Problems before Mid II

1. Is the sequence convergent or divergent? If convergent, what is the limit?
a) $\frac{5^{n}+n!+n^{3}}{n^{2}+2^{n}+n^{n}}$
b) $\frac{3 n+5}{2+\sqrt{n^{2}+1}}$
c) $\frac{(-1)^{n} n}{2 n+\sqrt{n^{2}-1}}$
d) $\frac{\arctan \left(n^{2}\right)}{\sqrt{n}}$
e) $\frac{n}{n+1}+\frac{\cos (n)}{n}$
f) $\sqrt{9^{n}+2^{n}}-3^{n}$
2. Is the series convergent or divergent? (We do not want to find the value.)
a) $\sum_{n=1}^{\infty} \frac{2 n}{\sqrt{n^{2}+1}}$
b) $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$
c) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
d) $\sum_{n=1}^{\infty} \frac{n^{3}+5^{n}}{3^{n}+\sqrt{n}}$
e) $\sum_{n=1}^{\infty} \frac{\ln (n)+n}{\sqrt{n^{3}+1}+n}$
f) $\sum_{n=1}^{\infty} \tan \left(\frac{1}{n^{2}}\right)$
g) $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{2^{n}}\right)$
h) $\sum_{n=1}^{\infty} \frac{|\sin (n)|}{n^{2}}$
i) $\sum_{n=1}^{\infty}(\cos 1)^{n}$
j) $\sum_{n=1}^{\infty}(\cos (n)-\cos (n+1))$
k) $\sum_{n=1}^{\infty}\left(\cos \left(\frac{1}{n}\right)-\cos \left(\frac{1}{n+1}\right)\right)$
1) $\sum_{n=1}^{\infty}\left(\sqrt{9^{n}+2^{n}}-3^{n}\right)$
3. Is the series convergent or divergent? If convergent, find its value.
a) $\sum_{n=4}^{\infty} \frac{1}{n^{2}-4 n+3}$
b) $\sum_{n=2}^{\infty}\left(\frac{1}{e^{n}}+\frac{1}{n(n-1)}\right)$
c) $\sum_{n=1}^{\infty} \frac{3^{n-1}}{2^{2 n}}$
d) $\sum_{n=1}^{\infty} \frac{2^{n-1}+3^{n+1}}{5^{n}}$
4. For which values of x is the following series convergent? For a given such x, what is the value of the series (as a function of x)?
a) $\sum_{n=1}^{\infty} \frac{(x+3)^{n}}{2^{2 n}}$
b) $\sum_{n=1}^{\infty} 2^{n} \cos ^{n} x$
c) $\sum_{n=1}^{\infty}(1+x)^{-n}$
5. Is the series $\sum_{n=1}^{\infty} a_{n}$ convergent or divergent if the sequence a_{n} is defined recursively as:
a) $a_{1}=1, a_{n+1}=\frac{5 n+1}{4 n+3} a_{n}$
b) $a_{1}=1, a_{n+1}=\frac{2+\cos (n)}{\sqrt{n}} a_{n}$
6. Is the series convergent or divergent? Is it absolutely convergent? (In general, for the majority of given series here, you will need both the alternating series test and the comparison / limit comparison test to answer both questions. Working on the problems in the given order might be helpful.)
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1}$
d) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}$
e) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$
f) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{2}}$
g) $\sum_{n=1}^{\infty} \frac{\cos \left(\frac{n \pi}{2}\right)}{n}$
h) $\sum_{n=1}^{\infty} \frac{\cos \left(\frac{n \pi}{2}\right)}{n^{2}}$
i) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cos (n \pi)}{n}$
j) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cos (n \pi)}{n^{2}}$
k) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cos \left(\frac{n \pi}{2}\right)}{n}$
l) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \cos \left(\frac{n \pi}{2}\right)}{n^{2}}$
m) $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)$
n) $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n^{2}}\right)$
о) $\sum_{n=1}^{\infty}(-1)^{n} \sin ^{2}\left(\frac{1}{n}\right)$
p) $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{1}{n}\right)$
q) $\sum_{n=1}^{\infty} \sin \left(\frac{(-1)^{n}}{n}\right)$
r) $\sum_{n=1}^{\infty} \sin \left(\frac{(-1)^{n}}{n^{2}}\right)$
s) $\sum_{n=1}^{\infty} \sin ^{2}\left(\frac{(-1)^{n}}{n}\right)$
t) $\sum_{n=1}^{\infty} \tan \left(\frac{(-1)^{n}}{n}\right)$
7. Is the series convergent or divergent? Is it absolutely convergent?
a)* $\sum_{n=1}^{\infty}(-1)^{n}\left(1-\cos \left(\frac{1}{n}\right)\right)$
b) $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(\frac{n}{n+1}\right)$
c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{4}-n^{2}+1}{n^{5}-5 n+1}$
d) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \arctan \left(n^{2}\right)}{\sqrt{n}}$
e) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}+(-1)^{n}}{\sqrt{n}}$
f) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+\sin (n)}{n^{2}}$
*Hint for 2a):

