
function of a union of disjoint sets is the sum of their characteristic functions.
The general case of (c) now follows from (b). .

The proof of (d) is like that of (b), except that we use the dominated
convergence theorem in place of the monotone convergence theorem. This is
legitimate, since u(A) < oo and A(B) < co.

Now define

Om=0n(X,xY,) (mn=1,273..) 7

and let M be the class of all Q € & x J such that Q,,, € Q for all choices of
m and n. Then (b) and (d) show that M is a monotone class; (¢) and (c) show
that & < 9M; and since M = & X F, Theorem 8.3 implies that M = ¥ x 7.
Thus Q,,, € Q for every Q € & x J and for all choices of m and n. Since
Q is the union of the sets Q,,, and since these sets are disjoint, we conclude
from (c) that Q € Q. This completes the proof. 111/

8.7 Definition If (X, &, p) and (Y, 7, A) are as in Theorem 8.6, and if
Qe ¥ x 7, we define

(n x A(Q) = LA(QX) du(x) = L HQ) dA(y). ()

The equality of the integrals in (1) is the content of Theorem 8.6. We call
u x A the product of the measures u and A. That pu x 4 is really a measure
(i.e., that g4 x A is countably additive on &% x ) follows immediately from
Theorem 1.27.

Observe also that u x 4 is o-finite.

The Fubini Theorem

8.8 Theorem Let (X, &, p) and (Y, 7, A) be o-finite measure spaces, and let f
be an (¥ x T )-measurable function on X x Y.

(@) If0<f< oo,andif

w(x)=Jf,dl, t//(y)=Jf’du (xeX,yeY) (1)
Y x
then @ is &#-measurable,  is T -measurable, and
f¢d#='[ fd(uxl)=Jd/d1. 2
x X xy Y
(b) Iffis complex and if
P*(x) = J [flcdA and J(P* dp < oo, 3)
Y

x
then fe L'(u x A).
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(¢) Iffe L}ux A),thenf, € L}(2)for almost all x € X, f¥ € [}(y) for almost all
y € Y, the functions ¢ and , defined by (1) a.e., are in L'(n) and [}(2),
respectively, and (2) holds.

Notes: The first and last integrals in (2) can also be written in the more usual
form

Ld#(X) Jf (x, y) dA(y) = Jdl(y) f S(x, y) du(x). (4)
Y Y X

These are the so-called “iterated integrals” of f. The middle integral in (2) is often
referred-to as a double integral.

The combination of (b) and (c) gives the following useful result: If f is
(& x T )-measurable and if

Jdu(-r) j |/ (x, )| dA(y) < oo, ©)

then the two iterated integrals (4) are finite and equal.

In other words, “the order of integration may be reversed” for (¥ x )-
measurable functions f whenever f> 0 and also whenever one of the iterated
integrals of | /| is finite.

Proor We first consider (a). By Theorem 8.5, the definitions of ¢ and ¥
make sense. Suppose Q € & x 7 and f = yo. By Definition 8.7, (2) is then
exactly the conclusion of Theorem 8.6. Hence (a) holds for all nonnegative
simple (¥ x 7 )-measurable functions s. In the general case, there is a
sequence of such functions s,, such that 0 <s, <s, <--- and s,(x, y)—
S(x, y) at every point of X x Y. If ¢, is associated with s, in the same way in
which ¢ was associated to f, we have

J(p,,d,u:J‘ s, d(u x A) n=1,23,..) (6)
X XxY

The monotone convergence theorem, applied on (Y, 7, A), shows that ¢,(x)
increases to ¢(x), for every x € X, as n— o. Hence the monotone con-
vergence thcorem applies again, to the two integrals in (6), and the first
equality (2) is obtained. The sccond half of (2) follows by interchanging the
roles of x and y. This completes (a).

If we apply (a) to | f|, we sce that (b) is true.

