MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 11 (22pts)

Problem I (4pts)

Let F be a field and $p \in F[x]$ be a polynomial of positive degree. Show that the ring F[x]/(p) of polynomial congruence classes of p is a field if and only if p is irreducible. Note: It is shown on p280 that F[x]/(p) is a ring, even if F is just a ring; do not check this again.

Suppose p is reducible, i.e. p = qr for some polynomials $q, r \in F[x]$ of positive degrees. Since the degrees of these polynomials are less than the degree of p (which is the sum of the degrees of q and r), p does not divide q, r in F[x] and

$$[q]_p, [r]_p \neq [\mathbf{0}]_p \in F[x]/(p).$$

However,

$$[q]_p \cdot [r]_p = [qr]_p = [p]_p = [\mathbf{0}]_p \in F[x]/(p).$$

Thus, $[q]_p$ and $[r]_p$ are zero divisors in F[x]/(p). Since the ring F[x]/(p) contains zero divisors, it is not a field.

Suppose p is irreducible. By the Division with Remainder for Polynomials, every element of F[x]/(p) is (uniquely) of the form $[q]_p$ with $q \in F[x]$ of degree less than the degree of p. Let $q \neq \mathbf{0}$ be any such polynomial. Since p is irreducible, no polynomial of degree smaller than the degree of p divides p. Since the degree of p is larger than the degree of q, no polynomial of degree at least the degree of p divides q. Thus, the constant polynomial $\mathbf{1} \in F[x]$ is a gcd of p and q and there exist polynomials $s, t \in F[x]$ such that

$$sp+tq = \mathbf{1} \in F[x] \implies [s]_p[p]_p + [t]_p[q]_p = [\mathbf{1}]_p \in F[x]/(p).$$

Since $[p]_p = [\mathbf{0}]_p$ in F[x]/(p), the last equation says that $[t]_p$ is a multiplicative inverse of $[q]_p$ in F[x]/(p). Thus, every nonzero element of F[x]/(p) has a multiplicative inverse, and so the ring F[x]/(p) is a field.

Problem J (6+3+2pts)

Let F be a field. A polynomial $p \in F[x]$ of positive degree d is called primitive if the remainders of the monomials x^i , i = 0, 1, ..., from dividing by p include every nonzero polynomial of degree less than d. Show that

- (a) a primitive polynomial p is prime;
- (b) $1+x+x^2+x^3+x^4 \in \mathbb{Z}_2[x]$ is prime, but not primitive;
- (c) the smallest $n \in \mathbb{Z}^+$ such that a primitive degree d polynomial $p \in \mathbb{Z}_2[x]$ divides $x^n 1$ is $2^d 1$.

(a) Since F is a field, $p \in F[x]$ is prime if and only if p is irreducible. By Problem I, the latter is the case if and only if the ring F[x]/(p) is a field, i.e. every nonzero element of F[x]/(p) has a multiplicative inverse. By the Division with Remainder for Polynomials, every element of F[x]/(p)is (uniquely) of the form $[q]_p$ with $q \in F[x]$ of degree less than the degree of p. If p is primitive, then every element of F[x]/(p) equals $[x^i]_p = [x]_p^i$ for some $i \in \mathbb{Z}^{\geq 0}$ (not necessarily unique). It is thus sufficient to show that for every $i \in \mathbb{Z}^{\geq 0}$ such that p does not divide x^i there exist

$$j \in \mathbb{Z}^{\geq 0}$$
 and $u \in F - \{0\}$ s.t. $[x^i]_p \cdot [x^j]_p \equiv \left[x^{i+j}\right]_p = [\mathbf{u}]_p \in F[x]/(p),$

where $\mathbf{u} \in F[x]$ is the constant polynomial with value u; this would imply that $[u^{-1}x^j]_p$ is a multiplicative inverse of $[x^i]_p$.

We first show that F[x]/(p) has no zero divisors. Suppose

$$i, j \in \mathbb{Z}^{\geq 0}$$
 and $[x^i]_p \cdot [x^j]_p = [\mathbf{0}]_p \in F[x]/(p)$.

