
MAT 319/320: Basics of Analysis
Sequences and Series (Review from Calculus C)

Extremely Important: sequences vs. series (do not mix them or their convergence/divergence
tests up!!!); what it means for a sequence or series to converge or diverge;

“2 limits” = “no limit” = “diverge”

Very Important: convergence/divergence tests for sequences and series

Important: limit rules for sequences and series; computing limits of convergent sequences and
sums of convergent series

A: Sequences

A.1 A sequence is an infinite string of numbers. It can be specified in several ways:

• list the numbers; for example, −1, 1/2,−1/6, 1/24,−1/120, . . .;

• give a formula for the n-th number in the sequence; for example an=(−1)n/n! for n≥1;

• through recursive definition; for example, a1 =−1, an+1 =−an/(n+1) for n≥ 1, or f0 = 0,
f1=1, fn+2=fn+1+fn for n≥0. The first of these sequences is the same as the two sequences
above; the second one is the famous Fibonacci sequence.

A sequence does not have to start with a1; it could start with a0 or with any other an0
, as long as

an is specified for all n≥n0. Since it is just a string of numbers, the first number could be called
a1, or a0, or a−10; the second number in the sequence would then have to be called a2, a1, or a−9,
respectively.

A.2 Given a sequence a1, a2, . . ., we’d like to know whether it gets closer and closer to some
number a or there is no such number. In the former case, the sequence is said to converge to a and
this is written as lim

n−→∞

an=∞; in the latter case, the sequence is said to diverge. In many cases,

it is fairly straightforward to determine whether a sequence converges (and if so to what limit) or
diverges. For example, if

an = (−1)n
√
n4 + n2

n2 +
√
n2 + 1

,

simply divide top and bottom by n2 (you have to divide by the same thing!):

an = (−1)n
√
n4 + n2/n2

n2/n2 +
√
n2 + 1/n2

= (−1)n
√

n4/n4 + n2/n4

1 +
√

n2/n4 + 1/n4

= (−1)n
√

1 + 1/n2

1 +
√

1/n2 + 1/n4
;

(A1)

so the fraction approaches
√
1/(1 +

√
0) = 1, but the sign alternates. So the terms an with n odd

converge to -1, while the terms an with n even converge to 1. Thus, the entire sequence diverges

(there is no single number to which all of the terms approach):

“2 limits” = “no limit” = “diverge”



The above trick of dividing top and bottom of a fraction by a power of n is the most common

approach to dealing with sequences given by fractions. In MAT 125, a similar trick involved
dividing by a power of x. In order to reduce your chances of making minor computational errors,
which may even alter the qualitative answer (and thus be heavily penalized), it is best not to skip
steps in a computation like (A1). In particular, be careful when taking a power of n under a
square root.

A.3 Some sequences are of the form an=f(bn) for some fairly simple function f and some fairly
simple sequence bn. For example, if an = e1/n, then the sequence bn=1/n converges to 0 and since
ex is continuous at 0,

lim
n−→∞

e1/n = e
lim

n−→∞

1/n
= e0 = 1.

On the other hand, the sequence an = cos(πn) is divergent, since it alternates between 1 and −1.

A.4 If an=f(n) for some function f=f(x) defined on the positive real line, then

lim
n−→∞

an = lim
x−→∞

f(x)

if the second limit exists (the first limit may exist even if the second does not). This may allow
using l’Hospital for limits of functions. For example, if an=(lnn)/n, then

lim
n−→∞

an = lim
x−→∞

lnx

x
= lim

x−→∞

(lnx)′

x′
= lim

x−→∞

1/x

1
= 0.

If an=n · sin(1/n), then

lim
n−→∞

an = lim
n−→∞

sin(1/n)

1/n
= lim

x−→0

sinx

x
= lim

x−→0

(sinx)′

x′
= lim

x−→0

cosx

1
= 1.

This approach is not suitable for many sequences, including those involving n! and (−1)n.

A.5 If a sequence {an} is defined recursively as an+1=f(an), for some function f and with some
initial condition, and it converges to a, then a=f(a); this is obtained by taking the limit of both
sides of an+1 = f(an). So if the sequence an is known to have a limit, one simply needs to solve
the equation a= f(a); it may have several solutions, but it should be possible to rule out all but
one of them as possible limits (perhaps only one solution of a=f(a) is non-negative and an>0 for
all n). This trick applies in

8.1 Example 12: a1 = 2, an+1 =
an + 6

2

8.1 #48: a1 =
√
2, an+1 =

√
2an,

√
2,

√

2
√
2,

√

2

√

2
√
2, . . .

