
MAT 127 LECTURE OUTLINE WEEK 6

These lecture notes are meant to complement what is found in the textbook, to explain the
same material in a slightly different way. My aim is to keep these relatively concise, while
pointing you to the textbook for more details as needed.

Goal: We have our final topic related to differential equations: systems of two autonomous
1st order differential equations, which often take the form of predator-prey equations.
Note that there is a lot more to be said about differential equations than we have time for
in this class. You may eventually take Calculus 4 or a similar class focusing almost entirely
on differential equations, where these and other topics are explored in much more depth.

(1) We will begin with the predator-prey equations, also called the Lotka–Volterra
equations after the mathematicians who first studied them. Recall that we have al-
ready seen two models of population growth: exponential growth and logistic growth.
Both of these deal with the population of a single species without accounting for other
populations in its environment in a direct way.

Our goal now is to model two populations that interact. There are many sorts of
potential interactions, but a natural one is a predator-prey relationship between two
species. Let’s take R(t) to represent the size of a population of rabbits and W (t)
to represent the size of a population of wolves. We make the following assumptions:
If the wolves are removed from the picture, the rabbit population will grow expo-
nentially. Thus dR

dt
= kR for some constant k > 0. If the rabbits are removed from

the picture, the wolves will die off at an exponential rate. Thus dW
dt

= −rW for
some r > 0. When considered together, the rabbits are hunted by the wolves at a
rate proportional to RW , the product of the two population sizes (the value RW
represents the number of individual interactions between rabbits and wolves). On
the other hand, the wolf population grows at a rate proportional to RW .

Combining this all together, we get the system of differential equations
dR

dt
= kR− aRW

dW

dt
= −rW + bRW,

where k, r, a, b > 0 are constants.
Take a few moments to analyze each piece of these equations. What role does

each part play, and why does it make sense conceptually? When is the population of
rabbits increasing or decreasing? [Answer: the rabbits are decreasing exactly when
there are enough wolves for aW to be bigger than k.] When is the population of
wolves increasing or decreasing? Like all models, its assumptions may be questioned
and its effectiveness must be measured by its predictive power in the real world. For
example, in absence of the rabbits, the wolves die off exponentially, which seems
to imply that the wolves have a secondary food source other than rabbits that can
partially sustain them.
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(2) Systems of differential equations such as the predator-prey equations are usually
difficult or impossible to solve exactly. Instead, our goal will be a qualitative un-
derstanding of the solutions: an understanding of their long-term behavior without
being concerned with the exact solution. This typically includes doing the following:

• Find the equilibrium (constant) solutions
• Plot a direction field for the system (after eliminating the variable t)
• Sketch a representative set of solutions using the direction field
• Discuss “stability” of the solutions, meaning their long-term behavior

(3) Notice that the predator-prey equations above are autonomous, meaning that they
do not contain the independent variable t. This should be expected for any physical
situation whose governing laws are independent of time, which is generally the case.
In our rabbit/wolf situation, autonomous means that rabbits/wolves today will mul-
tiply and hunt at the same rates as they would, say, 1000 years ago. This may or
may not be true in reality, but we take this as an assumption for our model.

From a mathematical point of view, the property of autonomy makes these equa-
tions easier to understand. Initially, we have three variables under consideration:
the independent variable t and the dependent variables R,W . This is difficult to
represent on a two-dimensional graph. However, the property of autonomy allows us
to effectively ignore the time variable t and instead consider how R and W relate to
each other. Applying the chain rule, we can write

dW

dR
=

dW/dt

dR/dt
=

−rW + bRW

kR− aRW
.

This tells us how the population of wolves changes as a function of rabbits, without
worrying about precisely how long it takes to happen. Let’s plot the direction field
for a typical predator-prey equation, taking k = .08, r = .02, a = .001, b = .00002
(R is represented by the horizontal axis and W by the vertical axis.

Take a moment to interpret this plot. In the bottom-right quarter of the plot, there
are many rabbits and few wolves. We see that both W and R increase, since there
is plenty of food for the wolves but not enough wolves yet to slow the growth of the
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rabbits. However, in the top-right quarter, there are enough wolves that the rabbit
population begins to decrease. Eventually, in the top-left quarter, the rabbit numbers
have decreased so much that there is not enough food to support the wolf population,
and the wolves too begin to die off. Finally, in the bottom-left quarter, both species
have become scarce enough that rabbit population again begins to grow, taking us
back to the starting position.