The last statement implies that p divides x^{i+j} in F[x] and thus $p = x^d$ for some $d \in \mathbb{Z}^+$ such that $d \leq i+j$. The only nonzero remainders of the monomials x^i with $i \in \mathbb{Z}^{\geq 0}$ from dividing by p are then x^i with $i = 0, 1, \ldots, d-1$. These are all the nonzero monomials of degree less than d if and only if d = 1 and $F = \mathbb{Z}_2$. If the latter is the case, either $i \geq d$ or $j \geq d$, and so either $[x^i]_p = [\mathbf{0}]_p$ or $[x^j]_p = [\mathbf{0}]_p$. Whether or not d = 1 and $F = \mathbb{Z}_2$, we conclude that F[x]/(p) has no zero divisors. Since p(x) = x is an irreducible polynomial, for the remainder of the proof we assume that $p(x) \neq x$ and thus $[x^i]_p \neq [\mathbf{0}]_p$ for all $i \in \mathbb{Z}^{\geq 0}$.

Suppose next that the field F is finite. We then show that the element $[x]_p$ of F[x]/(p) has a finite multiplicative order. Since every element of F[x]/(p) is (uniquely) of the form $[q]_p$ with $q \in F[x]$ of degree less than the degree of p, the ring F[x]/(p) is then finite. Since the set $\mathbb{Z}^{\geq 0}$ is infinite, it follows that there exist

$$i, j \in \mathbb{Z}^{\geq 0}$$
 s.t. $i < j, \ [x^i]_p = [x^j]_p \neq [\mathbf{0}]_p \in F[x]/(p) \implies [x^i]_p ([x^{j-i}]_p - [\mathbf{1}]_p) = [\mathbf{0}]_p \in F[x]/(p).$

Since F[x]/(p) has no zero divisors, the last statement implies that $[x^{j-i}]_p = [\mathbf{1}]_p$. Thus, there exists $N \in \mathbb{Z}^+$ so that $[x^N]_p = [\mathbf{1}]_p$.

If $[x^i]_p$ is any nonzero element of F[x]/(p) and $j \in \mathbb{Z}^{\geq 0}$ is such that i+j is divisible by N, then

$$[x^i]_p \cdot [x^j]_p = [x]_p^{i+j} = [\mathbf{1}]_p \in F[x]/(p).$$

Thus, $[x^j]_p$ is a multiplicative inverse of $[x^i]_p$. We conclude that every nonzero element of F[x]/(p) has a multiplicative inverse and thus F[x]/(p) is a field.

Suppose now that F is infinite and $[x^i]_p$ with $i \in \mathbb{Z}^{\geq 0}$ is any nonzero element of F[x]/(p). Since $F - \{0\}$ is infinite, there exist

$$j \in \mathbb{Z}, u \in F - \{0\}$$
 s.t. $j \ge i, [x^j]_p = [\mathbf{u}]_p \in F[x]/(p).$

This implies $[x^i]_p \cdot [x^{j-i}]_p = [\mathbf{u}]_p$ and so $[x^i]_p$ is a unit in F[x]/(p). We conclude that every nonzero element of F[x]/(p) has a multiplicative inverse and thus F[x]/(p) is a field.

Note. The reasoning in the previous paragraph in fact implies that F cannot be infinite if F[x] contains a primitive polynomial p.

(b) Since x = 0, 1 are not roots of $1 + x + x^2 + x^3 + x^4$ over \mathbb{Z}_2 , this polynomial has no linear factors in $\mathbb{Z}_2[x]$. If it is not prime/irreducible, then it is a product of two (not necessarily distinct) irreducible degree 2 polynomials. An irreducible degree 2 polynomial over \mathbb{Z}_2 must contain the constant term 1 (o/w it would be divisible by x) and an odd number of terms overall (o/w x = 1 would be a root and (x-1) would divide this polynomial). The only such degree 2 polynomial is $1+x+x^2$. Since

$$(1+x+x^2)^2 = 1+x^2+x^4 \in \mathbb{Z}_2[x],$$

it follows that $1+x+x^2+x^3+x^4$ has no degree 2 factors either and is thus irreducible/prime in $\mathbb{Z}_2[x]$.