8.1 #54: a1 =
√
2, an+1 =

√
2 + an,

√
2,

√

2 +
√
2,

√

2 +

√

2 +
√
2, . . .

Note: given the right-most presentations of sequences on the second and third lines above, you
should be able to convert them to the recursive definitions in the middle of the two lines.
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A.6 Before applying the trick in A.5, one has to know that the sequence {an} has a limit at all.
The convergence/divergence test for sequences which is suitable for all three examples in A.5 is
the Monotonic Sequence Theorem:

if an ≤ an+1 and an ≤ M for all n (≥ some N), then {an} converges and lim
n−→∞

an ≤ M

if an ≥ an+1 and an ≥ m for all n (≥ some N), then {an} converges and lim
n−→∞

an ≥ m

In the first case, the sequence is increasing with n and is climbing below some “roof” M . As it
keeps climbing, but cannot escape past the roof, it must approach some level below the roof (or
the roof itself). In the second case, the sequence is decreasing with n and is descending toward
some “floor” m. As it keeps descending, but cannot escape past the floor, it must approach some
level above the floor (or the floor itself).

A.7 The second main convergence test for sequences is the Squeeze Theorem for Sequences:

if {an}, {bn}, {cn} are sequences such that an ≤ bn ≤ cn for all n (≥ some N), {an} and
{cn} converge, and lim

n−→∞

an= lim
n−→∞

cn, then {bn} also converges and

lim
n−→∞

an = lim
n−→∞

bn = lim
n−→∞

cn

You might apply this to a specified sequence {bn} and appropriately chosen simpler sequences {an}
and {cn} which converge to the same limit and squeeze {bn} in between. For example, if

bn =
n

n+ 1
+

cosn

n
,

you might take an = n/(n+ 1)− 1/n and cn = n/(n+ 1) + 1/n so that

an ≤ bn ≤ cn, lim
n−→∞

an = lim
n−→∞

cn = lim
n−→∞

n/n

n/n+ 1/n
= 1.

This implies that {bn} also converges and its limit is also 1.

If bn = 7n/n!, then

b7+n =
77+n

(7 + n)!
=

77

7!
· 7
8
· 7
9
· . . . 7

7 + n
≤ b7 ·

(

7

8

)n

;

so the sequence b7+n is squeezed between the constant sequence an=0 and the geometric sequence
cn = b7(7/8)

n which converges to 0 by A.8 below. This implies that the sequences {bn} also
converges to 0. The practical use of the Squeeze Theorem for Sequences is rather limited though.
For example, in the first case above, you know that | cosn| ≤ 1 and thus (cosn)/n−→0; so

lim
n−→∞

bn = lim
n−→∞

n

n+ 1
= 1.

The second case is best dealt with by using the Ratio Test for Sequences; see A.9 below.

3



A.8 A sequence of the form c, cr, cr2, cr3, . . . is called geometric. It is not difficult to determine
whether it converges:

the geometric sequence c, cr, cr2, cr3, . . . with c 6= 0

• converges if −1 < r ≤ 1 (to 0 if −1 < r < 1; to 1 if r = 1);

• diverges if r ≤ −1 or r > 1.

(A2)

Note that the convergence statement for geometric series, (B3) below, is slightly different.

A.9 Another convergence test that works well for some sequences is the Ratio Test for Sequences:

• if lim
n−→∞

|an+1|
|an|

< 1, then lim
n−→∞

an = 0;

• if lim
n−→∞

|an+1|
|an|

> 1 or an+1/an −→ ∞, then the sequence an diverges;

• if lim
n−→∞

|an+1|
|an|

= 1, then this test says nothing.

For example, for the sequence an = (−1)n7n/n!,

|an+1|
|an|

=
7n+1/(n+1)!

7n/n!
=

7n+1

7n
· n!

(n+1)!
=

7n · 7
7n

· n!

n! · (n+1)
=

7

n+1
−→ 7

∞+ 1
= 0.

Since 0 < 1, this sequence converges to 0. On the other hand, for the sequence an = 2n/n,

|an+1|
|an|

=
2n+1/(n+1)

2n/n
=

2n+1

2n
· n

n+1
=

2n · 2
2n

· 1

n/n+1/n
= 2

1

1+1/n
−→ 2

1

1+1/∞ = 2
1

1+0
= 2.

