
MAT 127: Calculus C, Spring 2022
Solutions to Problem Set 3 (85pts)

Webassign Problem 1 (10pts)

Find the general solution to the differential equation

(x2+1)y′ = xy. (1)

This is a separable equation. Write y′ = dy/dx, move everything involving y to LHS and everything
involving x to RHS, and integrate:

(x2 + 1)
dy

dx
= xy ⇐⇒ dy

y
=

x

x2 + 1
dx

⇐⇒
∫

dy

y
=

∫

x

x2 + 1
dx

⇐⇒ ln |y| = 1

2
ln(x2 + 1) + C = ln

√

x2 + 1 + C,

where C is any constant. Exponentiating both sides, we obtain

|y| = eln
√
x2+1+C = eln

√
x2+1 · eC = A

√

x2 + 1 ⇐⇒ y = ±A
√

x2 + 1; (2)

since C is any constant, A = eC is any positive constant. However, we divided both sides of (1)
by y. This is 0 if y = 0 for all x; this gives rise to the only constant solution of the differential
equation, which in turn corresponds to A = 0 in (2). So the general solution (i.e. the set of all

solutions) of (1) is y(x) = C
√
x2 + 1 where C is now any constant.

Note: It is good to check that the function y = y(x) is indeed a solution of (1) by computing y′,
(x2 + 1)y′, and xy and comparing the last two.

Webassign Problem 2 (8pts)

Find the solution to the initial-value problem

dP

dt
=

√
Pt , P (1) = 2. (3)

First find the general solution of the differential equation. This is a separable equation, so we can
move everything involving P to LHS and everything involving t to RHS, and then integrate:

dP√
P

=
√
t dt ⇐⇒

∫

P−1/2dP =

∫

t1/2 dt

⇐⇒ 2P 1/2 =
2

3
t3/2 + C,

(4)

where C is any constant. Dividing by 2 and squaring both sides of (4) gives

P =

(

1

3
t3/2 + C/2

)2

. (5)



Since C is any constant, so is C/2; so we can replace C/2 above by C. However, we divided both
sides of (3) by

√
P . This is 0 if P = 0 for all t; this gives rises to the only constant solution of the

differential equation. So the general solution (i.e. the set of all solutions) of (3) is

P =

(

1

3
t3/2 + C

)2

, P = 0, (6)

where C is now any constant.

It remains to determine which of the solutions (6) of the differential equation (3) satisfies the initial
condition P (1) = 2. The constant solution P (t) = 0 for all t does not satisfy this condition. So
we need to find C so that the function P = P (x) defined by the first equation in (6) satisfies the
initial condition P (1)=2 in (3). For this, plug in t = 1 and P = 2 into the first equation in (6):

2 =

(

1

3
· 13/2 + C

)2

=⇒
√
2 =

1

3
+ C =⇒ C =

√
2− 1

3
.

So the solution to the initial-value problem (3) is given by P (t) =

(

1

3
t3/2 − 1

3
+

√
2

)2

Note 1: It is good to check that the function P = P (t) above actually solves (3). So compute P ′

to compare it with
√
Pt and check that P (1) = 2 as required by the initial condition in (3). Since

the latter is easier, it should probably be done first.

Note 2: Another way to find the solution to (3) is to find C in the last expression in (4) by plugging
in the initial condition (t, P ) = (1, 2):

2 · 21/2 = 2

3
· 13/2 + C =⇒ C = 2

√
2− 2

3
.

So the solution P = P (t) to (3) satisfies

2P 1/2 =
2

3
t3/2 − 2

3
+ 2

√
2.

Dividing by 2 and squaring both sides, we recover the answer obtained above. Finding the correct
constant as early as possible is generally easier, though less systematic than the first approach.

Webassign Problem 3 (10pts)

Find an equation for the curve passing through (0,1) and whose slope at (x, y) is xy.

The slope of the graph of y = y(x) at (x, y(x)) is y′(x). So we need to solve the initial-value
problem

y′ = xy, y(0) = 1. (7)

First find the general solution of the differential equation. This is a separable equation, so after
writing y′ = dy/dx, we can move everything involving y to LHS and everything involving x to
RHS, and then integrate:

dy

dx
= xy ⇐⇒ dy

y
= xdx ⇐⇒

∫

dy

y
=

∫

xdx ⇐⇒ ln |y| = 1

2
x2 + C

⇐⇒ eln |y| = e
1

2
x2+C = e

1

2
x2 · eC

⇐⇒ |y| = eCe
1

2
x2 ⇐⇒ y = Ae

1

2
x2

,

(8)

2



where C is any constant and A = ±eC is any nonzero constant. However, we divided both sides
of (7) by y. This is 0 if y = 0 for all x; this gives rise to the only constant solution of the differential
equation, which corresponds to A=0. We now need to find A so that the function y in the last
equation in (8) satisfies the initial condition y(0)=1. For this, plug in (x, y) = (0, 1) into the last
equation in (8):

1 = Ae
1

2
02 = A.

