
MAT 127 LECTURE OUTLINE WEEK 9

These lecture notes are meant to complement what is found in the textbook, to explain the
same material in a slightly different way. My aim is to keep these relatively concise, while
pointing you to the textbook for more details as needed.

Goal: This week, we will introduce and study more tests for convergence: the comparison
test, the limit comparison test, the ratio test, and the root test. Actually, the last three of
these tests are just applications of the comparison test, but they are often easier to apply
in practice. [The textbook also has a section on the alternating series test, but this will be
covered next week and will not appear on Midterm 2.]

(1) The next main convergence test is called the comparison test. The idea behind the
comparison test is simple: If a given series converges, then any series that is smaller
also converges. If a given series diverges, then any series that is bigger also diverges.
The exact statement is Theorem 5.11 in the book.

Comparison test.
(a) Suppose that 0 ≤ an ≤ bn for all n ≥ N for some integer N .

If
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

(b) Suppose that an ≥ bn ≥ 0 for all n ≥ N for some integer N .

If
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

(2) A common situation is where an is a rational function. In this case, we are able to

compare
∞∑
n=1

an with a p-series (or multiple of a series). Here’s an example.

Example. Determine the convergence of
∞∑
n=1

1

n2 + 1
.

The idea is to observe that
1

n2 + 1
<

1

n2
for all n, recalling that the p-series

∞∑
n=1

1

n2

converges. By the comparison test, the series
∞∑
n=1

1

n2 + 1
also converges. One thing

to notice is that this comparison is reasonable, since as n gets large the “+1” in
the series becomes insignficant compared to the “n2”, so we expect the two series to
behave in essentially the same way.

(3) Often, we want to apply the comparison test but the two series don’t match up quite
as neatly as in the previous example. In these cases, it is easier to apply the limit
comparison test (Theorem 5.12).
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Limit comparison test.
Suppose that 0 ≤ an, bn for all n.

(a) Suppose lim
n→∞

an/bn exists [and is finite]. If
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

(b) Suppose lim
n→∞

an/bn exists and is non-zero, or limn→∞ an/bn = ∞. If
∞∑
n=1

bn

diverges, then so does
∞∑
n=1

an.

Let’s briefly explain why (a) is true. By the assumption that limn→∞ an/bn exists
(denote this limit by L), we have that an ≤ 2Lbn for n large enough. So now apply

the Comparison Test to
∞∑
n=1

an and
∞∑
n=1

2Lbn. So, conceptually speaking, the Limit

Comparison Test is just a version of the Comparison Test, but it helps to streamline
its application to particular problems.

(4) An example is the series
∞∑
n=1

1

n2 − 1
. This is similar to the series in the previous

example. Again, we want to compare with the series
∞∑
n=1

1

n2
. However, the comparison

test doesn’t apply directly. Instead, we can use the limit comparison test. Take

lim
n→∞

an
bn

= lim
n→∞

1/(n2 − 1)

1/n2
= lim

b→∞

n2

n2 − 1
= 1.

Since this limit exists and the series
∞∑
n=1

1

n2
converges, so does the series

∞∑
n=1

1

n2 − 1
.

This type of comparison can be done whenever an is a rational function of n,
where you compare it with a p-series based on the leading powers of the numerator
and denominator.

(5) Next, we state the ratio test.

Ratio test.

Let
∞∑
n=1

an be a series with non-zero terms and ρ = lim
n→∞

|an+1|
|an|

.

(a) If 0 ≤ ρ < 1, then
∞∑
n=1

an converges.

(b) If ρ > 1 or ρ = ∞, then
∞∑
n=1

an diverges.

(c) If ρ = 1, then the test is inconclusive.
The ratio test is essentially the comparison test with a geometric series. The idea is

that you can choose a value R satisfying ρ < R < 1 (for case (a) showing convergence)



MAT 127 LECTURE OUTLINE WEEK 9 3

or 1 < R < ρ (for case (b) showing divergence) and apply the comparison test (or

limit comparison test) with the geometric series
∞∑
n=1

Rn.

(6) The ratio test is useful for series involving exponential functions and factorials, since
these simplify nicely in the expression |an+1|/|an|. Also, the ratio never yields any
information in the case of rational functions. The ratio test allows us to handle series
like

∞∑
n=1

n2

2n
or

∞∑
n=1

2n

n!
.

Both of these series converge by the ratio test; see the textbook for details for some
similar examples. The idea is that the exponential function 2n in the denominator
dominates the rational function n2 in the numerator (for the first example), and the
factorial function n! dominates the exponential function 2n (for the second example).

(7) Finally, we have the root test. This is also essentially the comparison test with a
geometric series, though in a somewhat different way.

Root test.

Let
∞∑
n=1

an be a series and ρ = lim
n→∞

n
√

|an|.

(a) If 0 ≤ ρ < 1, then
∞∑
n=1

an converges.

(b) If ρ > 1 or ρ = ∞, then
∞∑
n=1

an diverges.

(c) If ρ = 1, then the test is inconclusive.

The root test is based on comparing with the geometric series
∞∑
n=1

ρn. It is useful

mainly in the case where an is of the form an = bnn for some bn. A typical example is
∞∑
n=1

(n2 + 3n)n

(4n2 + 5)n
,

which converges (since ρ = 1/4 < 1. It’s also worth mentioning that the ratio test
also works whenever the root test does. (Do you see why this is the case?)