Since 2 > 1, this sequence diverges (actually “converges” to ∞).

Since RT for Sequences can detect convergence of sequences a1, a2, . . . with limit 0 only (and even
of only some of these), it works with few sequences. However, whenever it is applicable, RT for

Sequences determines the limit of convergent sequences immediately. RT for Sequences has a good
chance of working for sequences that involve factorials and powers n (e.g. n!, 3n, nn), but has no
chance of working for sequences that involve only powers of n (e.g. n3).

A.10 Finally, there are Limit Rules for Convergent Sequences, which are more or less as expected:

if {an} and {bn} are convergent sequences and c is any number,

lim
n−→∞

(an ± bn) = lim
n−→∞

an ± lim
n−→∞

bn , lim
n−→∞

can = c · lim
n−→∞

an

lim
n−→∞

(anbn) =
(

lim
n−→∞

an
)

·
(

lim
n−→∞

bn
)

lim
n−→∞

an
bn

=
lim

n−→∞

an

lim
n−→∞

bn
if lim

n−→∞

bn 6= 0
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The second equation on the first line is a special case of the first equation on the second line: just
take bn=c for all n. Note that the sequences {an ± bn}, {anbn}, and {an/bn} can converge even if
the sequences {an} and {bn} do not; in such cases, the limit rules are useless. Typically the limit
rules are used to compute limits of sequences; in some cases they could also be used to test for
convergence. For example, if the sequence {an} converges, then the sequence {an ± bn} converges
if and only if the sequence {bn} does.

B: Series

B.1 A series (or infinite series) is the sum of all terms in a sequence:

∞
∑

n=1

an = a1 + a2 + a3 + . . . , (B1)

where a1, a2, . . . is some sequence. The lower limit in the summation need not be 1; if a0 is the
first term of the corresponding sequence, then the lower limit in the sum is 0. Associated to the
infinite sum (B1) is the sequence of partial sums,

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, sn =

k=n
∑

k=1

ak.

The (infinite) series (B1) is said to converge to s if the sequence {sn} of the partial sums (not the
original sequence {an}!!!) converges to s. If the partial sums sn do not have a limit, the series (B1)
is said to diverge. Thus, if the series (B1) converges to some number s, then the partial sums sn
approach s and so

an = sn − sn−1 =
(

sn − s
)

−
(

sn−1 − s
)

approaches 0. This gives the most important statement regarding convergence of series:

if the sequence {an} diverges or it converges, but lim
n−→∞

an 6= 0,

then the series
∞
∑

n=1

an diverges
(B2)

For example, the series
∞
∑

n=1

(−1)n and
∞
∑

n=1

cos(nπ/2) diverge, because neither of the sequences

{(−1)n} nor {cos(nπ/2)} converges to 0 (in fact, neither of the two sequences converges at all).
The partial sums sn in the first case alternate between −1 and 0 and so indeed do not approach
any number. In the second case, the partial sums cycle through 0,−1,−1, 0 and so do not approach
any number either.

WARNING: The most important statement about convergence of power series can never be

used to conclude that a series converges; this is the reason that there are lots of other convergence

tests for series. For example, the series
∞
∑

n=1

1

n
does not converge, according to the p-Series Test

in (B10) below, even though 1/n−→0.
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B.2 Computing the sum of an infinite series is usually difficult, but possible in some cases. A

geometric series is the sum of a geometric sequence and so has the form
∞
∑

n=0

crn. The sequence of

partial sums in this case is

s0 = c, s1 = c+ cr, s2 = c+ cr + cr2, . . .

sn = c+ cr + . . .+ crn = c(1 + r + . . .+ rn) =

{

1−rn+1

1−r c, if r 6=1;

(n+1)c, if r=1.

If c 6= 0 and |r| ≥ 1, by the last line the sequence sn diverges. If |r|< 0, then rn+1 −→ 0 and so

sn −→ 1/(1−r). Since the convergence of the series
∞
∑

n=0

crn is the same the convergence of the

sequence sn (but not of an), we find that

∞
∑

n=0

crn =
c

1− r
if |r|<1 (note the lower limit on the sum)

∞
∑

n=0

crn diverges if |r|≥1 and c 6=0

(B3)

In the second case, the sequence an = crn being summed does not converge to 0 by (A2). Thus,
the conclusion in this case also follows from the most important statement about convergence of
series in (B2) above.

