MAT 127: Calculus C, Spring 2022
 Solutions to Problem Set 11 (110pts)
 WebAssign Problems 1-3 (10+5+4pts)

Find the Taylor series expansion for each of the following functions around the given value of $x=a$ and determine the radius and interval of convergence.
(1) $f(x)=1 / x, \quad a=-3$,
(2) $f(x)=\mathrm{e}^{x}+2 \mathrm{e}^{-x}, \quad a=0$
(3) $\quad \int \frac{\mathrm{e}^{x}-1}{x} \mathrm{~d} x, \quad a=0$.
(1) In this case, we can compute all derivatives. By induction,

$$
f^{\langle n\rangle}(x)=\frac{(-1)^{n} n!}{x^{n+1}} .
$$

This is true for $n=0$, since $f^{\langle 0\rangle}(x)=f(x)=1 / x=(-1)^{0} 0!/ x^{0+1}$. If this holds for some n, then

$$
f^{\langle n+1\rangle}(x)=\left(f^{\langle n\rangle}(x)\right)^{\prime}=\left(\frac{(-1)^{n} n!}{x^{n+1}}\right)^{\prime}=-(n+1) \frac{(-1)^{n} n!}{x^{n+2}}=\frac{(-1)^{n+1}(n+1)!}{x^{(n+1)+1}}
$$

since

$$
-(-1)^{n}=(-1)^{n+1} \quad \text { and } \quad(n+1) \cdot n!=(n+1)!
$$

So, we have checked the above formula for $f^{\langle n\rangle}$ for the base case $n=0$ and that if it holds for some n, then it holds for $n+1$. Thus, it holds for all n and

$$
f^{\langle n\rangle}(-3)=\frac{(-1)^{n} n!}{(-3)^{n+1}}=-\frac{n!}{3^{n+1}}
$$

Thus, by the main Taylor series formula

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{\langle n\rangle}(-3)}{n!}(x-(-3))^{n}=\sum_{n=0}^{\infty} \frac{-1}{3^{n+1}}(x+3)^{n}
$$

This is a geometric series with the ratio $r=(x+3) / 3$ and so converges whenever $|x+3| / 3<1$. So, the radius of convergence is 3 and the interval of convergence is $(-6,0)$

Note: Since the power series in this case is a geometric series, we can sum it up using the geometricseries formula:

$$
\sum_{n=0}^{\infty} \frac{-1}{3^{n+1}}(x+3)^{n}=\frac{\text { initial }}{1-r}=\frac{-1 / 3}{1-(x+3) / 3}=\frac{-1}{3-(x+3)}=\frac{-1}{-x}=\frac{1}{x}
$$

This confirms that the above Taylor series expansion for $f(x)=1 / x$ is correct.
(2) Since $\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all x,

$$
\mathrm{e}^{x}+2 \mathrm{e}^{-x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}+2 \sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{1+2(-1)^{n}}{n!} x^{n}
$$

for all x. So the interval of convergence is $(-\infty, \infty)$ and the radius of convergence is ∞
(3) Since $\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$ for all x,

$$
\frac{\mathrm{e}^{x}-1}{x}=\frac{\sum_{n=1}^{\infty} \frac{x^{n}}{n!}}{x}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!} \Longrightarrow \int \frac{\mathrm{e}^{x}-1}{x} \mathrm{~d} x=C+\sum_{n=1}^{\infty} \frac{x^{n}}{n \cdot n!}
$$

Since integration does not change the radius of convergence, it is ∞ and so the interval of convergence is $(-\infty, \infty)$

WebAssign Problem 4 (8pts)

Use power series to evaluate

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-\mathrm{e}^{x}}
$$

Since for x near 0 (in fact, for all x)

$$
\begin{aligned}
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} & & 1-\cos x=-\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
\mathrm{e}^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\sum_{n=2}^{\infty} \frac{x^{n}}{n!}, & & 1+x-\mathrm{e}^{x}=-\sum_{n=2}^{\infty} \frac{x^{n}}{n!},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\frac{1-\cos x}{1+x-\mathrm{e}^{x}}=\frac{-\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}}{-\sum_{n=2}^{\infty} \frac{x^{n}}{n!}}=\frac{\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}}{\sum_{n=2}^{\infty} \frac{x^{n}}{n!}} & =\frac{-\frac{1}{2!} x^{2}+\frac{1}{4} x^{4}-\ldots}{\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots} \\
& =\frac{-\frac{1}{2!}+\frac{1}{4!} x^{2}-\ldots x \longrightarrow 0}{\frac{1}{2!}+\frac{1}{3!} x+\ldots} \xrightarrow{1 / 2}=-1 / 2
\end{aligned}
$$

where \ldots on the second line are terms involving positive powers of x, which approach 0 as $x \longrightarrow 0$.

