
MAT 127 LECTURE OUTLINE WEEK 4-5

These lecture notes are meant to complement what is found in the textbook, to explain the
same material in a slightly different way. My aim is to keep these relatively concise, while
pointing you to the textbook for more details as needed.

Goal: We have two separate topics to cover: logistic growth and second-order homo-
geneous constant coefficient linear equations.

(1) We will continue with the theme of mathematical modelling, which has been a con-
sistent part of the this course and which we discussed in more depth last week. Here,
we will look at basic models of population growth. In this context, our variable is t to
represent “time”, and our function is denoted by P (t) to represent “population”. Like
all models, the ones we consider here are simplifications or idealizations of reality.

(2) Our starting point is a review of exponential growth. This corresponds to a popu-
lation that grows at a fixed rate proportional to the current population without any
constraint to limit growth. For example, you might think of a population of bacteria
where each bacteria divides every three hours. Note, however, that while the actual
population must be an integer at each point in time, we use a continuous function as
a model for population. The equation for exponential growth is

P (t) = P0e
rt,

where P0 ≥ 0 is the initial population size and r is the growth rate. In this context,
we require that r > 0; if r < 0, then P (t) instead represents exponential decay. The
exponential growth equation is most likely one you would have seen in precalculus or
elsewhere. In the context of our class, we can think of it as a solution to a particular
initial value problem:

dP

dt
= rP, P (0) = P0.

(3) As a mathematical model, exponential growth is fairly limited, since it doesn’t ac-
count for limitation on space and resources, and so forth. The next level of model for
population growth is to consider a carrying capacity for an organism in a given en-
vironment: the maximum population that can be sustained indefinitely. The logistic
differential equation is

dP

dt
= rP

(
1− P

K

)
,

where r is the growth rate and K is the carry capacity of the environment. It looks
like the equation for exponential growth but with an extra factor of (1− P/K).

(4) To get a feel for the equation, let’s plot a typical direction field, taking K = 100:
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The qualitative features should be evident: if P is small, then the population increases
in a way very similar to exponential growth. Once P gets close to 100, the rate of
growth tails off, and P approaches 100 in the limit. If the initial population is
larger than 100, then the population declines until 100 is reached. There are two
equilibrium solutions at 0 and 100. What is their asymptotic stability? Can you give
an interpretation of this?

Certainly, the logistic growth model is an improvement over the exponential growth
model. However, you might think about its limitations. For example, it doesn’t
directly account for interactions between populations of different organisms.

(5) The logistic growth equation is autonomous, since it does not depend on time. For
this reason, it can analyzed using a phase line: to represent on a vertical line the
zones where P is either increasing, decreasing, or flat.

(6) The logistic equation can be solved using separation of variables, as we’ve practiced
in the previous section. We set this up as∫

1

P (1− P/K)
dP =

∫
r dt.

The left-hand side can be written using partial fractions and then integrated, giving:∫
1

P
+

1

K − P
dP = ln |P | − ln |K − P |+ C = ln

∣∣∣∣ P

K − P

∣∣∣∣+ C.

The right hand side integrates to rt+ C. Together (and consolidating the constants
of integration into a single constant C), this gives

ln

∣∣∣∣ P

K − P

∣∣∣∣ = rt+ C.

Exponentiating and removing the absolute value signs gives

P

K − P
= C1e

rt,(1)
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where C1 is a real constant. With some algebra, we can solve for P to get

P (t) =
C1Kert

1 + C1ert

as the general solution. We can now use the initial value P (0) = P0 to determine the
constant C1. Here, it’s more convenient to use the equation (1) above. This gives
C1 = P0/(K − P0). With some more algebra, we get

P (t) =
P0Kert

K − P0 + P0ert
.

(7) Here’s a typical problem, taken from the textbook: Suppose that a butterfly sanc-
tuary has a capacity of 2000 butterflies and an initial population of 400. After two
months, you observe that the population is at 800. Use the logarithmic growth model
to predict how long it will take to reach a population of 1500 butterflies.