As an application, we can write the number 2.137 = 2.1373737 . . . as a simple fraction:

2.137 = 2.1 + .037 + .037 · 1

100
+ .037 · 1

1002
+ . . . =

21

10
+

37/1000

1− 1

100

=
21

10
+

37/10

99

=
21 · 99 + 37

990
=

2116

990
=

1058

495

This is another example when skipping steps might increase the chance of a computational error.

B.3 Infinite series can also be summed up in the cases of pairwise cancellation. Such series have
the form

∞
∑

n=1

(

bn−bn+m

)

= (b1 − b1+m) + (b2 − b2+m) + . . .+ (b1+m − b1+2m) + (b2+m − b2+2m) + . . .

for some fixed integer m≥0 or can be put into this form after some algebraic manipulations (the
lower limit can be anything). Note that lots of terms above cancel in pairs. If n≥m, the n-th
partial sum is then

sn = a1 + a2 + . . .+ an = (b1 − b1+m) + (b2 − b2+m) + . . .+ (bn − bn+m)

=

k=m
∑

k=1

bk −
k=n+m
∑

k=n+1

bk,
(B4)
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since the second term in the k-th pair cancels with the first term in the (k+m)-th, provided
k≤n−m. This leaves the first terms in the first m pairs and the second terms in the last m pairs.
As n−→∞, the first sum on the second line in (B4) does not change. So the sequence {sn} (and

thus the series
∞
∑

n=1

(

bn − bn+m

)

) converges if and only if the sequence

s−n =

k=n+m
∑

k=n+1

bk = bn+1 + bn+2 + . . .+ bn+m

does. This happens if the sequence {bn} converges, but may happen even if {bn} diverges. For
example, all of the series

∞
∑

n=1

(

sin(1/n)− sin(1/(n+1))
)

,
∞
∑

n=1

(

cos(1/n)− cos(1/(n+2))
)

,
∞
∑

n=1

(−1)n
(

ln(n)− ln(n+2)
)

converge, while the series

∞
∑

n=1

(

cos(n)− cos(n+1)
)

,
∞
∑

n=1

(

ln(n)− ln(n+1)
)

,
∞
∑

n=1

(

en − en+1
)

diverge.

The simplest possible case, called telescoping cancellation, occurs when bn −→ 0, so that the last
sum in (B4) disappears as n−→∞:

∞
∑

n=1

(

bn−bn+m

)

=
n=m
∑

n=1

bn if lim
n−→∞

bn = 0, m ≥ 0 (B5)

This is frequently used in conjunction with partial fractions. For example,

∞
∑

n=2

1

n2 − 1
=

∞
∑

n=2

1

+1 − ( −1 )

(

1

n −1

− 1

n +1

)

=
1

2

∞
∑

n=2

(

1

n− 1
− 1

n+ 1

)

=
1

2

(

(

1

1
− 1

3

)

+

(

1

2
− 1

4

)

+

(

1

3
− 1

5

)

+

(

1

4
− 1

6

)

+ . . .

)

=
1

2

(

1 +
1

2

)

=
3

4

In this case, bn=1/(n−1) for n≥2 and m=2. Generally, re-writing LHS of (B5) as

∞
∑

n=1

bn −
∞
∑

n=1

bn+m

will constitute a serious error, since these two sums may not converge. For example,

∞
∑

n=2

1

n− 1
=

∞
∑

n=1

1

n
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does not converge by the p-Series Test in (B10) below. The condition lim
n−→∞

bn = 0 in (B5) is

absolutely essential. For example, the series
∞
∑

n=1

ln

(

n+ 1

n

)

=
∞
∑

n=1

(

ln(n+1)− lnn
)

does not converge at all, because the sequence of partial sums

sn =

k=n
∑

k=1

(

ln(k+1)− ln k
)

= ln(n+1)− ln 1 = ln(n+1)

diverges. The formula (B5) with bn =− lnn and m=1 would have produced b1 = 0 for the sum
of the infinite series. This is impossible in this case since all the summands are positive. The
formula (B5) cannot be applied in this case because the limit condition in (B5) is not satisfied.

B.4 There are many cases when it can be determined whether a series converges, but it is hard
to determine its sum (this is relatively rare for sequences). There are several convergence tests for
series which, unlike the most important statement for series in (B2) above, can determine conver-
gence. All of the tests in Section 8.3 deal with series that have only positive terms an (for n ≥
some N); the Ratio Test for Series does not care about the signs. Series with terms of different
signs are in fact more likely to converge and will be considered in Section 8.4 in more detail after
the 2nd midterm. In some cases, different tests can be used to determine whether a series converges.