WebAssign Problems 5-9 ($4+4+5+5+5$ pts)

Show that the following series are convergent and find their sums.
(5) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$
(6) $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n} n!}$
(7) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{4^{2 n+1}(2 n+1)!}$
(8) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(\ln 2)^{n}}{n!}$
(9) $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
(5) First, write this infinite series as some power series evaluated at some point:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{\pi}{6}\right)^{2 n}=\left.\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}\right|_{x=\pi / 6}
$$

Since the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$ converges for all x and its sum equals $\cos x$, the evaluation of this power series at $x=\pi / 6$, i.e. the infinite series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$, also converges and equals

$$
\cos \frac{\pi}{6}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}
$$

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since this series involves $\pi^{2 n}$ and (2n)!, try the Ratio Test first:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{\pi^{2(n+1)} /\left(6^{2(n+1)}(2(n+1))!\right)}{\pi^{2 n} /\left(6^{2 n}(2 n)!\right)}=\frac{\pi^{2 n+2}}{\pi^{2 n}} \cdot \frac{6^{2 n}}{6^{2 n+2}} \cdot \frac{(2 n)!}{(2 n+2)!}=\pi^{2} \frac{1}{6^{2}} \frac{1}{(2 n+1)(2 n+2)} \longrightarrow 0 .
$$

Since $0<1$, the series converges by the Ratio Test. The alternating series test can also be used.
(6) First, write this infinite series as some power series evaluated at some point:

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n} n!}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{3}{5}\right)^{n}=\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right|_{x=3 / 5} .
$$

Since the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for all x and its sum equals e^{x}, the evaluation of this power series at $x=3 / 2$, i.e. the infinite series $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n} n!}$, also converges and equals $\mathrm{e}^{3 / 5}$
Remark: You can also justify convergence using one of the convergence tests for infinite series. Since this series involves 3^{n} and $n!$, try the Ratio Test first:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{3^{n+1} /\left(5^{n+1}(n+1)!\right)}{3^{n} /\left(5^{n} n!\right)}=\frac{3^{n+1}}{3^{n}} \cdot \frac{5^{n}}{5^{n+1}} \cdot \frac{n!}{(n+1)!}=3 \frac{1}{5} \frac{1}{(n+1)} \longrightarrow 0
$$

Since $0<1$, the series converges by the Ratio Test.
(7) First, write this infinite series as some power series evaluated at some point:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{4^{2 n+1}(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{\pi}{4}\right)^{2 n+1}=\left.\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}\right|_{x=\pi / 4}
$$

Since the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$ converges for all x and its sum equals $\sin x$, the evaluation of this power series at $x=\pi / 4$, i.e. the infinite series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{4^{2 n+1}(2 n+1)!}$, also converges and equals

$$
\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since this series involves $\pi^{2 n+1}$ and $(2 n+1)$!, try the Ratio Test first:

$$
\begin{aligned}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{\pi^{2(n+1)+1} /\left(4^{2(n+1)+1}(2(n+1)+1)!\right)}{\pi^{2 n+1} /\left(4^{2 n+1}(2 n+1)!\right)} & =\frac{\pi^{2 n+3}}{\pi^{2 n+1}} \cdot \frac{4^{2 n+1}}{4^{2 n+3}} \cdot \frac{(2 n+1)!}{(2 n+3)!} \\
& =\pi^{2} \frac{1}{4^{2}} \frac{1}{(2 n+2)(2 n+3)} \longrightarrow 0
\end{aligned}
$$

Since $0<1$, the series converges by the Ratio Test. The alternating series test can also be used.
(8) First, write this infinite series as some power series evaluated at some point:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(\ln 2)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-\ln 2)^{n}}{n!}=\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right|_{x=-\ln 2}
$$

