MAT 312/AMS 351: Applied Algebra Solutions to Problem Set 10 (13pts)

Problem F (6pts)

Factor the following polynomials into irreducible ones (and show that the factors are indeed irreducible).

(a) $x^3 + x + 1$ in $\mathbb{Z}_2[x]$ (b) $x^2 - 3x - 3$ in $\mathbb{Z}_5[x]$ (c) $x^2 + 1$ in $\mathbb{Z}_7[x]$

(a) Since $x^3 + x + 1$ does not vanish at $x = 0, 1 \in \mathbb{Z}_2$, this cubic polynomial has no linear factor and is thus irreducible in $\mathbb{Z}_2[x]$.

(b) This polynomial vanishes at x=1,2. Thus, it splits as (x-1)(x-2) in $\mathbb{Z}_5[x]$.

(c) Since $x^2 + 1$ does not vanish at $x = 0, \pm 1, \pm 2, \pm 3 \in \mathbb{Z}_7$, this quadratic polynomial has no linear factor and is thus irreducible in $\mathbb{Z}_7[x]$.

Note. The reason for the irreducibility of $x^2 + 1$ in $\mathbb{Z}_7[x]$ is not that the only roots of $x^2 + 1$ in \mathbb{C} are $\pm i$ and these are not real numbers. Since $x^2 + 1$ has at most two roots over any field and its only roots in \mathbb{C} are $\pm i$, $x^2 + 1$ has no other roots in any ring contained in \mathbb{C} . In particular, $x^2 + 1$ has no roots in any ring *R* contained in \mathbb{R} (such as \mathbb{R} , \mathbb{Q} , and \mathbb{Z}) and is thus irreducible over any ring *R* contained in \mathbb{R} . However, \mathbb{Z}_7 is not contained in \mathbb{R} (or \mathbb{C}). Thus, $x^2 + 1$ not having roots in \mathbb{R} says nothing about it not having roots in \mathbb{Z}_7 . For example, $x^2 + 1$ does have roots in \mathbb{Z}_5 , $x = \pm 2$, and factors as (x+2)(x-2) in $\mathbb{Z}_5[x]$.

Problem H (3pts)

Let F be a field (possibly finite). Show that there are infinitely many irreducible monic polynomials in F[x] (monic means that the coefficient of the highest power of x is 1). Hint: How was a similar result proved for \mathbb{Z} ?

The proof is almost identical to the proof of Corollary 1.3.4. Suppose p_1, \ldots, p_n are all the irreducible monic polynomials in F[x]. Let

$$a = p_1 p_2 \dots p_n + \mathbf{1} \in F[x].$$

Since the remainder of the division of a by p_i is the constant polynomial 1, none of the p_i 's divides a. Since x is a monic irreducible polynomial, the degree of a is at least 1. By the "Unique" Factorization Theorem for F[x], some irreducible polynomial $p \in F[x]$ divides a. Since F is field, p can be taken to be monic (just divide the initial p by the inverse of the coefficient of the highest power of x). Since none of the p_i 's divides a, $p \neq p_i$ for all i = 1, 2, ..., n. Since $p \in F[x]$ is an irreducible monic polynomial, this contradicts the assumption that $p_1, ..., p_n$ are all the irreducible monic polynomials in F[x]. Thus, there are infinitely many irreducible monic polynomials in F[x].

Problem G (4pts)

Find a greatest common divisor of x^3-6x^2+x+4 and x^5-6x+1 in $\mathbb{R}[x]$.

$$\begin{aligned} x^5 - 6x + 1 &= x^2(x^3 - 6x^2 + x + 4) + (6x^4 - x^3 - 4x^2 - 6x + 1) \\ &= (x^2 + 6x)(x^3 - 6x^2 + x + 4) + (35x^3 - 10x^2 - 30x + 1) \\ &= (x^2 + 6x + 35)(x^3 - 6x^2 + x + 4) + (200x^2 - 65x - 139) \\ x^3 - 6x^2 + x + 4 &= \frac{x}{200}(200x^2 - 65x - 139) - \frac{1}{200}(1135x^2 - 339x - 800) \\ &= \frac{1}{200}(x - \frac{227}{40})(200x^2 - 65x - 139) - \frac{1}{8000}(1195x - 447) \\ 200x^2 - 65x - 141 &= \frac{40x}{239}(1195x - 447) + \frac{1}{239}(2345x - 33699) \\ &= \frac{1}{239}(40x + \frac{469}{239})(1195x - 447) - \frac{7844418}{239^2} \end{aligned}$$

Thus, a gcd of x^3-6x^2+x+4 and x^5-6x+1 in $\mathbb{R}[x]$ is the constant polynomial 7844418/239² or equivalently **1**, i.e. these two polynomials have no common polynomial factor in $\mathbb{R}[x]$.

Alternatively, x = 1 is a root of $x^3 - 6x^2 + x + 4$ and so (x-1) divides $x^3 - 6x^2 + x + 4$ even in $\mathbb{Z}[x]$. Using polynomial division, we obtain

$$x^{3}-6x^{2}+x+4 = (x-1)(x^{2}-5x-4).$$

Since x is not a root of x^5-6x+1 , (x-1) does not divide x^5-6x+1 and

$$gcd (x^3 - 6x^2 + x + 4, x^5 - 6x + 1) = gcd (x^2 - 5x - 4, x^5 - 6x + 1).$$

The polynomial $x^2 - 5x - 4$ has no rational roots (any such root would be an integer dividing 4, i.e. $\pm 1, 2$, none of which is a root). Thus, $x^2 - 5x - 4$ is therefore irreducible in $\mathbb{Q}[x]$. Since $x^2 - 5x - 4$ and $x^5 - 6x + 1$ lie in $\mathbb{Q}[x]$, their gcd in $\mathbb{Q}[x]$ is also their gcd in $\mathbb{R}[x]$. Since $x^2 - 5x - 4$ is irreducible in $\mathbb{Q}[x]$, it is thus enough to check whether $x^2 - 5x - 4$ divides $x^5 - 6x + 1$:

$$\begin{split} x^5-6x+1 &= x^3(x^2-5x-4) + (5x^4+4x^3-6x+1) \\ &= (x^3+5x^2)(x^2-5x-4) + (29x^3+20x^2-6x+1) \\ &= (x^3+5x^2+29x)(x^2-5x-4) + (165x^2+110x+1) \\ &= (x^3+5x^2+29x+165)(x^2-5x-4) + (935x+661). \end{split}$$

Since x^2-5x-4 is irreducible and does not divide x^5-6x+1 , it follows that a gcd of x^2-5x-4 and x^5-6x+1 is the constant polynomial **1** (or any nonzero constant multiple of it).

Note: the above computations of remainders are essentially long divisions of polynomials written in a more compact form.