MAT 312/AMS 351: Applied Algebra
Solutions to Problem Set 9 (20pts)

4.4 2; 3pts Let X be a set and F(X) be the set of all maps from X to itself. Show that f € F(X)
is a surjection if and only if gf =hf implies g=h for all g,he F(X).

Suppose f € F(X) is a surjection and g,h € F(X) are distinct, i.e. with g(z) # h(x) for some
x € X. Since f is a surjection, x = f(y) for some y € X. Along with g(z)# h(z), this implies that

9(f(y)#h(f(y)) and so gf #hf. Thus, gf =hf implies g=h if f is a surjection.

Suppose f € F(X) is not a surjection, i.e. there exists € X such that = # f(y) for any y € X.
Define

Y, if y 7 ;

In particular, gf =hf because both compositions send y to f(y). However, g# h because z # f(z).
Thus, gf =hf implies g=h for all g, h€ F(X) only if f is a surjection.

g h: X — X, g(y) =y VyeX, h(y)z{

4.4 5; 2pts Suppose R is a ring with no zero divisors. Let a,b,c€ R be such that ac=bc and c#0.
Show that a=».

Since ac—bc=0, the distributive law gives (a—b)c=0. Since R has no zero divisors, it follows that
either a—b=0 or ¢=0. Since the latter is not the case by assumption, a—b=0 and so a=b.

4.4 11; 3pts Let F be a field with additive identity 0 and multiplicative identity 1. The character-
istic X(F) of F is the smallest n€Z™" such that

n-l1=1+1+...+1
—_——

n

is 0; if such an n€Z" does not exist, then x(F)=0. Suppose x(F)#0. Show that x(F) is a prime
number.

First, x(F)#1 because 1#0 in a field. Suppose x(F)=mn with m,n€Z" and m,n >2. Since
m,n<x(F), the elements

m-1=14+1+...+1 and nl=1+14+...+1
SN—— S——

m n

of F' are not zero, but their product mn=x(F') is zero; thus, m and n are zero divisors in F'. Since
a field F' has no zero divisors, this is a contradiction. Thus, x(F) is either 0 or a prime number.



Problem E (12pts)

Let (R, +, ) be a commutative ring with additive identity 0 and multiplicative identity 1. An element
u € R is called a unit if it has a multiplicative inverse (thus, 0 is not a unit, and every nonzero

element of a field is a unit).

(a) Show that the sets of powers series and polynomials with coefficients in R,

Rl[z]] = {ian:p”: ao,al,...eR} and

R[z] = {Zan:ﬂ”GR[[:n]]: 3dez2 s.t. a, =0 Vn>d},
n=0

have natural commutative ring structures. Specify the addition and product operations, additive

identity 0, and multiplicative identity 1. Verify the required properties.

(b) Show that a(x)=1+x is not a unit in R[z].

(c) Show that a(x)EZanx" is a unit in R|[[x]] if and only if ag is a unit in R.

n=0
(a; 6pts) The addition and multiplication on R[[z]] are given by

o0

Zanx” + anx" = Z(an—i—bn)x" and (Zanm"> . (anxn> = Z ( Zai
n=0 n=0 n=0 n=0

i,j€2.20
i+j=n

b]> ",

respectively. The latter is well-defined because each of the inner sums is finite and the addition

in R is associative.

The commutativity and associativity of the addition on R[[z]] and the commutativity of the mul-
tiplication on R[[z]] defined above follow immediately from the commutativity and associativity of
the addition on R and the commutativity of the multiplication on R. The distributive law for R
implies the distributive law for R[[z]]. The associativity of the multiplication on R[[z]] follows from

the associativity of the multiplication on R via

(£ (B (55 oo 5o0m

n=0 ijkez=° n=0 i kez=°

i+j+k=n i+j+k=n
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The zero power series and the constant power series with value 1,

oo o0
OEZOm” and 151370—1—2037”,
n=0 n=1

)



are the additive identity in R[[z]] and the multiplicative identity in R[[z]], respectively. Thus, R[[z]]
is a commutative ring with additive identity 0 and multiplicative identity 1.

Since the addition and multiplication operations on R[[z]] send a pair of polynomials, i.e. elements
of R[z] C R[[z]], to polynomials, these operations restrict to addition and multiplication operations
on R[z]. Since the operations on R|[[z]] are commutative and associative and satisfy the distributive
law, the same applies to their restrictions to R[x]. Since 0,1 € R[z], we conclude that R[z] is also
a commutative ring with additive identity 0 and multiplicative identity 1.

(b; 2pts) Suppose

1= (1+2) <anx"> = bo—f—z (bn—l-bn_l)m".
n=0

n=1
This implies that bg=1 and b, +b,,_1 =0 for all n€Z*. Thus, b,=(—1)" and so

o

(1+z)"' = (~1)"z" € R[[z]] - Rx].

n=0

We conclude that 1+ is a unit (has a multiplicative inverse) in R][[z]], but not in R[z].
(c; 4pts) Suppose

1= <§;anﬂ> : <§%bnm”) = agbo + g < Zaibj)m”.

=1 %4 4ez=20
i+j=n

This implies that agbg=1, i.e. ag € R is a unit (has a multiplicative inverse).

Suppose ap € R is a unit with multiplicative inverse a, e R. Thus,

b(x) = (ao <1+a01 ganx"»l =ay! (H—g <—a01 ganx"> m)
=a;" <1+ i < ianaznl)?—aal)mxm)
m=1 “n=1

is well-defined element of R][[x]]; the last expression becomes a power series in x after applying
the multinomial theorem and collecting coefficients of the same powers of & because only finitely
many terms contribute to each power of . By a direct check, a(x)b(z) =1 and so a(z) has a
multiplicative inverse in R][[z]], i.e. a(x) is a unit in R[[x]].



