MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 5 (14pts)

4.3 3; 2pts Let G be a group and e be its identity element. Suppose that $a^2 = e$ for every $a \in G$. Show that G is abelian.

Let $a, b \in G$. By assumption and associativity,

$$e = (ab)^2 = (ab)(ab) = a(ba)b$$

Multiplying by a on the left and by b on the right, we obtain

$$ab = aeb = aa(ba)bb = e(ba)e = ba.$$

Thus, ab = ba for all $a, b \in G$, i.e. G is abelian.

4.3 4; 4pts Let (G, \cdot) be a group and $c \in G$. Show that (G, *), where

$$*: G \times G \longrightarrow G, \qquad a * b = a \cdot c^{-1} \cdot b,$$

is also a group.

We denote the identity element for \cdot by e. and the inverse of a with respect to \cdot by a^{-1} . We need to check that * takes values in G (closure), is associative, has an identity element e_* , and every element a has an inverse a_*^{-1} with respect to *. The first is immediate because $a \cdot c^{-1} \cdot b$ is a product of three elements in (G, \cdot) and thus lies in G. If $a, b, d \in G$, then

$$(a*b)*d = (a \cdot c^{-1} \cdot b) \cdot c^{-1} \cdot d = a \cdot c^{-1} \cdot (b \cdot c^{-1} \cdot d) = a*(b*d)$$

by the associativity of \cdot . Since

$$a \ast c = a \cdot c^{-1} \cdot c = a = c \cdot c^{-1} \cdot a = c \ast a$$

for every $a \in G$, $e_* = c$ is the identity element for (G, *). If $a \in G$,

$$a*(ca^{-1}c) = ac^{-1}(ca^{-1}c) = a(c^{-1}c)a^{-1}c = aa^{-1}c = c = e_*,$$

$$(ca^{-1}c)*a = (ca^{-1}c)c^{-1}a = ca^{-1}(cc^{-1})a = ca^{-1}a = c = e_*.$$

Thus, $a_*^{-1}\!=\!ca^{-1}c$ is an inverse of a with respect to *.

4.3 6; 2pts The group D_4 of rigid symmetries of a square contains only one of the 4!=24 elements of the group S_4 of the permutations of its four vertices. Give a quick reason for this.

Label the vertices of the square by 1, 2, 3, 4 in a circular order (thus 13 is a diagonal and 24 is the other diagram). In the group S_4 , a permutation π can send 1 to 4 possible places (1,2,3, or 4). With $\pi(1)$ fixed, $\pi(3)$ can take **3** possible values (any of 1,2,3, or 4). Given $\pi(1)$ and $\pi(3)$, $\pi(2)$ can take either of the two remaining values, leaving one possible value for $\pi(4)$. In the group D_4 , a rigid symmetry σ can send 1 to 4 possible places (1,2,3, or 4) as well. However, with $\sigma(1)$ fixed, $\sigma(3)$ can take only **1** possible value (the one diagonally opposite to $\sigma(1)$, either $\sigma(1)+2$ or $\sigma(1)-2$), because σ sends the diagonal 13 either back to itself or to the other diagonal 24. Given $\sigma(1)$ and $\sigma(3)$, $\sigma(2)$ can take either of the two remaining values as before, leaving one possible value for $\sigma(4)$. Thus, there are 1/3 of the choices for a rigid symmetry σ of a square as for an arbitrary permutation π of its vertices.

Problem B (6pts)

Let G be a group and e be its identity element.

- (a) Suppose $G = \{e, a\}$ consists of exactly two distinct elements. Show that $a^2 = e$.
- (b) Suppose $G = \{e, a, b\}$ consists of exactly three distinct elements. Show that $a^2 = b$ and $a^3 = e$.
- (c) Suppose |G|=4. Show that either there exists $a \in G$ such that $G = \{1, a, a^2, a^3\}$ with $a^4 = e$ or there exist distinct $a, b \in G$ such that $G = \{1, a, b, ab\}$ with $a^2, b^2 = e$ and ab = ba.

Note: By (a) and (b), all groups of orders 2 and 3 are isomorphic to $(\mathbb{Z}_2, +)$ and $(\mathbb{Z}_3, +)$, respectively. By (c), every group of order 4 is isomorphic either to $(\mathbb{Z}_4, +)$ or $(\mathbb{Z}_2, +) \times (\mathbb{Z}_2, +)$. In particular, all of these groups are abelian. The smallest non-abelian group, S_3 , has 6 elements.

(a; 1pt) Since $a \neq e$, $a^2 \neq a$ and thus $a^2 = e$.

(b; 2pts) Since $a, b \neq e, ab \neq b, a$ and thus ab = e. Since $a \neq e, b, a^2 \neq a, ab$ and thus $a^2 = b$ and $a^3 = e$.

(c; 3pts) Since $a, b \neq e, ab \neq b, a$. Thus, ab = e or ab = c. If ab = e, then ac = b (because $ac \neq a, c, ab$), $a^2 = c$ (because $a^2 \neq a, ab, ac$), $a^3 = b$, and $a^4 = e$. If ac = e or bc = e, we similarly find that G is cyclic of order 4. The remaining possibility is that ab, ba = c, ac, ca = b, bc, cb = a. Combining these equations, we obtain $a^2, b^2, c^2 = e$.