MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 9 (20pts)

4.4 2; 3pts Let X be a set and F(X) be the set of all maps from X to itself. Show that $f \in F(X)$ is a surjection if and only if gf = hf implies g = h for all $g, h \in F(X)$.

Suppose $f \in F(X)$ is a surjection and $g, h \in F(X)$ are distinct, i.e. with $g(x) \neq h(x)$ for some $x \in X$. Since f is a surjection, x = f(y) for some $y \in X$. Along with $g(x) \neq h(x)$, this implies that $g(f(y)) \neq h(f(y))$ and so $gf \neq hf$. Thus, gf = hf implies g = h if f is a surjection.

Suppose $f \in F(X)$ is not a surjection, i.e. there exists $x \in X$ such that $x \neq f(y)$ for any $y \in X$. Define

$$g,h: X \longrightarrow X, \qquad g(y) = y \ \forall y \in X, \qquad h(y) = \begin{cases} y, & \text{if } y \neq x; \\ f(x), & \text{if } y = x. \end{cases}$$

In particular, gf = hf because both compositions send y to f(y). However, $g \neq h$ because $x \neq f(x)$. Thus, gf = hf implies g = h for all $g, h \in F(X)$ only if f is a surjection.

4.4 5; 2pts Suppose R is a ring with no zero divisors. Let $a, b, c \in R$ be such that ac=bc and $c \neq 0$. Show that a=b.

Since ac-bc=0, the distributive law gives (a-b)c=0. Since R has no zero divisors, it follows that either a-b=0 or c=0. Since the latter is not the case by assumption, a-b=0 and so a=b.

4.4 11; 3pts Let F be a field with additive identity 0 and multiplicative identity 1. The characteristic $\chi(F)$ of F is the smallest $n \in \mathbb{Z}^+$ such that

$$n \cdot 1 \equiv \underbrace{1 + 1 + \ldots + 1}_{n}$$

is 0; if such an $n \in \mathbb{Z}^+$ does not exist, then $\chi(F) \equiv 0$. Suppose $\chi(F) \neq 0$. Show that $\chi(F)$ is a prime number.

First, $\chi(F) \neq 1$ because $1 \neq 0$ in a field. Suppose $\chi(F) = mn$ with $m, n \in \mathbb{Z}^+$ and $m, n \geq 2$. Since $m, n < \chi(F)$, the elements

$$m \cdot 1 \equiv \underbrace{1+1+\ldots+1}_{m}$$
 and $n \cdot 1 \equiv \underbrace{1+1+\ldots+1}_{n}$

of F are not zero, but their product $mn = \chi(F)$ is zero; thus, m and n are zero divisors in F. Since a field F has no zero divisors, this is a contradiction. Thus, $\chi(F)$ is either 0 or a prime number.

Problem E (12pts)

Let $(R, +, \cdot)$ be a commutative ring with additive identity 0 and multiplicative identity 1. An element $u \in R$ is called a **unit** if it has a multiplicative inverse (thus, 0 is not a unit, and every nonzero element of a field is a unit).

(a) Show that the sets of powers series and polynomials with coefficients in R,

$$R[[x]] \equiv \left\{ \sum_{n=0}^{\infty} a_n x^n : a_0, a_1, \dots \in R \right\} \quad and$$

$$R[x] \equiv \left\{ \sum_{n=0}^{\infty} a_n x^n \in R[[x]] : \exists d \in \mathbb{Z}^{\geq 0} \text{ s.t. } a_n = 0 \ \forall n > d \right\},$$

have natural commutative ring structures. Specify the addition and product operations, additive identity 0, and multiplicative identity 1. Verify the required properties.

- (b) Show that $a(x) \equiv 1+x$ is not a unit in R[x].
- (c) Show that $a(x) \equiv \sum_{n=0}^{\infty} a_n x^n$ is a unit in R[[x]] if and only if a_0 is a unit in R.
- (a; **6pts**) The addition and multiplication on R[[x]] are given by

$$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n \quad \text{and} \quad \left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{\substack{i,j \in \mathbb{Z}^{\geq 0} \\ i+j=n}}} a_i b_j\right) x^n,$$

respectively. The latter is well-defined because each of the inner sums is finite and the addition in R is associative.

