
MAT 127 LECTURE OUTLINE WEEK 3

These lecture notes are meant to complement what is found in the textbook, to explain the
same material in a slightly different way. My aim is to keep these relatively concise, while
pointing you to the textbook for more details as needed.

Goal: We will learn to solve differential equations by separation of variables. In the
process, we will also review techniques of integration such as integration by partial fraction
decomposition.

(1) We will finally learn our first method for solving a differential equation. It ap-
plies whenever a differential equation can be written in the form y′ = f(x)g(y) (or
dy
dx

= f(x)g(y)), or more suggestively in the form
1

g(y)
dy = f(x)dx.

Notice that the variable y occurs only on the left-hand side of the equation, while
the variable x occurs only on the right-hand side. A differential equation of this type
is called separable, since the equation can be separated into a function of x and a
function of y.

Some examples are y′ = (x − 3)(y2 + 1), y′ = sin(x) +
√
x and y′ = y2. It is also

evident that every autonomous first-order differential equation (such as the third
example) is separable.

(2) The basic idea for solving a separable equation is simple: put the equation in the
form (1/g(y))dy = f(x)dx and integrate both sides (as indefinite integrals—make
sure to include the additive constant C!):∫

1

g(y)
dy =

∫
f(x) dx.

For the example y′ = (x− 3)(y+1), we have∫
1

y2 + 1
dy =

∫
x− 3 dx,

which gives
arctan(y) = x2 − 3x+ C.

If possible, we then solve for y in terms of x. [This is not always possible, so we end
up with an implicit function y = y(x).] In this example, we have

y = tan(x2 − 3x) + C.

At this point, if we are given an initial value, we can use it to determine the constant
C.

(3) Let’s return to the Newton’s law of cooling example from last week. A typical equa-
tion is

y′ = −.2(y − 70).
1
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We have then ∫
1

y − 70
dy = −.2

∫
dx

=⇒ ln |y − 70| = −.2x+ C

=⇒ |y − 70| = e−.2x+C .

Don’t forget the absolute value sign around “y− 70”. The absolute value sign can be
removed by writing the solution in the form

y = 70 + ce−.2x,

where c = ±eC . Since C is an undetermined constant, it’s fine to replace C with
some other undetermined constant that achieves the same thing like the c here.

Say we’re given an initial value y(0) = 55. Then we have 55 = 70 + c · 1, so that
c = −15. So the particular solution is

y = 70− 15e−.2x.

(4) Let’s return to the subject of mathematical modelling: creating a mathematical
model to represent a physical situation. We’ve already seen a couple examples:
temperature and projectile motion. In the homework you’ll do projectile motion
with air resistance, which we’ve generally neglected in calculus up to this point.

A type of problem we’ll look at now is a mixing problem; see also Example 4.12
in the book. Imagine a tank containing a fluid with a certain concentration of salt.
Let’s say the tank initially contains 100 liters of water with 6 kilograms of salt. We
open a plug and let the salty water drain out of the tank at a rate of 2 liters per
minute. At the same time, we start adding water at the same rate of 2 liters per
minute with a concentration of .2 kilograms per liter. Thus the volume of water in
the tank remains constant. The problem is to find the amount of salt in the tank as
a function of time.

We can frame this problem as a differential equation. Let u(t) denote the amount
of salt in the tank as a function of time. The function u(t) is controlled by the inflow
and outflow of salt. Each minute, the tank loses 1/50th of its salt. On the other
hand, it gains a constant .4 kilograms of salt per minute.

This gives u′(t) = .4−u(t)/50 or u′ = (20−u)/50. We can now solve this differential
equation similarly to the Newton’s law of cooling example:∫

1

20− u
du =

∫
1

50
dt

=⇒ − ln |20− u| = t

50
+ C

=⇒ |20− u| = e−t/50−C = e−C · e−t/50

=⇒ u = 20− C1e
−t/50 (where C1 = ±e−C).

This is the general solution. For the particular solution to our initial value problem,
we have u(0) = 6 = 20 − C1e

0 = 20 − C1, so that C1 = 14. So the solution is
u(t) = 20− 14e−t/50.

(5) Any separable equation can be solved this way, though often the difficult step is to
actually do the integrals. All the techniques of integration you’ve learned before will
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come in handy. For example, integration by partial fraction decomposition often
comes up. For example, let’s do the equation

y′ = (2x+ 3)(y2 − 4).

This becomes ∫
1

y2 − 4
dy =

∫
(2x+ 3) dx.

For the left-hand side, we write it in the form∫
1

y2 − 4
dy =

∫
1

(y − 2)(y + 2)
dy =

∫
A

y − 2
+

B

y + 2
dy

for some coefficients A,B yet to be determined. But we see that
A(y + 2) +B(y − 2)

(y − 2)(y + 2)
=

1

(y − 2)(y + 2)
,

and so A(y+2)+B(y− 2) = 1. Plug in y = 2 to get A · 4+ 0 = 1, so A = 1/4. Plug
in y = −2 to get 0 + b · (−4) = 1, so B = −1/4. Evaluating the integrals above, we
have

1

4
ln |y − 2| − 1

4
ln |y + 2| = x2 + 3x+ C.

This can be rewritten as

ln

∣∣∣∣y − 2

y + 2

∣∣∣∣ = 4x2 + 12x+ C.

So
y − 2

y + 2
= C1e

4x2+12x.

Isolating the y, we get

y =
2 + 2C1e

4x2+12x

1− C1e4x
2+12x

.

This is the general solution.


