MAT 312/AMS 351: Applied Algebra
Solutions to Problem Set 10 (13pts)

Problem F (6pts)

Factor the following polynomials into irreducible ones (and show that the factors are indeed irre-
ducible).
(a) 23+2+1 in Zs[z] (b) x®—3x—3 in Zs|x] (c) 2 +1 in Zz[x]

(a) Since 22 +x+1 does not vanish at =0, 1 € Zs, this cubic polynomial has no linear factor and
is thus irreducible in Zs[x].

(b) This polynomial vanishes at =1, 2. Thus, it splits as (z—1)(z—2) in Zs[z].

(c) Since 2 +1 does not vanish at 2 =0, 41,42, +3 € Z7, this quadratic polynomial has no linear
factor and is thus irreducible in Z7[z].

Note. The reason for the irreducibility of x2+1 in Z;[z] is not that the only roots of 22+1 in C
are +i and these are not real numbers. Since 22 +1 has at most two roots over any field and its
only roots in C are +i, 2241 has no other roots in any ring contained in C. In particular, z2+1
has no roots in any ring R contained in R (such as R, Q, and Z) and is thus irreducible over any
ring R contained in R. However, Z7 is not contained in R (or C). Thus, 2241 not having roots in R
says nothing about it not having roots in Z;. For example, 22+1 does have roots in Zs, & =42,
and factors as (z+2)(z—2) in Zs[z].

Problem H (3pts)

Let F be a field (possibly finite). Show that there are infinitely many irreducible monic polynomials
in F[x] (monic means that the coefficient of the highest power of x is 1).
Hint: How was a similar result proved for 7.7

The proof is almost identical to the proof of Corollary 1.3.4. Suppose pi,...,p, are all the irre-
ducible monic polynomials in F[z]. Let

a = pip2...pp+1 € Flz].

Since the remainder of the division of a by p; is the constant polynomial 1, none of the p;’s
divides a. Since x is a monic irreducible polynomial, the degree of a is at least 1. By the “Unique”
Factorization Theorem for F'[z], some irreducible polynomial p € F'[x] divides a. Since F is field, p
can be taken to be monic (just divide the initial p by the inverse of the coefficient of the highest
power of z). Since none of the p;’s divides a, p # p; for all i =1,2,...,n. Since p € F[z] is an
irreducible monic polynomial, this contradicts the assumption that pi, ..., p, are all the irreducible
monic polynomials in F[z]. Thus, there are infinitely many irreducible monic polynomials in F'[z].



Problem G (4pts)
Find a greatest common divisor of 23 —6x*+x+4 and 2°—6x+1 in R[z].
25 —6x+1 = 2%(2® — 622+ x+4) 4 (62 — 23— 422 —62+1)

= (2% +62) (23— 622 +2+4)+(352° —102% — 302 +1)
= (2*+62+35)(2® —62% +2+4)+ (2002 — 652 —139)

2? — 62’ +a+4 = 2‘%(200#—65%139) — %0(1135:02—339%800)
= ﬁ(:n—%) (2002° —652—139) — ﬁ(n%m—zm)
2002° — 65z — 141 = Z;0799”(1195:c—447) + %(2345%33699)
= ﬁ(%m—k%)(ll%x—%?) - %

Thus, a ged of #3—62%+x+4 and 25 —62+1 in R[z] is the constant polynomial 7844418/2392 or
equivalently 1, i.e. these two polynomials have no common polynomial factor in Rz].

Alternatively, =1 is a root of 23 —6x2+x+4 and so (v—1) divides 23 —622+x+4 even in Z[z].
Using polynomial division, we obtain

362+ r4+4 = (z—1)(2® —5x—4).
Since z is not a root of #°—6x+1, (x—1) does not divide #°—6x+1 and
ged (m3—6x2+x+4,x5—6x+1) = ged (a:2—5x—4,:c5—6a:+1).

The polynomial 22 —5xz —4 has no rational roots (any such root would be an integer dividing 4,
i.e. +1,2, none of which is a root). Thus, x2—5x—4 is therefore irreducible in Q[z]. Since 2%2—5r—4
and z°—6z+1 lie in Q[z], their ged in Q[z] is also their ged in R[z]. Since x2—5x—4 is irreducible
in Q[z], it is thus enough to check whether 22 —5x—4 divides x°—6x+1:
2°—6x+1 = 23(2® —5x—4)+ (52t +42° —62+1)

= (34522 (22 =52 —4)+(292° + 2022 —62+1)

= (23 + 522 +292) (22 — 5z —4) + (16522 +1102+1)

= (2% + 5224292 +165) (2? —5x—4) +(9352+661).

Since 22 —52—4 is irreducible and does not divide 2°—6z-+1, it follows that a ged of 2 —5x—4 and
2% —62+1 is the constant polynomial 1 (or any nonzero constant multiple of it).

Note: the above computations of remainders are essentially long divisions of polynomials written
in a more compact form.