So the solutions (R(t),W (t)) are going to loop around the middle point (which
appears to be (1000, 80)) in counterclockwise fashion. In principle, these loops could
be spiraling either in towards (1000, 80) or away from (1000, 80). However, it turns
out that the solutions do not spiral; the solutions make closed loops. That is, the
solutions are periodic, repeating exactly over some definite time interval. On the
homework, you will be asked to mathematically verify this property.

(4) Let’s complete our analysis of the predator-prey equation. To find the equilibrium
solutions, we set

0 =
dR

dt
= kR− aRW = R(k − aW )

0 =
dW

dt
= −rW + bRW = W (−r + bR)

There are two possibilities: (R,W ) = (0, 0) and (R,W ) = (r/b, k/a). The first
of these represents the case where both populations are non-existent in the first
place. The second of these is the population sizes that are perfectly balanced: the
effect of the wolves preying on rabbits exactly matches the rabbits multiplying, while
the wolves can find exactly enough food to maintain their population. Using the
coefficients k = .08, r = .02, a = .001, b = .00002 above, we get the equilibrium
solution (R,W ) = (.02/.00002, .08/.001) = (1000, 80) = (1000, 80), which is the
central point we saw earlier in the direction field.

The non-equilibrium solutions then circle around the non-zero equilibrium point
counterclockwise, as discussed above, provided that R,W are both nonzero. For
completeness, here are the other two cases. If R = 0, then the wolf population
W (t) decays exponentially to zero. If W = 0, then the rabbit population R(t) grows
exponentially indefinitely. This concludes our analysis of the predator-prey equation.

(5) We can also consider similar systems of equations modeling other interactions be-
tween species and do a similar qualitative analysis. Another situation is two species
competing for the same food source. There are various possibilities. For example, the
two populations can reach a stable equilibrium point where both coexist indefinitely.
Or one population can drive the other to extinction. Let’s take x(t) to represent
the number of zebra in a population, and y(t) to represent the number of buffalo (in
some unit such as thousands or ten thousands, so we can simplify the coefficients).
In this model, we will combine logistic growth (the left part of the formula) with a
competition factor (the right part of the formula) between the species. We have:

dx

dt
= x(1− x)− xy

dy

dt
= y(.75− y)− .5xy
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Again, we can go through the same process of finding the equilibrium solutions and
plotting the direction field. In this case, there are four equilibrium solutions, (0, 0),
(0, .75), (1, 0) and (.5, .5). (Check this on your own.) Here is a plot of the direction
field along with some representative solutions.

This plot gives a good idea of the long-term behavior of the solutions. If one of the
populations is zero, then we see logistic growth in the other population. Otherwise,
both populations are nonzero and we see that the populations will eventually ap-
proach the equilibrium point at (.5, .5). Thus we have a long-term harmony between
the two species. You might try to give an intuitive explanation for this behavior
based upon the equations. (Maybe the two species have slightly different preferences
of which plants to eat, so the ecosystem supports both species more easily than many
of one species.)

(6) Now let’s change the model by tweaking the coefficients:

dx

dt
= x(1− x)− xy

dy

dt
= y(.5− .25y)− .75xy

Go through the calculation to find the equilibrium points. You should get (0, 0),
(1, 0), (0, 2), (.5, .5) as the four equilibrium points. Again, we plot the direction field:
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This is rather different. The equilibrium point at (.5, .5) in unstable. Instead, the
solutions head towards either the equilibrium point (1, 0) (the zebra drive the buffalo
to extinction) or the equilibrium point (0, 2) (the buffalo drive the zebra to extinc-
tion). In practice, the equilibrium at (.5, .5) could not happen because any slight
deviation would cause the populations to fall to either the ‘zebra side’ or the ‘buffalo
side’. Again, try to think of an intuitive explanation. (The competition between the
two species is fiercer than competition within a species, maybe because one species
spoils the food supply of the other.)