B.5 The most evident and fundamental convergence test for series with positive terms is the
Comparison Test:

if the sequences {an} and {bn} have positive terms, an ≤ bn for all n (≥ some N), and

the series
∞
∑

n=1

bn converges, then so does the series
∞
∑

n=1

an
(B6)

This test with the roles of an and bn reversed leads to a divergence test for series:

if the sequences {an} and {bn} have positive terms, an ≥ bn for all n (≥ some N), and

the series
∞
∑

n=1

bn diverges, then so does the series
∞
∑

n=1

an

While the Comparison Test is the basis for most other convergence tests for series, it is often easier
to apply one of the other convergence tests instead.

B.6 A close cousin to the Comparison Test is the Limit Comparison Test for series states that

if the sequences {an} and {bn} have positive terms, the sequence an/bn converges, and

the series
∞
∑

n=1

bn converges, then so does the series
∞
∑

n=1

an
(B7)

For example, to determine whether the series
∞
∑

n=1

n

4n
converges, take an=n/4n and bn=1/2n,

lim
n−→∞

(

an
bn

)

= lim
n−→∞

(

n

2n

)

= 0
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and
∞
∑

n=1

bn converges by the geometric series test (B3); so
∞
∑

n=1

an also converges. The same argument

applies to
∞
∑

n=1

np

rn
for any r>1 (but the Ratio Test for Series is simpler to use here). More typically,

the Limit Comparison Test is applied to series like

∞
∑

n=1

1

2n − n
,

∞
∑

n=2

1

n2 − n
,

∑

n=1

sinp(1/n) ;

the summands in these series “asymptotically approximate” 1/2n, 1/n2, and 1/np, respectively.
The Limit Comparison Test with the roles of an and bn reversed leads to a divergence test for
series:

if the sequences {an} and {bn} have positive terms, the sequence an/bn converges,

lim
n−→∞

(an/bn) 6= 0, and the series
∞
∑

n=1

bn diverges, then so does the series
∞
∑

n=1

an

In contrast to the convergence test above, there is the extra condition that an/bn not approach 0;
this makes sense since otherwise we could take an=0, regardless of what bn is. The Limit Com-

parison Test follows from the Comparison Test, but is likely to be more useful in this course.

B.7 The Ratio Test for Series works similarly to the Ratio Test for Sequences:

• if lim
n−→∞

|an+1|
|an|

< 1, then the series
∞
∑

n=1

an converges;

• if lim
n−→∞

|an+1|
|an|

> 1 or an+1/an −→ ∞, the series
∞
∑

n=1

an diverges;

• if lim
n−→∞

|an+1|
|an|

= 1, then this test says nothing.

(B8)

For example, for the series
∑

(−1)n7n/n!,

|an+1|
|an|

=
7n+1/(n+1)!

7n/n!
=

7n+1

7n
· n!

(n+1)!
=

7n · 7
7n

· n!

n! · (n+1)
=

7

n+1
−→ 7

∞+ 1
= 0.

Since 0 < 1, the series converges to 0. On the other hand, for the series
∑

2n/n,

|an+1|
|an|

=
2n+1/(n+1)

2n/n
=

2n+1

2n
· n

n+1
=

2n · 2
2n

· 1

n/n+1/n
= 2

1

1+1/n
−→ 2

1

1+1/∞ = 2
1

1+0
= 2.

Since 2 > 1, the series diverges.

Due to the last case in (B8), the Ratio Test does not work for many series. However, whenever
it is applicable, RT for Series works amazingly well. In particular, you do not need to come up
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with another series to compare the given series with as you would for the Comparison Test and
the Limit Comparison Test. RT for Series has a good chance of working for sequences that involve
factorials and powers n (e.g. n!, 3n, nn), but has no chance of working for sequences that involve
only powers of n (e.g. n3).