Obviously, it is enough to prove (c) for real L'(u x A); the complex case
then follows. If fis real, (a) applics to f* and to f ~. Let ¢, and ¢, corre-
spond to f* and /'~ as ¢ corresponds to f in (1). Since f€ L'(u x 4) and
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f* <|f1, and since (a) holds for f *, we scc that @, € L'(u). Similarly, ¢, €
L}(). Since

fx=(f+)x_(f—)x (7)

we have f, € I!(}) for every x for which ¢@,(x) < 00 and @,(x) < co; since ¢,
and ¢, are in [}(u), this happens for almost all x; and at any such x, we have
@(x) = @,(x) — @,(x). Hence ¢ € L}(x). Now (2) holds with ¢, and f* and
with ¢, and f 7, in place of ¢ and f; if we subtract the resulting equations, we
obtain one half of (c). The other half is proved in the same manner, with f”
and y in place of f, and ¢. /1]

8.9 Counterexamples The following three examples will show that the various
hypotheses in Theorems 8.6 and 8.8 cannot be dispensed with.

(@) Let X =Y =[0, 1], p = A = Lebesgue measure on [0, 1]. Choose {4,} so

that 0 = 9, <, <, <'--, §,— 1, and let g, be a real continuous function
with support in (J,, J,+,), such that [§ g,(t) dt = 1,for n =1, 2,3, .... Definc

f(x,y) = Z [94(X) = o+ 1(x)]ga(¥)-

Note that at each point (x, y) at most one term in this sum is different from 0.
Thus no convergence problem arises in the definition of £ An easy computa-
tion shows that

1 1 1 1
J‘dxjf(x,y)dy=l¢0=J.dy [ Sf(x, y) dx,
o o o Jo

so that the conclusion of the Fubini theorem fails, although both iterated
integrals exist. Note that f is continuous in this example, except at the point

(1, 1), but that
1 1
f de |/ (x, )l dy = o
0 0

Let X =Y = [0, 1], u = Lebesgue measure on [0, 1], A = counting measure
onY,and putf(x, y)=1if x =y, f(x, y) = 0if x # y. Then

‘[fx y) du(x) = foydl (y) =

for all x and y in [0, 1], so that

fdl(y) [f (x, y)du(x) =0#1= [d#(X) [f (x, y) dA(y).
Y Jx Jx Jy

This time the failure is due to the fact that A is not o-finitc.

Observe that our function f is (¥ x J)-measurable, if & is the class of
all Lebesgue measurable sets in [0, 1] and  consists of all subsets of [0, 1].
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To sce this, note that f= y,, where D is the diagonal of the unit square.

Given n, put
=1
I, =|——,=
=[]

Q. =W, x1)u(, xI))u--u(l,xI)

and put

Then @, is a finitc union of measurable rectangles, and D = () Q,,.
In examples (a) and (b), the failure of the Fubini theorem was due to the fact
that cither the function or the space was “too big.” We now turn to the role
played by the requirement that f be measurable with respect to the o-algebra
S x T.

To pose the question more precisely, suppose u(X) = A(Y)=1,0<f< 1
(so that “bigness ™ is certainly avoided); assume f, is J -measurable and f” is
“-measurable, for all x and y; and assume ¢ is ¥-measurable and ¥ is
7 -measurable, where ¢ and ¢ are defined as in 8.8(1). Then 0 < ¢ < 1,
0 <y < 1, and both iterated integrals are finite. (Note that no refcrence to
product measures is needed to define iterated integrals.) Does it follow that
the two iterated integrals of fare equal?

The (perhaps surprising) answer is no.