Since the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for all x and its sum equals e^{x}, the evaluation of this power series at $x=-\ln 2$, i.e. the infinite series $\sum_{n=0}^{\infty} \frac{(-\ln 2)^{n}}{n!}$, also converges and equals

$$
\mathrm{e}^{-\ln 2}=\mathrm{e}^{(-1) \ln 2}=\mathrm{e}^{\ln \left(2^{-1}\right)}=2^{-1}=\frac{1}{2}
$$

Remark: You can also justify convergence using one of the convergence tests for infinite series. Since this series involves $(\ln 2)^{n}$ and $n!$, try the Ratio Test first:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(\ln 2)^{n+1} /(n+1)!}{(\ln 2)^{n} / n!}=\frac{(\ln 2)^{n+1}}{(\ln 2)^{n}} \cdot \frac{n!}{(n+1)!}=(\ln 2) \frac{1}{(n+1)} \longrightarrow 0
$$

Since $0<1$, the series converges by the Ratio Test. The alternating series test can also be used.
(9) First, write this infinite series as some power series evaluated at some point:

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n!}=\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right|_{x=3}-1
$$

Since the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for all x and its sum equals e^{x}, the evaluation of this power series at $x=3$, i.e. the infinite series $\sum_{n=0}^{\infty} \frac{3^{n}}{n!}$, also converges and equals e^{3}; so the original series converges to $\mathrm{e}^{3}-1$
Remark: You can also justify convergence using one of the convergence tests for infinite series. Since this series involves 3^{n} and $n!$, try the Ratio Test first:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{3^{n+1} /(n+1)!}{3^{n} / n!}=\frac{3^{n+1}}{3^{n}} \cdot \frac{n!}{(n+1)!}=3 \frac{1}{(n+1)} \longrightarrow 0 .
$$

Since $0<1$, the series converges by the Ratio Test.

Problem XI. 1 (5pts)

Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}$.
The principle with such problems is to guess a function $f(x)$ with a simple power series representation,

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

so that the given power series is obtained by replacing x with some number a. If this a lies in the interval of convergence for the power series, then the sum of the given series is simply $f(a)$. The hard part is usually to guess f correctly.

In the given case, the coefficients in the power series are reciprocals of odd integers $1 /(2 n+1)$. This is similar to the series in Example 6.10b:

$$
\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad \text { if } \quad-1<x \leq 1
$$

So, we relate our series to this series:

$$
\begin{aligned}
\sum_{n=1}^{\infty}(-1)^{n} \frac{(1 / \sqrt{3})^{2 n}}{2 n+1}=\sqrt{3} \sum_{n=1}^{\infty}(-1)^{n} \frac{(1 / \sqrt{3})^{2 n+1}}{2 n+1} & =\left.\sqrt{3}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}-x\right)\right|_{x=1 / \sqrt{3}} \\
& =\sqrt{3}\left(\arctan \left(\frac{1}{\sqrt{3}}\right)-\frac{1}{\sqrt{3}}\right)=\sqrt{3}\left(\frac{\pi}{6}-\frac{1}{\sqrt{3}}\right)=-\frac{6-\pi \sqrt{3}}{6}
\end{aligned}
$$

Problem XI. 2 (10pts)

Use power series to estimate $\arctan .2$ correct within $\frac{1}{2} \cdot 10^{-5}$. Leave your answer as a simple fraction p / q and determine whether your estimate is an under- or over-estimate.

By Example 6.10b,

$$
\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad \text { if } \quad-1<x \leq 1
$$

Since $-1<.2 \leq 1$, it follows that

$$
\arctan .2=\sum_{n=0}^{\infty}(-1)^{n} \frac{(1 / 5)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 5^{2 n+1}} .
$$

We need to find m so that

$$
\left|\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 5^{2 n+1}}-\sum_{n=0}^{n=m} \frac{(-1)^{n}}{(2 n+1) 5^{2 n+1}}\right|<\frac{1}{2} \cdot 10^{-5}=\frac{1}{2 \cdot 10^{5}} .
$$

The series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 5^{2 n+1}}$ is alternating (odd terms are negative, even terms are positive),

$$
\lim _{n \rightarrow \infty} \frac{1}{(2 n+1) 5^{2 n+1}}=0, \quad \frac{1}{(2 n+1) 5^{2 n+1}}>\frac{1}{(2(n+1)+1) 5^{2(n+1)+1}} .
$$