So A = 1, and an equation for the specified curve is y = e
1

2
x2

Note 1: It is good to check that the function y = y(x) actually solves (7): so compute y′ to compare
it with xy and check that y(0) = 1 as required by the initial condition in (7). Since the latter is
easier, it should probably be done first.

Note 2: Another way to find the solution to (7) is to find C in the first expression in (8) containing
it by plugging in the initial condition (x, y) = (0, 1):

ln |1| = 1

2
02 + C =⇒ C = 0.

So, the solution y = y(x) to (7) satisfies

ln |y| = 1

2
x2 ⇐⇒ |y| = e

1

2
x2 ⇐⇒ y = ±e

1

2
x2

.

Since y(0)>0, this again gives y(x) = ex
2/2.

Webassign Problem 4 (11pts)

A tank contains 1000 L of brine with 15 kg of dissolved salt. Pure water enters the tank at a rate
of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate.

(a) How much salt is in the tank after t minutes?
Let y(t) be the amount of salt in the tank, in kgs, at time t, in minutes. Thus, y(0)=15 and

y′(t) = y′in(t)− y′out(t),

where

y′in(t) = (flow rate of salt)in = (flow rate of solution)in · (flow concentration)in = 10 · 0% = 0;

y′out(t) = (flow rate of salt)out = (flow rate of solution)out · (flow concentration)out .

Since the solution in the tank is kept thoroughly mixed, the outgoing flow concentration is the
same as the salt concentration in the tank:

(flow concentration)out =
amount of salt in tank

volume in tank
=

y(t)

1000
,

since the volume of solution in the tank is kept constant at 1000 gallons. So,

y′out(t) = 10 · y(t)

1000
=

y(t)

100
.
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It follows that y(t) is the solution to the initial-value problem

y′(t) = 0− y(t)

100
= − 1

100
y(t) , y(0) = 15.

Since this is just the exponential decay equation, the solution to this initial-value problem is

y(t) = y(0)e−
1

100
t = 15e−t/100

Alternatively, we can find the general solution of the differential equation and the particular solution
satisfying the initial condition. Since the differential equation is separable, writing y′ = dy/dt,
moving everything involving y to LHS and everything involving t to the RHS, and integrating, we
obtain

dy

dt
= − 1

100
y ⇐⇒ dy

y
= − 1

100
dt ⇐⇒

∫

dy

y
= −

∫

1

100
dt ⇐⇒ ln |y| = − t

100
+ C

⇐⇒ eln |y| = e−t/100+C = e−t/100 · eC ⇐⇒ ln |y| = eCe−t/100

⇐⇒ y = Ae−t/100 ,

where C is any constant and A = ±e−t/100 is any nonzero constant. However, we divided the
equation by y, which is 0 if y = 0; this gives us the constant solution y = 0 of the differential
equation, which corresponds to A=0. In order to find A, plug in the initial condition (t, y)=(0, 15)
into the last equation above:

15 = Ae−0/100 =⇒ A = 15 =⇒ y(t) = 15e−t/100

We could also find the particular solution by plugging in the initial condition (t, y) = (0, 15) into
the first equation equation above that contains C:

ln |15| = − 0

100
+ C =⇒ C = ln 15 =⇒ ln |y| = − t

100
+ ln 15

=⇒ eln |y| = e−
t

100
+ln 15 = e−

t

100 · eln 15 = 15e−
t

100

=⇒ |y| = 15e−
t

100 =⇒ y = ±15e−
t

100 .

Since y(t) cannot be negative, the sign above must be + and we recover the same formula for y(t).

Note: As a reality check, note that y(t) approaches 0 as t−→∞, as expected because the salt gets
washed out with the pure water being poured into the tank.