In the following cxample (due to Sierpinski), we take

(X, &, W=(Y,7,4)=[0,1]

with Lebesgue measure. The construction depends on the continuum hypoth-
esis. It is a consequence of this hypothesis that there is a one-to-one mapping
J of the unit interval [0, 1] onto a well-ordered sct W such that j(x) has at
most countably many predecessors in W, for each x € [0, 1]. Taking this for
granted, let Q be the set of all (x, y) in the unit square such that j(x) precedes
j(») in W. For each x € [0, 1], Q, contains all but countably many points of
[0, 1]; for each y € [0, 1], Q’ contains at most countably many points of
[0, 17. If f = xq, it follows that f, and f” are Borel measurable and that

1

1
w(X)=j S(x, y)dy =1, w(y)=J S(x, ) dx =0
0

(]

for all x and y. Hence

Jldx f'f(x, Ndy=1#0= jldyj S(x, y) dx.
o Jo 0 0

Completion of Product Measures

8.10 If (X, &, p) and (Y, 7, A) arc complete measure spaces, it need not be true
that (X x Y, ¥ x 7, u x 2) is complete. There is nothing pathological about
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this phenomenon: Suppose that there exists an A € &, A # &, with u(4) = 0;
and suppose that there cxists a Bc Y so that B¢ 7. Then A x Bc A x Y,
(uxAA x Y)=0, but A x B¢ x 7. (The last assertion follows from
Theorem 8.2))

For instance, if 4 = A = m, (Lebesgue measurc on R'), let A consist of any
one point, and let B be any nonmeasurable sct in R'. Thus m; x m, is not a
complete measure; in particular, m; x m, is not m,, since the latter is complete,
by its construction. However, m, is the completion of m; x m,. This result gener-
alizes to arbitrary dimensions:

8.11 Theorem Let m, denote Lebesque measure on R*. If k=r +s, r>1,
s > 1, then my_is the completion of the product measure m, x m_.

Proor Let 4, and 9, be the o-algebras of all Borel scts and of all Lebesgue
measurable scts in R¥, respectively. We shall first show that

B, M, x M_c M, . (1)

Every k-cell belongs to 9, x IM,. The o-algebra generated by the k-cells is
B, . Hence 4, < M, x MW,. Next, suppose E € M, and F € IN,. It is easy to
see, by Theorem 2.20(b), that both E x R* and R" x F belong to 9,. The
same is true of their intersection E x F. It follows that M, x M, < M, .

Choose Q € M, x M. Then Q € M,, so there are scts P, and P, € &,
such that P, < Q < P, and m(P, — P,) = 0. Both m, and m, x m, are trans-
lation invariant Borel measurcs on R¥. They assign the same value to cach
k-cell. Hence they agree on %, , by Theorem 2.20(d). In particular,

(m, x m)Q — P,) < (m, x m)(P, — P,)=m(P, — P;)=0
and therefore

(m, x m)Q) = (m, x m)(P,) = my(P) = m(Q).

So m, x m, agrees with m, on M, x M, .
It now follows that 9, is the (m, x m)-completion of M, x M, and this
is what the theorem asscrts. 11/

We conclude this section with an alternative statement of Fubini’s theorem
which is of special interest in view of Theorem 8.11.

8.12 Theorem Let (X, %, 1) and (Y, 7, 1) be complete a-finite measure spaces.
Let (& x T)* be the completion of & x T, relative to the measure p x A. Let
S be an (¥ x T)*-measurable function on X x Y. Then all conclusions of
Theorem 8.8 hold, the only difference being as follows:

The 7 -measurability of f, can be asserted only for almost all x € X,
so that ¢(x) is only defined a.e. (] by 8.8(1); a similar statement holds for f*
and .
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The proof depends on the following two lemmas:

Lemma 1 Suppose v is a positive measure on a o-algebra N, M* is the com-
pletion of M relative to v, and f is an M*-measurable function. Then there
exists an M-measurable function g such that f = g a.e. [v].

(An interesting special case of this arises when v is Lebesgue measure on
R¥ and M is the class of all Borel sets in R*.)

Lemma 2 Let h be an (¥ x T )*-measurable function on X x Y such that
h=0 ae [ux A]. Then for almost all x € X it is true that h(x, y) =0 for
almost all y € Y, in particular, h, is T -measurable for almost all x € X. A
similar statement holds for h’.

