
MAT 312/AMS 351: Applied Algebra
Solutions to Problem Set 11 (22pts)

Problem I (4pts)

Let F be a field and p ∈ F [x] be a polynomial of positive degree. Show that the ring F [x]/(p) of
polynomial congruence classes of p is a field if and only if p is irreducible.
Note: It is shown on p280 that F [x]/(p) is a ring, even if F is just a ring; do not check this again.

Suppose p is reducible, i.e. p= qr for some polynomials q, r ∈ F [x] of positive degrees. Since the
degrees of these polynomials are less than the degree of p (which is the sum of the degrees of q
and r), p does not divide q, r in F [x] and

[q]p, [r]p 6= [0]p ∈ F [x]/(p).

However,
[q]p · [r]p = [qr]p = [p]p = [0]p ∈ F [x]/(p).

Thus, [q]p and [r]p are zero divisors in F [x]/(p). Since the ring F [x]/(p) contains zero divisors, it
is not a field.

Suppose p is irreducible. By the Division with Remainder for Polynomials, every element of
F [x]/(p) is (uniquely) of the form [q]p with q ∈ F [x] of degree less than the degree of p. Let
q 6= 0 be any such polynomial. Since p is irreducible, no polynomial of degree smaller than the
degree of p divides p. Since the degree of p is larger than the degree of q, no polynomial of degree
at least the degree of p divides q. Thus, the constant polynomial 1∈F [x] is a gcd of p and q and
there exist polynomials s, t∈F [x] such that

sp+tq = 1 ∈ F [x] =⇒ [s]p[p]p+[t]p[q]p = [1]p ∈ F [x]/(p).

Since [p]p = [0]p in F [x]/(p), the last equation says that [t]p is a multiplicative inverse of [q]p
in F [x]/(p). Thus, every nonzero element of F [x]/(p) has a multiplicative inverse, and so the ring
F [x]/(p) is a field.



Problem J (6+3+2pts)

Let F be a field. A polynomial p∈F [x] of positive degree d is called primitive if the remainders of
the monomials xi, i=0, 1, . . ., from dividing by p include every nonzero polynomial of degree less
than d. Show that

(a) a primitive polynomial p is prime;

(b) 1+x+x2+x3+x4∈Z2[x] is prime, but not primitive;

(c) the smallest n∈Z
+ such that a primitive degree d polynomial p∈Z2[x] divides xn−1 is 2d−1.

(a) Since F is a field, p ∈ F [x] is prime if and only if p is irreducible. By Problem I, the latter
is the case if and only if the ring F [x]/(p) is a field, i.e. every nonzero element of F [x]/(p) has a
multiplicative inverse. By the Division with Remainder for Polynomials, every element of F [x]/(p)
is (uniquely) of the form [q]p with q ∈ F [x] of degree less than the degree of p. If p is primitive,
then every element of F [x]/(p) equals [xi]p = [x]ip for some i∈Z

≥0 (not necessarily unique). It is
thus sufficient to show that for every i∈Z

≥0 such that p does not divide xi there exist

j ∈ Z
≥0 and u ∈ F−{0} s.t. [xi]p ·[x

j ]p ≡
[

xi+j
]

p
= [u]p ∈ F [x]/(p),

where u∈F [x] is the constant polynomial with value u; this would imply that [u−1xj ]p is a multi-
plicative inverse of [xi]p.

We first show that F [x]/(p) has no zero divisors. Suppose

i, j ∈Z
≥0 and [xi]p ·[x

j ]p = [0]p ∈ F [x]/(p) .

The last statement implies that p divides xi+j in F [x] and thus p=xd for some d∈Z
+ such that

d≤ i+j. The only nonzero remainders of the monomials xi with i∈ Z
≥0 from dividing by p are

then xi with i= 0, 1, . . . , d−1. These are all the nonzero monomials of degree less than d if and
only if d= 1 and F =Z2. If the latter is the case, either i≥ d or j ≥ d, and so either [xi]p = [0]p
or [xj ]p=[0]p. Whether or not d=1 and F =Z2, we conclude that F [x]/(p) has no zero divisors.
Since p(x)=x is an irreducible polynomial, for the remainder of the proof we assume that p(x) 6=x
and thus [xi]p 6=[0]p for all i∈Z

≥0.

Suppose next that the field F is finite. We then show that the element [x]p of F [x]/(p) has a finite
multiplicative order. Since every element of F [x]/(p) is (uniquely) of the form [q]p with q ∈F [x]
of degree less than the degree of p, the ring F [x]/(p) is then finite. Since the set Z≥0 is infinite, it
follows that there exist

i, j ∈ Z
≥0 s.t. i < j, [xi]p = [xj ]p 6= [0]p ∈ F [x]/(p) =⇒ [xi]p

(

[xj−i]p−[1]p
)

= [0]p ∈ F [x]/(p).

Since F [x]/(p) has no zero divisors, the last statement implies that [xj−i]p=[1]p. Thus, there exists
N ∈Z

+ so that [xN ]p=[1]p.

If [xi]p is any nonzero element of F [x]/(p) and j∈Z
≥0 is such that i+j is divisible by N , then

[xi]p ·[x
j ]p = [x]i+j

p = [1]p ∈ F [x]/(p).
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Thus, [xj ]p is a multiplicative inverse of [xi]p. We conclude that every nonzero element of F [x]/(p)
has a multiplicative inverse and thus F [x]/(p) is a field.

