

J. Munkres,

name. It still has not found a name on which everyone agrees. On historical grounds, some call it "Fréchet compactness"; others call it the "Bolzano-Weierstrass property." We have invented the term "limit point compactness." It seems as good a term as any; at least it describes what the property is about.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be a compact space. Given a subset A of X, we wish to prove that if A is infinite, then A has a limit point. We prove the contrapositive—if A has no limit point, then A must be finite.

So suppose A has no limit point. Then A contains all its limit points, so that A is closed. Furthermore, for each $a \in A$ we can choose a neighborhood U_a of a such that U_a intersects A in the point a alone. The space X is covered by the open set X - A and the open sets U_a ; being compact, it can be covered by finitely many of these sets. Since X - A does not intersect A, and each set U_a contains only one point of A, the set A must be finite.

EXAMPLE 1. Let Y consist of two points; give Y the topology consisting of Y and the empty set. Then the space $X = \mathbb{Z}_+ \times Y$ is limit point compact, for every nonempty subset of X has a limit point. It is not compact, for the covering of X by the open sets $U_n = \{n\} \times Y$ has no finite subcollection covering X.

EXAMPLE 2. Here is a less trivial example. Consider the minimal uncountable well-ordered set S_{Ω} , in the order topology. The space S_{Ω} is not compact, since it has no largest element. However, it is limit point compact: Let A be an infinite subset of S_{Ω} . Choose a subset B of A that is countably infinite. Being countable, the set B has an upper bound B in B, then B is a subset of the interval A of B, where A is the smallest element of B is compact. By the preceding theorem, B has a limit point B in B. The point B is also a limit point of A. Thus B is limit point compact.

We now show these two versions of compactness coincide for metrizable spaces; for this purpose, we introduce yet another version of compactness called *sequential* compactness. This result will be used in Chapter 7.

Definition. Let X be a topological space. If (x_n) is a sequence of points of X, and if

$$n_1 < n_2 < \cdots < n_i < \cdots$$

is an increasing sequence of positive integers, then the sequence (y_i) defined by setting $y_i = x_{n_i}$ is called a *subsequence* of the sequence (x_n) . The space X is said to be *sequentially compact* if every sequence of points of X has a convergent subsequence.

*Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:

- (1) X is compact.
- (2) X is limit point compact.
- (3) X is sequentially compact.

Proof. We have already proved that $(1) \Rightarrow (2)$. To show that $(2) \Rightarrow (3)$, assume that X is limit point compact. Given a sequence (x_n) of points of X, consider the set $A = \{x_n \mid n \in \mathbb{Z}_+\}$. If the set A is finite, then there is a point x such that $x = x_n$ for infinitely many values of n. In this case, the sequence (x_n) has a subsequence that is constant, and therefore converges trivially. On the other hand, if A is infinite, then A has a limit point x. We define a subsequence of (x_n) converging to x as follows: First choose n_1 so that

$$x_{n_1} \in B(x, 1)$$
.

Then suppose that the positive integer n_{i-1} is given. Because the ball B(x, 1/i) intersects A in infinitely many points, we can choose an index $n_i > n_{i-1}$ such that

$$x_{n_i} \in B(x, 1/i)$$
.

Then the subsequence x_{n_1}, x_{n_2}, \ldots converges to x.

Finally, we show that $(3) \Rightarrow (1)$. This is the hardest part of the proof.

First, we show that if X is sequentially compact, then the Lebesgue number lemma holds for X. (This would follow from compactness, but compactness is what we are trying to prove!) Let \mathcal{A} be an open covering of X. We assume that there is no $\delta > 0$ such that each set of diameter less than δ has an element of \mathcal{A} containing it, and derive a contradiction.

Our assumption implies in particular that for each positive integer n, there exists a set of diameter less than 1/n that is not contained in any element of A; let C_n be such a set. Choose a point $x_n \in C_n$, for each n. By hypothesis, some subsequence (x_{n_i}) of the sequence (x_n) converges, say to the point a. Now a belongs to some element A of the collection A; because A is open, we may choose an $\epsilon > 0$ such that $B(a, \epsilon) \subset A$. If i is large enough that $1/n_i < \epsilon/2$, then the set C_{n_i} lies in the $\epsilon/2$ -neighborhood of x_{n_i} ; if i is also chosen large enough that $d(x_{n_i}, a) < \epsilon/2$, then C_{n_i} lies in the ϵ -neighborhood of a. But this means that $C_{n_i} \subset A$, contrary to hypothesis.

Second, we show that if X is sequentially compact, then given $\epsilon > 0$, there exists a finite covering of X by open ϵ -balls. Once again, we proceed by contradiction. Assume that there exists an $\epsilon > 0$ such that X cannot be covered by finitely many ϵ -balls. Construct a sequence of points x_n of X as follows: First, choose x_1 to be any point of X. Noting that the ball $B(x_1, \epsilon)$ is not all of X (otherwise X could be covered by a single ϵ -ball), choose x_2 to be a point of X not in $B(x_1, \epsilon)$. In general, given x_1, \ldots, x_n , choose x_{n+1} to be a point not in the union

$$B(x_1, \epsilon) \cup \cdots \cup B(x_n, \epsilon),$$

using the fact that these balls do not cover X. Note that by construction $d(x_{n+1}, x_i) \ge \epsilon$ for i = 1, ..., n. Therefore, the sequence (x_n) can have no convergent subsequence; in fact, any ball of radius $\epsilon/2$ can contain x_n for at most *one* value of n.

Finally, we show that if X is sequentially compact, then X is compact. Let A be an open covering of X. Because X is sequentially compact, the open covering A has a Lebesgue number δ . Let $\epsilon = \delta/3$; use sequential compactness of X to find a finite