The remainders of the monomials x^i , $i=0,1,\ldots$, from dividing by $1+x+x^2+x^3+x^4$ are

$$1, x, x^{2}, x^{3}, x^{4} = 1 + x + x^{2} + x^{3}, x^{5} = x(1 + x + x^{2} + x^{3}) = (x + x^{2} + x^{3}) + (1 + x + x^{2} + x^{3}) = 1, \dots;$$

the remainders cycle afterwards. Thus, the remainders consist of only 5 out of the 2^4 -1 polynomials of degree less than 4, and so $1+x+x^2+x^3+x^4$ is not a primitive polynomial.

(c) By (a) and Problem I, $\mathbb{Z}_2[x]/(p)$ is a field. Thus, the group G_p of units in $\mathbb{Z}_2[x]/(p)$ consists of all nonzero elements. Since every element of $\mathbb{Z}_2[x]/(p)$ is (uniquely) of the form $[q]_p$ with $q \in \mathbb{Z}_2[x]$ of degree less than the degree d of p, it follows that $|G_p| = 2^d - 1$. Since $[x]_p$ generates the multiplicative group G_p , the order of this element, i.e. the smallest $n \in \mathbb{Z}^+$ such that

$$[x]_p^n = [\mathbf{1}]_p \in G_p \subset \mathbb{Z}_2[x]/(p)$$

is $|G_p|$. The last equality is equivalent to p dividing $x^n - 1$ in $\mathbb{Z}_2[x]$.

Problem K (3+1+3pts)

Let $f: \mathbb{Z}_2^4 \longrightarrow \mathbb{Z}_2^7$ be the cyclic code generated by the polynomial $p(x) = 1 + x + x^3$.

- (a) Show that this code corrects one error.
- (b) Find the parity polynomial q(x) for p(x).
- (c) The message received, possibly with an error, is 0110110. What message (codeword) was sent? What word does this codeword stand for?

(a) The codewords of this code are the polynomials $pa \in \mathbb{Z}_2[x]$ with $a \in \mathbb{Z}_2[x]$ being a polynomial of degree less than 4. An error in the *i*-th bit, with i = 1, 2, ..., 7, is an extra x^{i-1} added to a codeword $pa \in \mathbb{Z}_2[x]$. The remainders of these monomials from dividing by p are

1, x,
$$x^2$$
, $x^3 = 1+x$, $x^4 = x(1+x) = x+x^2$,
 $x^5 = x(x+x^2) = x^2 + (1+x) = 1+x+x^2$, $x^6 = x(1+x+x^2) = (x+x^2) + (1+x) = 1+x^2$.

Since they are all distinct, this code can determine in which bit i a single error occurred from the remainders of dividing by p. Thus, this code corrects one error.

Alternatively, one can show that the minimum length of a nonzero code word is 3. This can done by computing all 2^4-1 nonzero codewords:

Since the code is linear, the codewords after the first row are obtained from the already computed codewords by adding the appropriate elements from the first row.

(b) Since

$$x^{7}-1 = (x-1)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) = (x-1)\left(x^{3}+x^{2}+1\right)\left(x^{3}+x+1\right),$$

the parity polynomial q(x) for $p(x) = (1+x+x^3)$ is

$$q(x) = (1+x)(1+x^2+x^3) = 1+x+x^2+x^4.$$

(c) This message corresponds to the polynomial $b(x) = x + x^2 + x^4 + x^5$. Dividing it with remainder by p(x), we obtain

$$x^{5} + x^{4} + x^{2} + x = x^{2} (x^{3} + x + 1) + (x^{4} + x^{3} + x) = (x^{2} + x) (x^{3} + x + 1) + (x^{3} + x^{2})$$

= $(x^{2} + x + 1) (x^{3} + x + 1) + (x^{2} + x + 1).$

By part (a), the remainder $1+x+x^2$ arises from x^5 . The relevant codeword is thus

$$b(x) + x^5 = x + x^2 + x^4.$$

This codeword arises from the polynomial x, which corresponds to the word 0100 (before encoding).