Thus, the Alternating Series Estimation Theorem (p587) applies and

$$
\left|\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 5^{2 n+1}}-\sum_{n=0}^{n=m} \frac{(-1)^{n}}{(2 n+1) 5^{2 n+1}}\right|<\left|a_{m+1}\right|=\frac{1}{(2(m+1)+1) 5^{2(m+1)+1}}
$$

So we need m such that $1 /\left((2 m+3) 5^{2 m+3}\right) \leq 1 /\left(2 \cdot 10^{5}\right)$ or $(2 m+3) 5^{2 m+3} \geq 2 \cdot 10^{5}$. Plugging in small values of m, we find that $m=2$ already works ($m=1$ does not work). So our estimate is

$$
\begin{aligned}
\sum_{n=0}^{n=m} \frac{(-1)^{n}}{(2 n+1) 5^{2 n+1}}=\sum_{n=0}^{n=2} \frac{(-1)^{n}}{(2 n+1) 5^{2 n+1}} & =\frac{(-1)^{0}}{(2 \cdot 0+1) 5^{2 \cdot 0+1}}+\frac{(-1)^{1}}{(2 \cdot 1+1) 5^{2 \cdot 1+1}}+\frac{(-1)^{2}}{(2 \cdot 2+1) 5^{2 \cdot 2+1}} \\
& =\frac{1}{5}-\frac{1}{3 \cdot 5^{3}}+\frac{1}{5 \cdot 5^{5}}=\frac{9375-125+3}{3 \cdot 15625}=\frac{9253}{46875}
\end{aligned}
$$

Since the last term used is positive, this is an over-estimate for arctan .2.
Note: Since $\arctan .2 \approx .197396$ and $9253 / 46875 \approx .197397$, our estimate is indeed within $.5 \cdot 10^{-6}$ and is an over-estimate.

Problem XI. 3 (10pts)

(a; 4pts) By completing the square, show that

$$
\int_{0}^{1 / 2} \frac{\mathrm{~d} x}{x^{2}-x+1}=\frac{\pi}{3 \sqrt{3}}
$$

Since
$x^{2}-x+1=\frac{3}{4}+(x-1 / 2)^{2}=\frac{3}{4}\left(1+\frac{(x-1 / 2)^{2}}{(\sqrt{3} / 2)^{2}}\right)=\frac{3}{4}\left(1+\left(\frac{x-1 / 2}{\sqrt{3} / 2}\right)^{2}\right)=\frac{3}{4}\left(1+((2 x-1) / \sqrt{3})^{2}\right)$,
we obtain

$$
\begin{aligned}
\int_{0}^{1 / 2} \frac{\mathrm{~d} x}{x^{2}-x+1} & =\frac{4}{3} \int_{0}^{1 / 2} \frac{\mathrm{~d} x}{1+((2 x-1) / \sqrt{3})^{2}}=\frac{2}{\sqrt{3}} \int_{-1 / \sqrt{3}}^{0} \frac{\mathrm{~d} u}{1+u^{2}}=\left.\frac{2}{\sqrt{3}} \arctan \right|_{-1 / \sqrt{3}} ^{0} \\
& =\frac{2}{\sqrt{3}}(\arctan 0-\arctan (-1 / \sqrt{3}))=\frac{2}{\sqrt{3}}(0+\arctan (1 / \sqrt{3}))=\frac{2}{\sqrt{3}} \cdot \frac{\pi}{6}=\frac{\pi}{3 \sqrt{3}}
\end{aligned}
$$

where $u=(2 x-1) / \sqrt{3}$.
(b; 6pts) By factoring $x^{3}+1$ as a sum of cubes, rewrite the integral in (a). Then express $1 /\left(x^{3}+1\right)$ as the sum of a power series and use it to show that

$$
\pi=\frac{3 \sqrt{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{8^{n}}\left(\frac{2}{3 n+1}+\frac{1}{3 n+2}\right)
$$