(b) How much salt is in the tank after 20 minutes?
Since in the above formulas for y(t) the time t is measured in minutes, we can simply plug in t=20:

y(20) = 15e−20/100 = 15e−1/5 ≈ 12.28 kg

Note the units.
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Webassign Problem 5 (11pts)

A tank contains 1000L of pure water. Brine that contains .05 kg of salt per liter of water enters
the tank at a rate of 5 L/min. Brine that contains .04 kg of salt per liter of water enters the tank
at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at a rate 15
L/min. How much salt is in the tank after (a) t minutes; (b) one hour.

Let y(t) be the amount of salt in the tank, in kilograms, at time t, in minutes. Thus, y(0) = 0.
Furthermore, y′(t) = y′in(t)− y′out(t), where

y′in(t) = (flow rate of salt)in, y′out(t) = (flow rate of salt)out.

Since in this case two different salt solutions are entering the tank,

y′in(t) = (flow rate of brine)in;1 · (flow concentration)in;1

+ (flow rate of brine)in;2 · (flow concentration)in;2 = 5 · .05 + 10 · .04 =
25 + 40

100
=

13

20
.

Similarly to the previous problem,

y′out(t) = (flow rate of salt)out = (flow rate of solution)out · (flow concentration)out

= (5 + 10) · (flow concentration)tank = 15 · amount of salt in tank

volume in tank
= 15 · y(t)

1000
=

3

200
y(t) ,

since the volume in the tank is constant at 1000 liters. It follows that y(t) is the solution to the
initial-value problem

y′(t) =
13

20
− 3

200
y(t) =

130− 3y(t)

200
, y(0) = 0.

First find the general solution to the differential equation. Since it is separable, writing y′ = dy/dt,
moving everything involving y to LHS and everything involving t to the RHS, and integrating, we
obtain

dy

dt
=

130− 3y

200
⇐⇒ dy

130− 3y
=

dt

200
⇐⇒

∫

dy

130− 3y
=

∫

dt

200

⇐⇒ −1

3
ln |130− 3y| = t

200
+ C ⇐⇒ ln |130− 3y| = − 3t

200
+ C

⇐⇒ eln |130−3y| = e−3t/200+C = eCe−3t/200 ⇐⇒ ln |130− 3y| = Ae−3t/200

⇐⇒ 130− 3y = ±Ae−3t/200 ⇐⇒ y(t) =
130

3
+ Ce−3t/200 .

Plugging in the initial condition (t, y) = (0, 20), we obtain

0 =
130

3
+ Ce−3·0/200 =

130

3
+ C ⇐⇒ C = −130

3
.

So the amount of salt in the tank after t minutes is y(t) = 130
3 (1− e−3t/200) kg . Thus, the amount

of salt in the tank after 1 hour is

y(60) =
130

3
(1− e−180/200) = 130

3 (1− e−9/10) ≈ 25.72 kg

Note: As a reality check, note that the salt concentration ρ(t) = y(t)/1000 approaches the weighted
average concentration of the incoming solutions, which is (13/20)/15 = (130/3)/1000.

Remark (for Webassign Problems 4,5): On the exams, you will need to leave your answers in an
exact form, as simple as possible, even if they involve exponentials and logs.
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Problem C (35pts)

A ball of mass m is projected vertically upward from the earth’s surface with a positive velocity v0.
The forces acting on the ball are the force of gravity and the air resistance; the magnitude of the
latter is proportional to the speed (the magnitude of the velocity). So, by Newton’s Second Law, the
equation of motion is

mv′ = ma = −mg − pv,

where g and p are positive constants.

(a; 8pts) Show that the upward velocity of v=v(t), until the ball returns to the ground, is given by

v(t) =

(

v0 +
mg

p

)

e−pt/m − mg

p
.

The upward velocity of v=v(t) is the solution to the initial-value problem

mv′ = −mg − pv, v(0) = v0.

The above function satisfies the second condition because

v(0) =

(

v0 +
mg

p

)

e−p·0/m − mg

p
=

(

v0 +
mg

p

)

− mg

p
= v0 .

It satisfies the differential equation because

v′(t) =

(

v0 +
mg

p

)

e−pt/m · −p

m
=⇒ mv′ = −p

(

v0 +
mg

p

)

e−pt/m ,

−mg − pv = −p

(

v0 +
mg

p

)

e−pt/m ;

so LHS of the differential equation equals to RHS of the differential equation when we plug in the
above function v=v(t).

