MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 6 (13pts)

5.1 1; 2pts Let G be a group and $a, b \in G$. Show that ab = ba if and only if $(ab)^{-1} = a^{-1}b^{-1}$.

For all $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$ and $(ba)^{-1} = a^{-1}b^{-1}$. By the uniqueness of the inverses, this implies that ab = ba if and only if $b^{-1}a^{-1} = a^{-1}b^{-1}$.

5.1 9; 3pts Let G be a group. Define a relation on G by $a \sim b$ if there exists $g \in G$ such that $b = g^{-1}ag$. Show that \sim is an equivalence relation.

For every $a \in G$, $a = e^{-1}ae$ and so $a \sim a$; thus, \sim is reflexive. For all $a, b \in G$ such that $a \sim b$, there exists $g \in G$ such that $b = g^{-1}ag$. Thus, $a = (g^{-1})^{-1}bg^{-1}$ and so \sim is symmetric. For all $a, b, c \in G$ such that $a \sim b$ and $b \sim c$, there exist $g, h \in G$ such that $b = g^{-1}ag$ and $c = h^{-1}bh$. Thus,

$$c = h^{-1}bh = h^{-1}(g^{-1}ag)h = (h^{-1}g^{-1})a(gh) = (gh)^{-1}a(gh)$$

and so \sim is transitive.

5.2 2; 2pts Show that $|G_n|$ is even for every $n \ge 3$.

Since $[-1]_n \neq [1]_n$ in $G_n \subset \mathbb{Z}_n$ for $n \geq 3$ and $(-1)^2 = 1$, the order of the element $[-1]_n$ of (G_n, \cdot) is 2. Since the order of an element of a finite group divides the order of the group, 2 divides $|G_n|$ for $n \geq 3$.

5.2 4; 3pts Let H be a subgroup of a group G, $a \in G$, and $b \in aH$. Show that

$$H = \{b^{-1}c \colon c \in aH\}.$$

Since $b \in H$, b = ah for some $h \in H$. If $c \in aH$, c = ah' for some $h' \in H$. Thus,

$$b^{-1}c = (ah)^{-1}(ah') = h^{-1}a^{-1}ah' = h^{-1}h' \in H,$$

since $H \subset G$ is closed under multiplication. This implies that

$$H\supset \left\{b^{-1}c\colon c\!\in\! aH\right\}.$$

If $h' \in H$, then $hh' \in H$ and $ahh' \in aH$. Since

$$b^{-1}(ahh') = (ah)^{-1}(ahh') = h^{-1}a^{-1}ahh' = h^{-1}hh' = h',$$

it follows that

$$H \subset \{b^{-1}c: c \in aH\}.$$

Problem C (3pts)

Determine the elements of the cyclic subgroup of $GL_n\mathbb{Z}$ generated by the matrix

$$g \equiv \left(\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array}\right)$$

explicitly.

The elements are $\mathbb{I}_2, g, g^2, g^3, g^4, g^5$, where

$$\mathbb{I}_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad g = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \qquad g^{2} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix},
g^{3} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad g^{4} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad g^{5} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$