Since $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ if $|x|<1$,

$$
\frac{1}{1+x^{3}}=\frac{1}{1-\left(-x^{3}\right)}=\sum_{n=0}^{\infty}\left(-x^{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n}\left(x^{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{3 n}
$$

if $\left|x^{3}\right|<1$, or equivalently $|x|<1$. Since $x^{3}+1^{3}=(x+1)\left(x^{2}-x+1\right)$,

$$
\frac{1}{x^{2}-x+1}=\frac{1+x}{1+x^{3}}=(1+x) \sum_{n=0}^{\infty}(-1)^{n} x^{3 n}=\sum_{n=0}^{\infty}(-1)^{n}\left(x^{3 n}+x^{3 n+1}\right)
$$

if $|x|<1$. Since $|x|<1$ whenever $0<x<1 / 2$,

$$
\begin{aligned}
\int_{0}^{1 / 2} \frac{\mathrm{~d} x}{x^{2}-x+1} & =\int_{0}^{1 / 2}\left(\sum_{n=0}^{\infty}(-1)^{n}\left(x^{3 n}+x^{3 n+1}\right)\right) \mathrm{d} x=\left.\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x^{3 n+1}}{3 n+1}+\frac{x^{3 n+2}}{3 n+2}\right)\right|_{0} ^{1 / 2} \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{(1 / 2)^{3 n+1}}{3 n+1}+\frac{(1 / 2)^{3 n+2}}{3 n+2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{3 n} 2^{2}}\left(\frac{2}{3 n+1}+\frac{1}{3 n+2}\right) \\
& =\frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{8^{n}}\left(\frac{2}{3 n+1}+\frac{1}{3 n+2}\right)
\end{aligned}
$$

Comparing this result with the statement in (a), we obtain

$$
\pi=\frac{3 \sqrt{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{8^{n}}\left(\frac{2}{3 n+1}+\frac{1}{3 n+2}\right) .
$$

Problems XI. 4 (10pts)

Find the Taylor series expansion of the function $f(x)=x-x^{3}$ around $a=-2$ and determine its radius and interval of convergence.

In this case, we can compute all derivatives:

$$
\begin{array}{ll}
f^{\langle 0\rangle}(-2)=f(-2)=\left.\left(x-x^{3}\right)\right|_{x=-2}=6, & f^{\langle 1\rangle}(-2)=f^{\prime}(-2)=\left.\left(1-3 x^{2}\right)\right|_{x=-2}=-11, \\
f^{\langle 2\rangle}(-2)=f^{\prime \prime}(-2)=-\left.6 x\right|_{x=-2}=12, & f^{\langle 3\rangle}(-2)=f^{\prime \prime \prime}(-2)=-\left.6\right|_{x=-2}=-6, \\
f^{\langle n\rangle}(-2)=0 \text { if } n \geq 4 . &
\end{array}
$$

Thus, by the main Taylor series formula

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{\langle n\rangle}(-2)}{n!}(x-(-2))^{n}=6-11(x+2)+6(x+2)^{2}-(x+2)^{3}
$$

Being a finite sum, this series converges for all x (finitely many numbers can always be added together). Thus, the interval of convergence is $(-\infty, \infty)$ and the radius of convergence is ∞

Problem J (5pts)

Use Taylor series to obtain Euler's formula:

$$
\mathrm{e}^{\mathrm{i} t}=\cos t+\mathfrak{i} \sin t .
$$

Use the Taylor series expansions at $t=0$ for the exponential, cosine, and sine and $\mathfrak{i}^{2}=-1$:

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i} t}=\sum_{n=0}^{\infty} \frac{(\mathfrak{i} t)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(\mathfrak{i} t)^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{(\mathfrak{i} t)^{2 n+1}}{(2 n+1)!} & =\sum_{n=0}^{\infty} \frac{\left(\mathfrak{i}^{2}\right)^{n} t^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{\mathfrak{i}\left(\mathfrak{i}^{2}\right)^{n} t^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n)!}+\mathfrak{i} \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!}=\cos t+\mathfrak{i} \sin t .
\end{aligned}
$$

Note: Euler's formula is used in solving second-order linear homogeneous differential equations with constant coefficients when the roots of the quadratic polynomial are complex.

