MAT 320: Introduction to Analysis, Spring 2019

Homework Assignment 9

Please read Ross’s Sections 23-26 thoroughly and before starting on the problem set below.
Optional supplementary reading: ppl143-158 of Rudin’s book

Problem Set 9 (due at the start of recitation on Wednesday, 4/24): 23.2*, Problems P-S
(below and next page); *answers only on 23.2 (8 in total)

Problem P

Suppose the radius of convergence of > a, 2" is RERT.

(a) Suppose a, >0 and the series converges for z= R. Show that the series converges for every
z€C with |z| <R.

(b) Give an example of a series that converges at z=1 and diverges at z=—1.
Problem R

Let X be a set, (Y,dy) be a complete metric space, and f, : X — Y be a uniformly Cauchy
sequence of functions.

(a) Show that the sequence f, converges uniformly to some function f: X — Y.

(b) Suppose in addition that dx is a metric on X and each f,, is continuous function from (X, dx)

to (Y,dy). Show that the sequence f,, converges uniformly to some continuous function f
from (X,dx) to (Y,dy).

Hint: A special case of (a) is HW6-13.3c. This problem is also related to Theorem 24.3, a more
general version of which was proved in class, and to Theorem 25.4.

Problem Q

Let X be a set and (Y, dy) be a metric space. A function f: X — Y is called bounded if f(X)CY
is a bounded subset (contained in some B (y)). Denote by B(X,Y) the set of bounded functions
from X to Y. Define

d:%(XvY)QHRv d(fag):igng(f(x)yg(:U))

(a) Show that d is well-defined (takes values in R) and is a metric on B(X,Y).

(b) Show that d is a complete metric on B(X,Y) if dy is a complete metric on Y.

Suppose in addition that dx is a metric on X. Let €B(X,Y) CB(X,Y) be the subset of continuous
bounded functions from (X, dx) to (Y, dy).

(c) Show that (the restriction of) the metric d on €B(X,Y) is complete if dy is a complete metric
onY.

(d) Suppose f, € €B(X,Y) is a sequence of uniformly continuous functions which converges to
a uniformly continuous function f € €B(X,Y) with respect to the metric d. Show that the
sequence of functions f,, is equicontinuous, i.e. for every e € R™ there exists § €R™ such that

dy(fn(x),fn(avl)) <€ VneN, z,2’ € X st. dy(x,2') < §;

thus,  depends only on €, not on n.



Problem S
Power series are typically used to “break” a function into a sequence of numbers (the Taylor and
Fourier coefficients of the function). However, sometimes it is useful to go in the opposite direction,

assembling a sequence of numbers into a function.

Let f,, be the n-th Fibonacci number defined recursively by
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Let
k=n k=n
Ap=> k=1+424..4n, B,=>» K =142+ 40> VnezZ.
k=1 k=1

(a) Give a recursive definition of the numbers A,,, B,, with n>0.

(b) Use mathematical induction and only the recursive definitions of f,, A,, B, to show that
f?'L?ATL7BnS5n fOI’ a.l] nz 0_

(c) Use the Absolute Convergence and Comparison Tests and only part (b) to show that the
power series

flx) = Z fnz", A(z) = ZAnz", B(x) = Z B,z",
n=0 n=0 n=0

converge if |x| < 1/6 (and thus determine smooth functions near x=0).
(d) Using only the recursive definitions of f,, Ay, By, show that
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Hint: You’ll need to use identities such as the following;:

i) G e

n=0 n=0

(e) Using only part (d), express f,, A,, and B,, explicitly in terms of n.
Hint: use (d) to solve for f, A, and B and expand them into Taylor series around =0 (partial
fractions might help in the case of f); compare the result with the definitions of f, A, and B
in (c).

Note: For f,, you should end up with a formula involving two square roots. There is a much
simpler way of finding an explicit formula for A,; so you can check your answer, but please deduce
this formula from (b). The answer for B,, can be confirmed using induction (or google).