The commutativity and associativity of the addition on R[[x]] and the commutativity of the multiplication on R[[x]] defined above follow immediately from the commutativity and associativity of the addition on R and the commutativity of the multiplication on R. The distributive law for R implies the distributive law for R[[x]]. The associativity of the multiplication on R[[x]] follows from the associativity of the multiplication on R via

$$\left(\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right)\right) \cdot \left(\sum_{n=0}^{\infty} c_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{\substack{i,j,k \in \mathbb{Z}^{\geq 0} \\ i+j+k=n}} (a_i b_j) c_k\right) x^n = \sum_{n=0}^{\infty} \left(\sum_{\substack{i,j,k \in \mathbb{Z}^{\geq 0} \\ i+j+k=n}}} a_i (b_j c_k)\right) x^n \\
= \left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\left(\sum_{n=0}^{\infty} b_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} c_n x^n\right)\right).$$

The zero power series and the constant power series with value 1,

$$\mathbf{0} \equiv \sum_{n=0}^{\infty} 0x^n \quad \text{and} \quad \mathbf{1} \equiv 1x^0 + \sum_{n=1}^{\infty} 0x^n,$$

are the additive identity in R[[x]] and the multiplicative identity in R[[x]], respectively. Thus, R[[x]] is a commutative ring with additive identity $\mathbf{0}$ and multiplicative identity $\mathbf{1}$.

Since the addition and multiplication operations on R[[x]] send a pair of polynomials, i.e. elements of $R[x] \subset R[[x]]$, to polynomials, these operations restrict to addition and multiplication operations on R[x]. Since the operations on R[[x]] are commutative and associative and satisfy the distributive law, the same applies to their restrictions to R[x]. Since $\mathbf{0}, \mathbf{1} \in R[x]$, we conclude that R[x] is also a commutative ring with additive identity $\mathbf{0}$ and multiplicative identity $\mathbf{1}$.

(b; **2pts**) Suppose

$$\mathbf{1} = (1+x) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) \equiv b_0 + \sum_{n=1}^{\infty} (b_n + b_{n-1}) x^n.$$

This implies that $b_0=1$ and $b_n+b_{n-1}=0$ for all $n\in\mathbb{Z}^+$. Thus, $b_n=(-1)^n$ and so

$$(1+x)^{-1} = \sum_{n=0}^{\infty} (-1)^n x^n \in R[[x]] - R[x].$$

We conclude that 1+x is a unit (has a multiplicative inverse) in R[[x]], but not in R[x].

(c; **4pts**) Suppose

$$\mathbf{1} = \left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = a_0 b_0 + \sum_{n=1}^{\infty} \left(\sum_{\substack{i,j \in \mathbb{Z}^{\geq 0} \\ i+j=n}} a_i b_j\right) x^n.$$

This implies that $a_0b_0=1$, i.e. $a_0 \in R$ is a unit (has a multiplicative inverse).

Suppose $a_0 \in R$ is a unit with multiplicative inverse $a_0^{-1} \in R$. Thus,

$$b(x) \equiv \left(a_0 \left(1 + a_0^{-1} \sum_{n=1}^{\infty} a_n x^n\right)\right)^{-1} \equiv a_0^{-1} \left(1 + \sum_{m=1}^{\infty} \left(-a_0^{-1} \sum_{n=1}^{\infty} a_n x^n\right)^m\right)$$
$$\equiv a_0^{-1} \left(1 + \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_n x^{n-1}\right)^m (-a_0^{-1})^m x^m\right)$$

is well-defined element of R[[x]]; the last expression becomes a power series in x after applying the multinomial theorem and collecting coefficients of the same powers of x because only finitely many terms contribute to each power of x. By a direct check, a(x)b(x) = 1 and so a(x) has a multiplicative inverse in R[[x]], i.e. a(x) is a unit in R[[x]].