Problem K (20pts)

(a; $\mathbf{6 p t s}$) Let $p(x)$ be any polynomial in x and $n>0$ any positive integer. Show that

$$
\lim _{x \longrightarrow 0} x^{-n} p(x) \mathrm{e}^{-1 / x^{2}}=0
$$

First, check this for $p(x)=1$:

$$
\lim _{x \longrightarrow 0} x^{-n} \mathrm{e}^{-1 / x^{2}}=\lim _{x \longrightarrow 0} \frac{(1 / x)^{n}}{\mathrm{e}^{1 / x^{2}}}=\lim _{x \longrightarrow \infty} \frac{x^{n}}{\mathrm{e}^{x^{2}}}=0 ;
$$

the last equality follows from l'Hospital's rule, since $x^{n}, \mathrm{e}^{x^{2}} \longrightarrow \infty$, as do all derivatives of $\mathrm{e}^{x^{2}}$ (each of them is a polynomial multiplied by $\mathrm{e}^{x^{2}}$). Thus,

$$
\lim _{x \longrightarrow 0} x^{-n} p(x) \mathrm{e}^{-1 / x^{2}}=\lim _{x \longrightarrow 0} p(x) \cdot \lim _{x \longrightarrow 0} x^{-n} \mathrm{e}^{-1 / x^{2}}=p(0) \cdot 0=0 .
$$

(b; 12pts) Show that the function $f=f(x)$ given by

$$
f(x)= \begin{cases}\mathrm{e}^{-1 / x^{2}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

is smooth and its k-th derivative is a function of the form

$$
f^{\langle k\rangle}(x)= \begin{cases}x^{-n_{k}} p_{k}(x) \mathrm{e}^{-1 / x^{2}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

where n_{k} is some positive integer and $p_{k}(x)$ is some polynomial in x.
For $k=0, f^{\langle k\rangle}=f$ is indeed of the claimed form, with $n_{k}=0$ and $p_{k}(x)=1$. If $f^{\langle k\rangle}$ is of the claimed form for some $k \geq 0$ and $x \neq 0$

$$
\begin{aligned}
f^{\langle k+1\rangle}(x) & =\left(x^{-n_{k}} p_{k}(x) \mathrm{e}^{-1 / x^{2}}\right)^{\prime} \\
& =-n_{k} x^{-n_{k}-1} p_{k}(x) \mathrm{e}^{-1 / x^{2}}+x^{-n_{k}} p_{k}^{\prime}(x) \mathrm{e}^{-1 / x^{2}}+x^{-n_{k}} p_{k}(x) \mathrm{e}^{-1 / x^{2}}\left(2 / x^{3}\right) \\
& =x^{-\left(n_{k}+3\right)}\left(\left(2-x^{2}\right) p_{k}(x)+x^{3} p_{k}^{\prime}(x)\right) \mathrm{e}^{-1 / x^{2}}
\end{aligned}
$$

For $x=0$, the derivative has to be computed directly from the definition:

$$
f^{\langle k+1\rangle}(0)=\lim _{h \longrightarrow 0} \frac{f^{\langle k\rangle}(h)-f^{\langle k\rangle}(0)}{h}=\lim _{h \longrightarrow 0} \frac{h^{-n_{k}} p_{k}(h) \mathrm{e}^{-1 / h^{2}}}{h}=\lim _{h \longrightarrow 0} h^{-\left(n_{k}+1\right)} p_{k}(h) \mathrm{e}^{-1 / h^{2}}=0 ;
$$

the last equality holds by part (a). Thus, if $f^{\langle k\rangle}$ is of the claimed form for some $k \geq 0$, then $f^{\langle k+1\rangle}$ is of the claimed form with

$$
n_{k+1}=n_{k}+3, \quad p_{k+1}(x)=\left(2-x^{2}\right) p_{k}(x)+x^{3} p_{k}^{\prime}(x) .
$$

This shows that $f^{\langle k\rangle}$ is of the claimed form for all k. So $f=f(x)$ is a smooth function and $f^{\langle k\rangle}(0)=0$ for all k.
(c; 2pts) Conclude that the smooth function $f(x)$ does not admit a Taylor series expansion on any neighborhood of 0 (the Taylor series of f at $x=0$ does not converge to $f(x)$ for any $x \neq 0$).

By part (b), the Taylor expansion of $f=f(x)$ at $x=0$ would have to be

$$
\sum_{n=0}^{\infty} \frac{f^{\langle n\rangle}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{0}{n!} x^{n}=0
$$

Since $f(x)>0$ if $x \neq 0$, the Taylor series of f at 0 does not converge to f for any $x \neq 0$.