We are given that K = 2000, but we are not given the growth rate r. However,
according to (1), we have

800

2000− 800
=

400

2000− 400
er·2,

which simplifies to
2

3
=

1

4
e2r.

So r = ln(8/3)/2. We can now use (1) again to solve the problem: the time t with
population P (t) = 1500 occurs when

3 =
1500

2000− 1500
=

1

4
eln(8/3)t/2.

Solving for t gives

t =
2 ln(12)

ln(8/3)
≈ 5.07 months.

(8) Now we switch to the second topic: 2nd order homogeneous constant coefficient
linear equations. This is a lengthy way to refer to differential equations of the form

y′′ + by′ + cy = 0,

where y = y(x) and b, c are real numbers. Let’s elaborate on the terminology. The
word “homogeneous” here means that the right-hand side of the equation is 0. A
“linear” equation would allow for something of the form y′′ + b(x)y′ + c(x)y = 0, i.e.,
the coefficients b and c are actually functions of x. But here we have specified that
the equation has “constant coefficients”, so b and c are just constants.

(9) The DE notes posted on the course website already give an overview of this topic.
Instead of duplicating what is already written, I’ll just make a few supplementary
remarks. First is a word regarding applications: these equations commonly show up
when describing an object in motion subject to some force (recall that a force causes
acceleration on the object, which corresponds to a second derivative). We’ve already
seen one simple example of this in the form of projectile motion, where the force is
due to gravity. A second example is an oscillating spring. Imagine a spring attached
to the ceiling and hanging down vertically and a weight attached to the bottom of
the spring. The spring is subject to a restoring force that acts on the weight if it
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is pulled down or pushed up from equilibrium position. If you pull the weight away
from equilibrium position and then let go, then this force will cause the weight to
oscillate up and down. This type of system is described by an equation of the form
y′′ + by′ + cy = 0. We will focus our effort in this lesson on the mathematics itself
rather than the applications, but this is a good example to keep in mind.

(10) The main mathematical property of linear homogeneous equations is usually called
the principle of superposition: that if y1 and y2 solve such an equation, then any
linear combination C1y1 + C2y2 is also a solution. It’s good to recall here that
the general solution of a second-order equation contains two unknown constants C1

and C2. Thus, if we can find two distinct solutions y1(x) and y2(x) to a second order
homogeneous linear equation, then the general solution is

y(x) = C1y1(x) + C2y2(x).

(11) The DE notes on the webpage describe a procedure of guessing a solution has the
form y(x) = eλx. Plugging this into the equation y′′ + by′ + cy = 0 leads to the
equation

λ2 + aλ+ b = 0,(2)
which can be solved either by factoring or using the quadratic equation. Note that
the solutions to (2) may very well be complex numbers, i.e., numbers containing
the imaginary unit i =

√
−1. This is a topic you should review if it is unfamiliar.

There are three cases that can occur:
• The equation (2) has two real solutions λ = a1, a2.

Then the general solution is
y(x) = C1e

a1x + C2e
a2x.

• The equation (2) has two complex solutions λ = a±bi. Note that these complex
numbers must be complex conjugates, i.e., a pair a ± bi. It is mathematically
correct to say that the general solution is

y(x) = C1e
(a+bi)x + C2e

(a−bi)x.

However, it is more satisfying to give a solution in which the imaginary unit i
does not appear. This can be done using some cleverness and Euler’s formula:

eia = cos(a) + i sin(a).

See the DE notes on the webpage for details. The result is that we can write
the general solution in the form

y(x) = C1e
ax cos(bx) + C2e

ax sin(bx).

• The equation (2) has a single solution λ = a, which is necessarily real. Then the
general solution is

y(x) = C1e
ax + C2xe

ax.

As always, if the problem has initial values, we can use them to determine the
coefficients C1, C2 for the particular solution. For a second order equation, there
will be two initial values, and then we must solve a system of two linear equations
in two variables. Section 8 of the DE notes on the webpage give an example of
this.