Alternatively, we can first find the general solution of the differential equation and then the particu-
lar solution satisfying the initial condition. This is a separable equation, so after writing v′ = dv/dt,
we can move everything involving v to LHS and everything involving t to RHS, and then integrate:

m
dv

dt
= −(mg+pv) ⇐⇒ mdv

mg+pv
= −dt ⇐⇒ m

∫

dv

mg+pv
= −

∫

dt

⇐⇒ m

p
ln |mg+pv| = −t+ C ⇐⇒ ln |mg+pv| = −pt

m
+

p

m
C

⇐⇒ eln |mg+pv| = e−
pt

m
+ p

m
C = e−

pt

m · e
p

m
C ⇐⇒ |mg+pv| = e

p

m
Ce−

pt

m

⇐⇒ mg+pv = ±e
p

m
Ce−

pt

m ⇐⇒ pv = −mg +Ae−
pt

m ,

where C is any constant and A = ±epC/m is any nonzero constant. However, we divided both sides
of our equation by mg+pv. This is 0 if pv = −mg for all t; this gives rise to the only constant
solution of the differential equation, which corresponds to A=0. We now need to find A so that
the function v defined above satisfies the initial condition v(0)=v0. For this, plug in (t, v) = (0, v0)
into the last equation above:

pv0 = −mg +Ae−
p·0

m = −mg +A =⇒ A = pv0 +mg =⇒ pv =
(

pv0+mg
)

e−pt/m −mg ,
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as claimed in the statement of the problem.

Alternatively, we could plug in (t, v) = (0, v0) into the first expression above that contains C:

m

p
ln |mg+pv0| = −0 + C =⇒ C =

m

p
ln |mg+pv0|

=⇒ m

p
ln |mg+pv| = −t+

m

p
ln |mg+pv0| =⇒ ln |mg+pv| = −mt

p
+ ln |mg+pv0|

=⇒ ln |mg+pv| = e−
mt

p
+ln |mg+pv0| = e−

mt

p · eln |mg+pv0| = |mg+pv0| · e−
mt

p

=⇒ mg+pv = ±
(

mg+pv0
)

e
−mt

p .

Since v(0)=v0, the sign above must be +, and we again recover

pv(t) =
(

mg+pv0
)

e
−mt

p −mg,

as stated in the problem.

(b; 4pts) Show that the height y=y(t) of the ball, until it hits the ground, is given by

y(t) =

(

v0 +
mg

p

)

m

p

(

1− e−pt/m
)

− mg

p
t .

The height y=y(t) satisfies the initial-value problem

y′ = v, y(0) = 0.

The above function satisfies the second condition because

y(0) =

(

v0 +
mg

p

)

m

p

(

1− e−p·0/m)− mg

p
0 =

(

v0 +
mg

p

)

m

p
(1− 1) = 0.

It satisfies the differential equation because

y′(t) =

(

v0 +
mg

p

)

m

p

(

− e−pt/m
)

· −p

m
− mg

p
=

(

v0 +
mg

p

)

e−pt/m − mg

p
= v(t);

so LHS of the differential equation equals to RHS of the differential equation when we plug in the
above function y=y(t).

Alternatively, we can first find the general solution of the differential equation and then the par-
ticular solution satisfying the initial condition:

y′ = v =

(

v0 +
mg

p

)

e−pt/m − mg

p

=⇒ y(t) =

∫

(

(

v0 +
mg

p

)

e−pt/m − mg

p

)

dt =

(

v0 +
mg

p

)

m

−p
e−pt/m − mg

p
t+ C,

where C is any constant. We now need to find C so that the function y defined above satisfies the
initial condition y(0)=0. For this, plug in (t, y) = (0, 0):

0 =

(

v0 +
mg

p

)

m

−p
e−p·0/m − mg

p
0 + C = −m

p

(

v0 +
mg

p

)

+ C =⇒ C =
m

p

(

v0 +
mg

p

)

y(t) =

(

v0 +
mg

p

)

m

−p
e−pt/m − mg

p
t+

m

p

(

v0 +
mg

p

)

=

(

v0 +
mg

p

)

m

p

(

1− e−pt/m
)

− mg

p
t,
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as claimed in the statement of the problem.

An even quicker way to obtain y(t) is to use the Fundamental Theorem of Calculus. Since y′(t)=v
and y(0)=0,

y(t) = y(0) +

∫ t

0
y′(s)ds =

∫ t

0

(

(

v0 +
mg

p

)

e−ps/m − mg

p

)

ds

=

(

(

v0 +
mg

p

)

m

−p
e−ps/m − mg

p
s

)
∣

∣

∣

∣

∣

s=t

s=0

=

(

v0 +
mg

p

)

m

p

(

1− e−pt/m
)

− mg

p
t.