B.8 Another useful convergence test for series is the Integral Test:

if f is a continuous, positive, and decreasing function on [1,∞), then

the series

∞
∑

n=1

f(n) converges if and only if the improper integral

∫

∞

1

f(x)dx does (B9)

This test is obtained from the geometric interpretation of the integral as the area under the graph,
which can be estimated by rectangles of base one and with heights determined by either left or
right end points. A corollary of this test is the p-series Test:

the series
∞
∑

n=1

1

np
converges if and only if p>1 (B10)

B.9 The Alternating Series Test applies to a narrow, but important, set of series with terms of
different signs:

if lim
n−→∞

an =0, |an| ≥ |an+1|, and the signs of an alternate (an > 0 for every n odd and

an<0 for every n even, or the other way around), then the series
∞
∑

n=1

an converges

The alternating-sign condition is typically exhibited by the presence of (−1)n or (−1)n−1=−(−1)n.
However, make sure to also check the first two conditions before concluding that the series converges.
Typical examples are the series like

∞
∑

n=1

(−1)n

n
,

∞
∑

n=1

(−1)n−1 (lnn)
2

n
;

both converge by the AST. The Alternating Series Test is a convergence test only: it states that
a series converges if it meets 3 conditions. It can never be used to conclude that a series diverges.
In this sense, it is the opposite of the most important divergence test, which can never be used
to conclude that a series converges. If the first condition in the Alternating Series Test is not
satisfied, the series does indeed diverge, but by the most important divergence test. However,
there are lots of series that fail either the second or third condition (or both), but still converge.
For example, there are convergent series with only positive terms, that decay to zero, but are not
strictly decreasing, e.g.

∞
∑

n=1

2 + (−1)n

n2
.

The Alternating Series Test is a consequence of the definition of convergence for series (convergence
of the sequence of partial sums) and the Monotonic Sequence Theorem.
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B.10 The substance of Absolute Convergence Test is that introducing some minus signs into a
convergent series with positive terms does not ruin the convergence:

if the series
∞
∑

n=1

|an| converges, then so does the series
∞
∑

n=1

an

This test is useful when the signs are random, as opposed to strictly alternating as required for the

Alternating Convergence Test. For example, the series

∞
∑

n=1

sinn

n2
converges by the ACT, because

the series
∞
∑

n=1

∣

∣

∣

∣

sinn

n2

∣

∣

∣

∣

=
∞
∑

n=1

| sinn|
n2

converges since 0 ≤ | sinn|/n2 ≤ 1/n2 and the series

∞
∑

n=1

1

n2
converges (this argument uses 3 tests:

Absolute Convergence, Comparison, and p-Series; Limit Comparison Test is less suitable in this
case). The Alternating Series Test cannot be applied in this case, because the signs of sinn do not
alternate:

sin 1, sin 2, sin 3 > 0, sin 4, sin 5, sin 6 < 0;

while the signs usually come in triples, occasionally there are four consecutive terms with the same
sign. While the Absolute Convergence Test is less stringent about the alternating sign condition
than the Alternating Series Test, the former is not a substitute of the latter. While either test

can be used to conclude that the series
∞
∑

n=1

(−1)n

n2
converges, only the Alternating Series Test is

applicable to the series
∞
∑

n=1

(−1)n

n
because the series

∞
∑

n=1

∣

∣

∣

∣

(−1)n

n

∣

∣

∣

∣

=
∞
∑

n=1

1

n

does not converge. Neither of the two tests directly implies that the series
∞
∑

n=1

sinn

n
converges1.

As the Alternating Series Test, the Absolute Convergence Test is a convergence test only; it can
never be used to conclude that a series diverges. The Absolute Convergence Test is a consequence
of the Comparison Test and the addition rule for series.

1this series does indeed converge because of a more general version of the Alternating Series Test, called Dirichlet’s

Test: if {bn} and {sn} are two sequences such that limn−→∞ bn = 0, bn ≥ bn+1, and there exists C > 0 such that
∣

∣

∑

n=m

n=1
sn

∣

∣ ≤ C for all m, then the series
∑

∞

n=1
snbn converges; in the case of the Alternating Series Test sn=±(−1)n

is just the sign, and so C=1 works
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B.11 There are also Rules for Convergent Series, which are more or less as expected:

if the series
∞
∑

n=1

an and
∞
∑

n=1

bn converge and c is any number,

∞
∑

n=1

(an ± bn) =

∞
∑

n=1

an ±
∞
∑

n=1

bn ,

∞
∑

n=1

can = c

∞
∑

n=1

an

Note that these rules do not extend to multiplication and division, unlike what is the case for

sequences. The series
∞
∑

n=1

(an± bn) can converge even if the series
∞
∑

n=1

an and
∞
∑

n=1

bn do not; in such

cases, the above rules are useless. Typically these rules are used to compute sums of series; in some

cases they could also be used to test for convergence. For example, if the series

∞
∑

n=1

an converges,

then the series
∞
∑

n=1

(an ± bn) converges if and only if
∞
∑

n=1

bn does.
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