Suppose now that F is infinite and [xi]p with i ∈ Z
≥0 is any nonzero element of F [x]/(p). Since

F−{0} is infinite, there exist

j ∈ Z, u ∈ F−{0} s.t. j≥ i, [xj ]p = [u]p ∈ F [x]/(p).

This implies [xi]p ·[x
j−i]p=[u]p and so [xi]p is a unit in F [x]/(p). We conclude that every nonzero

element of F [x]/(p) has a multiplicative inverse and thus F [x]/(p) is a field.

Note. The reasoning in the previous paragraph in fact implies that F cannot be infinite if F [x]
contains a primitive polynomial p.

(b) Since x = 0, 1 are not roots of 1+x+x2+x3+x4 over Z2, this polynomial has no linear
factors in Z2[x]. If it is not prime/irreducible, then it is a product of two (not necessarily distinct)
irreducible degree 2 polynomials. An irreducible degree 2 polynomial over Z2 must contain the
constant term 1 (o/w it would be divisible by x) and an odd number of terms overall (o/w x=1
would be a root and (x−1) would divide this polynomial). The only such degree 2 polynomial is
1+x+x2. Since

(

1+x+x2
)2

= 1+x2+x4 ∈ Z2[x],

it follows that 1+x+x2+x3+x4 has no degree 2 factors either and is thus irreducible/prime in Z2[x].

The remainders of the monomials xi, i=0, 1, . . ., from dividing by 1+x+x2+x3+x4 are

1, x, x2, x3, x4=1+x+x2+x3, x5 = x
(

1+x+x2+x3
)

=
(

x+x2+x3
)

+
(

1+x+x2+x3
)

= 1, . . . ;

the remainders cycle afterwards. Thus, the remainders consist of only 5 out of the 24−1 polynomials
of degree less than 4, and so 1+x+x2+x3+x4 is not a primitive polynomial.

(c) By (a) and Problem I, Z2[x]/(p) is a field. Thus, the group Gp of units in Z2[x]/(p) consists of
all nonzero elements. Since every element of Z2[x]/(p) is (uniquely) of the form [q]p with q∈Z2[x] of
degree less than the degree d of p, it follows that |Gp|=2d−1. Since [x]p generates the multiplicative
group Gp, the order of this element, i.e. the smallest n∈Z

+ such that

[x]np = [1]p ∈ Gp ⊂ Z2[x]/(p)

is |Gp|. The last equality is equivalent to p dividing xn−1 in Z2[x].
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Problem K (3+1+3pts)

Let f : Z4
2−→Z

7
2 be the cyclic code generated by the polynomial p(x)=1+x+x3.

(a) Show that this code corrects one error.

(b) Find the parity polynomial q(x) for p(x).

(c) The message received, possibly with an error, is 0110110. What message (codeword) was sent?
What word does this codeword stand for?

(a) The codewords of this code are the polynomials pa∈Z2[x] with a∈Z2[x] being a polynomial
of degree less than 4. An error in the i-th bit, with i = 1, 2, . . . , 7, is an extra xi−1 added to a
codeword pa∈Z2[x]. The remainders of these monomials from dividing by p are

1, x, x2, x3=1+x, x4=x(1+x)=x+x2,

x5=x(x+x2)=x2+(1+x)=1+x+x2, x6=x(1+x+x2)= (x+x2)+(1+x) = 1+x2.

Since they are all distinct, this code can determine in which bit i a single error occurred from the
remainders of dividing by p. Thus, this code corrects one error.

Alternatively, one can show that the minimum length of a nonzero code word is 3. This can done
by computing all 24−1 nonzero codewords:

1 −→ 1+x+x3, x −→ x+x2+x4, x2 −→ x2+x3+x5, x3 −→ x3+x4+x6,

1+x −→ 1+x2+x3+x4, 1+x2 −→ 1+x+x2+x5, 1+x3 −→ 1+x+x4+x6,

x+x2 −→ x+x3+x4+x5, x+x3 −→ x+x2+x3+x6, x2+x3 −→ x2+x4+x5+x6,

1+x+x2 −→ 1+x4+x5, 1+x+x3 −→ 1+x2+x6, 1+x2+x3 −→ 1+x+x2+x3+x4+x5+x6,

x+x2+x3 −→ x+x5+x6, 1+x+x2+x3 −→ 1+x3+x5+x6.

Since the code is linear, the codewords after the first row are obtained from the already computed
codewords by adding the appropriate elements from the first row.

(b) Since

x7−1 = (x−1)
(

x6+x5+x4+x3+x2+x+1
)

= (x−1)
(

x3+x2+1
)(

x3+x+1
)

,

the parity polynomial q(x) for p(x)=(1+x+x3) is

q(x) = (1+x)
(

1+x2+x3
)

= 1+x+x2+x4 .

(c) This message corresponds to the polynomial b(x)=x+x2+x4+x5. Dividing it with remainder
by p(x), we obtain

x5+x4+x2+x = x2
(

x3+x+1)+
(

x4+x3+x
)

=
(

x2+x
)(

x3+x+1)+
(

x3+x2
)

=
(

x2+x+1
)(

x3+x+1)+
(

x2+x+1
)

.

By part (a), the remainder 1+x+x2 arises from x5. The relevant codeword is thus

b(x)+x5 = x+x2+x4.

This codeword arises from the polynomial x, which corresponds to the word 0100 (before encoding).
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