(c; 5pts) Show that the amount of time the ball takes to reach the maximum height is

t1 =
m

p
ln

(

mg + pv0
mg

)

.

Find this time if the mass of the ball is 1 kg, the initial speed is 20 m/s, and the air resistance is
.1 kg/s.

The ball reaches its maximum height at the first time t1>0 so that

0 = y′(t1) = v(t1) =

(

v0 +
mg

p

)

e−pt1/m − mg

p
.

This gives

(

v0 +
mg

p

)

e−pt1/m =
mg

p
=⇒ pv0+mg

mg
= ept1/m =⇒ ln

(

mg+pv0
mg

)

=
pt1
m

=⇒ t1 =
m

p
ln

(

mg+pv0
mg

)

.

Taking m=1 kg, v0=20 m/s, p=1/10 kg/s, and g=10 m/s2, we obtain

t1 =
1

1/10
ln

(

1 · 10 + (1/10) · 20
1 · 10

)

= 10 ln 1.2 ≈ 1.83 sec

(d; 8pts) Show that

y(2t1) =
m2g

p2

(

x− 1

x
− 2 lnx

)

where x = ept1/m and that for x > 1 the function

f(x) = x− 1

x
− 2 lnx

is increasing. Use this result to decide whether y(2t1) is positive or negative. What can you con-
clude from this? Does the ascent or descent take longer?
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By the statements of parts (2) and (3),

y(2t1) =

(

v0 +
mg

p

)

m

p

(

1− e−p·2t1/m
)

− mg

p
2t1 =

m2g

p2

(

pv0+mg

mg

(

1− (ept1/m)−2
)

− 2
pt1
m

)

=
m2g

p2

(

x
(

1− x−2
)

− 2 lnx

)

=
m2g

p2

(

x− 1

x
− 2 lnx

)

,

where x = ept1/m.

In order to see that f is increasing, take its derivative:

f ′(x) = 1 +
1

x2
− 2

1

x
=
(

1− 1/x)2 > 0 if x > 1.

Thus, for all x > 1

f(x) > f(1) = 1− 1

1
− 2 ln 1 = 1− 1− 2 · 0 = 0.

In particular, if

x = ept1/m = e
ln
(

mg+pv0
mg

)

=
mg+pv0

mg
> 1,

then

y(2t1) =
m2g

p2
f
(

ept1/m
)

> 0,

i.e. the ball is still above the ground at time 2t1. Thus, it takes longer to go down than to go up.

(e; 4pts) What is the answer to the last question in (d) if p=0 (no air resistance) and why?
If there is no air resistance, v= v0−gt and y= v0t− 1

2gt
2 until the ball returns to the ground. It

reaches the maximum height at the time t1 when v=0, i.e. t1= v0/g, and hits the ground at the
time t2>0 when y=0, i.e. t2=2v0/g. Since t2=2t1, it takes as long to go up as to go down.

(f; 6pts) Is your answer in (e) consistent with the formula for y(2t1) in (d) and why?
Take the limit of the expression for y(2t1) in (5) above as p−→0:

lim
p−→0

y(2t1) = lim
p−→0

m2g

p2

(

e
pt1
m − 1

e
pt1
m

− 2 ln e
pt1
m

)

= m2g lim
p−→0

mg+pv0
mg − mg

mg+pv0
− 2 ln

(

mg+pv0
mg

)

p2
.

Since the numerator and denominator of the last fraction above approach 0 as p −→ 0, we can
apply l’Hospital rule, differentiating with respect to p:

lim
p−→0

y(2t1)

m2g
= lim

p−→0

mg+pv0
mg − mg

mg+pv0
− 2 ln

(

mg+pv0
mg

)

p2
= lim

p−→0

v0
mg + mgv0

(mg+pv0)2
− 2 v0

mg+pv0

2p

=
v0
2mg

lim
p−→0

1 + m2g2

(mg+pv0)2
− 2 mg

mg+pv0

p
=

v0
2mg

lim
p−→0

(

1− mg
mg+pv0

)2

p

=
v0
2mg

lim
p−→0

p2v2
0

(mg+pv0)2

p
=

v0
2mg

lim
p−→0

pv20
(mg+pv0)2

= 0

Thus, as p−→ 0 (the air resistance falls to 0), y(2t1)−→ 0, and so the time t2 at which the ball
returns to the ground approaches twice the time t1 at which it reaches the maximum height (and
therefore the ascent and descent times approach each other). So, the answer in (6) is consistent
with (5).
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