$$
\begin{gathered}
(1-\cos (x))(1+\cos (x))=1-\cos ^{2}(x)=\sin ^{2}(x) \\
\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x^{2}}=1
\end{gathered}
$$

Answer Key

1. (a) converges to 0 (divide top and bottom by n^{n}, which dominates)
(b) converges to 3 (divide top and bottom by n)
(c) diverges (divide top and bottom by n; odd terms approach $-1 / 3$, even $1 / 3$)
(d) converges to 0 (arctan takes values in $(-\pi / 2, \pi / 2)$)
(e) converges to 1 (divide the top and bottom in the first fraction by n)
(d) converges to 0 (multiply and divide by $\sqrt{9^{n}+2^{n}}+3^{n}$; divide top and bottom by 3^{n})
2. (a) \sum diverges by Test for Divergence (the terms a_{n} approach 2)
(b) converges by Ratio Test $\left(\left|a_{n+1}\right| /\left|a_{n}\right|\right.$ approaches $\left.1 / 3\right)$
(c) converges by RT $\left(\left|a_{n+1}\right| /\left|a_{n}\right|\right.$ approaches $\left.1 / \mathrm{e}\right)$
(d) diverges by RT $\left(\left|a_{n+1}\right| /\left|a_{n}\right|\right.$ approaches $\left.5 / 3\right)$
(e) diverges by Limit Comparison Test with $b_{n}=n / \sqrt{n^{3}}=1 / n^{1 / 2}$ and p-Series Test
(f) converges by LCT with $b_{n}=1 / n^{2}$ and p-Series Test
(g) converges by LCT with $b_{n}=1 / 2^{n}$ and the geometric series test or RT ($\left|a_{n+1}\right| /\left|a_{n}\right|$ approaches $1 / 2$)
(h) converges by Comparison Test with $b_{n}=1 / n^{2}$ and p-Series Test
(i) converges by the geometric series test
(j) diverges $\mathrm{b} / \mathrm{c} s_{n}=\cos (1)-\cos (n+1)$ diverges
(k) converges $\mathrm{b} / \mathrm{c} s_{n}=\cos (1 / 1)-\cos (1 /(n+1))$ converges
(l) converges by RT $\left(\left|a_{n+1}\right| /\left|a_{n}\right|\right.$ approaches $\left.2 / 3\right)$ or LCT with $b_{n}=(2 / 3)^{n}$
3. (a) converges to $3 / 4 \mathrm{~b} / \mathrm{c}$ partial fractions and pairwise cancellation give

$$
s_{n}=\frac{1}{2}\left(\frac{1}{4-3}+\frac{1}{5-3}-\frac{1}{(n-1)-1}-\frac{1}{n-1}\right)
$$