If we assume the lemmas, the proof of the theorem is immediate: If fis as in
the thecorem, Lemma 1 (with v = u x 1) shows that f=g¢g + h, where h =0 ae.
[u x A] and g is (¥ x 7 )-measurable. Theorem 8.8 applies to g. Lemma 2 shows
that f, = g, a.c. [4] for almost all x and that /¥ = ¢” a.c. [u] for almost all y.
Hence the two iterated integrals of f, as well as the double integral, are the same
as those of g, and the theorem follows.

PROOF OF LEMMA 1 Suppose fis M*-measurable and £ > 0. There exist MM*-
measurable simple functions 0 = 55 <5, <5, <+ such that s,(x)-> f(x) for
each x € X, as n-»00. Hence /=) (s,4+, — $,). Since s,,, — s, is a finite
linear combination of characteristic functions, it follows that there are con-

stants ¢; > 0 and sets E; € 9* such that
f) = Yeigx)  (xeX)
i—1

The definition of M* (scc Theorem 1.36) shows that there are sets 4; € I,
B; € M, such that 4; < E; = B;and v(B; — 4,) = 0. Define

9(x) = Y cixalx)  (xeX).

Then the function ¢ is M-measurable, and g(x) = f(x), except possibly when
xelJ(E —A4)c= ) (B, — A4). Since v(B; — A4;) =0 for each i, we conclude
that g = fa.c. [v]. The general case (freal or complex) follows from this. ////

PrOOF OF LEmMMA 2 Let P be the set of all points in X x Y at which
h(x, y) #0. Then Pe (¥ x Z)* and (u x A)(P)=0. Hence there exists a
0 e.¥ x .7 such that P < Q and (u x 4)(Q) = 0. By Theorem 8.6,

J-l(Qx) du(x) = 0. (1)
X
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Let N be the set of all x e X at which A(Q,) > 0. It follows from (1) that
u(N) = 0. For every x ¢ N, A(Q,) =0. Since P, < Q. and (Y, 7, 1) is a com-
plete measure space, every subset of P, belongsto 7 if x ¢ N. If y ¢ P, then
h(y) = 0. Thus we sce, for every x ¢ N, that h, is 7 -measurable and that
h(y) = 0ae. [4]. 11/

Convolutions

8.13 It happens occasionally that one can prove that a certain set is not empty
by proving that it is actually large. The word “large™ may of course refer to
various properties. One of these (a rather crude one) is cardinality. An example is
furnished by the familiar proof that there exist transcendental numbers: There
are only- countably many algebraic numbers but uncountably many rcal
numbers, hence the set of transcendcental real numbers is not empty. Applications
of Baire's theorem are based on a topological notion of largeness: The dense G,'s
are “large” subsets of a complete metric space. A third type of largeness is
measure-theoretic: One can try to show that a certain set in a mcasure space is
not empty by showing that it has positive measure or, better still, by showing
that its complement has measure zero. Fubini’s theorem often occurs in this type
of argument.

For example, let f and g € L'(R'), assume f> 0 and g > 0 for thc moment,
and consider the integral

h(x)=‘r: S(x — t)g(t) dt (=00 < x < 0o0). (N

For any fixed x, the integrand in (1) is a measurable function with range in
[0, 0], so that h(x) is certainly well defined by (1), and 0 < h(x) < 0.

But is there any x for which h(x) < c0? Note that the integrand in (1) is, for
each fixed x, the product of two members of !, and such a product is not always
in L' [Example: f(x) = g(x) = 1/\/; if 0<x <1, 0 otherwise.] The Fubini
theorem will give an affirmative answer. In fact, it will show that h e [!(R"),
hence that h(x) < oo a.e.

8.14 Theorem Suppose f € L!(R"), g € L}(R"). Then

r |70x = Y)g(y) | dy < oo (m
for almost all x. For these x, define

w9 = [ 6= at) @

Then h € L'(R"), and
lhlly < 1S gl (3)