(b) converges to $1 / e(e-1)+1 \mathrm{~b} / \mathrm{c}$ the first part is a geometric series with $r=1 / e$ and $a_{0}=1 / e^{2}$, while partial fractions and pairwise cancellation give $s_{n}=\frac{1}{2-1}-\frac{1}{n}$ for the second part
(c) converges to $1 \mathrm{~b} / \mathrm{c}$ it is a geometric series with $r=3 / 4$ and $a_{0}=1 / 4$
(d) converges to $1 / 3+9 / 2=29 / 6 \mathrm{~b} / \mathrm{c}$ the first part is a geometric series with $r=2 / 5$ and $a_{0}=1 / 5$, while the second part is a geometric series with $r=3 / 5$ and $a_{0}=9 / 5$
4. (a) this is a geometric series with $r=(x+3) / 4$ and $a_{0}=(x+3) / 4$; it converges to $(x+3) /(1-x)$ if $x \in(-7,1)$; it diverges otherwise
(b) this is a geometric series with $r=2 \cos x$ and $a_{0}=2 \cos x$; it converges to $2 \cos x /(1-2 \cos x)$ if $\frac{\pi}{3}+\pi k<x<\frac{2 \pi}{3}+\pi k$ for an integer k
(c) this is a geometric series with $r=1 /(1+x)$ and $a_{0}=1 /(1+x)$; it converges to $1 / x$ if $x<-2$ or $x>0$
5. (a) diverges by Ratio Test $\left(\left|a_{n+1}\right| /\left|a_{n}\right|\right.$ approaches $\left.5 / 4\right)$
(b) converges by Ratio Test $\left(\left|a_{n+1}\right| /\left|a_{n}\right|\right.$ approaches 0$)$
6. (a) converges by Alternating Series Test, but not absolutely
(b) converges by AST or Absolute Convergence Test ($+p$-Series)
(c) converges by AST, but not absolutely
(d) converges by AST or ACT (+ Limit Comparison with $b_{n}=1 / n^{2}$ and p-series)
(e) converges by AST, but not absolutely
(f) converges by AST or ACT (+ Comparison with $b_{n}=1 / n^{2}$ and p-series)
(g) converges by AST after dropping $a_{2 k+1}=0$, but not absolutely
(h) converges by AST after dropping $a_{2 k+1}=0$ or ACT (+ Comparison with $b_{n}=1 / n^{2}$)
(i) diverges by p-series $\left(\mathrm{b} / \mathrm{c}(-1)^{n} \cos (\pi n)=1\right)$
(j) converges by ACT (+ Comparison with $b_{n}=1 / n^{2}$ and p-series)
(k) converges by AST after dropping $a_{2 k+1}=0\left(\mathrm{~b} / \mathrm{c}(-1)^{2 k} \cos (\pi(2 k) / 2)=(-1)^{k}\right)$, but not absolutely
(1) converges by AST or ACT (+ Comparison with $b_{n}=1 / n^{2}$ and p-series)
(m) converges by AST, but not absolutely (LCT with $b_{n}=1 / n$)
(n) converges by AST or ACT (+ LCT with $b_{n}=1 / n^{2}$ and p-series)
(o) converges by AST or ACT (+ LCT with $b_{n}=1 / n^{2}$ and p-series)
(p) diverges by Test for Divergence (odd terms approach -1 , even +1)
(q) converges by AST, but not absolutely (LCT with $b_{n}=1 / n$)
(r) converges by AST or ACT (+ LCT with $b_{n}=1 / n^{2}$ and p-series)
(s) converges by ACT (+ LCT with $b_{n}=1 / n^{2}$ and p-series)
(t) converges by AST, but not absolutely (LCT with $b_{n}=1 / n$)
7. (a) converges by AST or ACT (+ LCT with $b_{n}=1 / n^{2}$ and p-series)
(b) converges by AST, but not absolutely (LCT with $b_{n}=1 / n$)
(c) converges by AST, but not absolutely (LCT with $b_{n}=1 / n$)
(d) converges by AST, but not absolutely (LCT with $b_{n}=1 / n^{1 / 2}$)
(e) diverges b / c the first part diverges by p-series and the second converges by AST
(f) converges by ACT (+ LCT with $b_{n}=1 / n^{3 / 2}$ and p-series)

