
MAT 127: Calculus C, Spring 2022

Extremely Important: sequences vs. series (do not mix them or their convergence/divergence
tests up!!!); what it means for a sequence or series to converge or diverge;

“2 limits” = “no limit” = “diverge”

systems of 2 autonomous first-order differential equations and phase-plane portraits

Very Important: convergence/divergence tests for sequences and series; equilibrium/stationary
points for systems of 2 autonomous first-order differential equations

Important: limit rules for sequences and series; computing limits of convergent sequences and
sums of convergent series; sketching graphs of a solution to a system of 2 autonomous first-order
differential equations as functions of time from phase trajectory and vice versa

H: Systems of 2 Autonomous First-Order Differential Equations

H.1 A system of 2 autonomous first-order differential equations is a system of the form
{

dx
dt = f(x, y)
dy
dt = g(x, y)

(x, y) =
(

x(t), y(t)
)

, (H1)

where f and g are some functions of x and y. For example,
{

dx
dt = f(x, y) = 1
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dy
dt = g(x, y) = − 1
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y + 1

1000
xy

(x, y) =
(

x(t), y(t)
)

. (H2)

The systems (H1) and (H2) are called autonomous because they do not involve t explicitly. A solu-
tion of such a system is a pair of functions (x, y) = (x(t), y(t)) which satisfy both equations at the
same time; neither x=x(t) nor y=y(t) separately is a solution (of the system). In order to check
that a given pair of functions solves a system, simply compute LHS and RHS of the first equation
for the two given functions and check that they are equal, and then compute LHS and RHS of the
second equation for the two given functions and check that they are equal. This is usually not
difficult; actually finding such pairs of functions is difficult.

H.2 The first step in analyzing the system (H1) is to find the constant solutions or the equilibrium
points of (H1). These are the points (xi, yi) in the xy-plane such that each constant function
(x(t), y(t))=(xi, yi) is a solution of (H1). The physical interpretation of this is that if the system
starts at an equilibrium point, it stays there forever. In mathematical terms, this means that if
the initial value (x0, y0) of a solution (x, y) = (x(t), y(t)) to (H1) is an equilibrium point, then
(x(t), y(t)) = (x0, y0) for all t. Since the derivative of a constant function is zero, the constant
function (x(t), y(t))=(xi, yi) is a solution of (H1) if and only if f(xi, yi)=(0, 0) and g(xi, yi)=(0, 0).
Thus,

(xi, yi) is equilibrium pt for

{

dx
dt = f(x, y)
dy
dt = g(x, y)

(x, y)=(x(t), y(t)) ⇐⇒
{

f(xi, yi) = 0

g(xi, yi) = 0



Thus, in order to find the equilibrium points for (H1) or constant solutions of (H1), we only need
to solve the system

{

f(x, y) = 0

g(x, y) = 0
(H3)

This system does not involve any derivatives! For example, we find the equilibrium points for (H2)
by solving:
{

f(x, y) = 1

20
x− 1

500
xy = 0

g(x, y) = − 1

10
y + 1

1000
xy = 0

⇐⇒
{

x
500

(25− y) = 0

− y
1000

(100− x) = 0
⇐⇒

{

x=0 or y=25

y=0 or x=100
(H4)

Thus, the equilibrium points of the system (H2) are (0, 0) and (100, 25); they are indicated by the
two large dots on the first sketch in Figure 1.

WARNING: While it is usually not hard to find the equilibrium points of (H1), some care is often
needed. For example, after the last step in (H4), we need to determine all pairs (x, y) such that one
of the two conditions on the top line is satisfied, so that dx

dt =0, and one of the two conditions on

the bottom line is satisfied, so that dy
dt =0. This is different from finding (x, y) such that any two of

the four conditions in (H4) are satisfied; so (x, y)=(0, 25) is not an equilibrium point. Thus, it is
essential to keep the conditions for dx

dt =0 and the condition for dy
dt =0 separately, e.g. on separate

lines.

Note: In general, you can expect the last system in (H4) to be of the form
{

f1(x, y) = 0 or f2(x, y) = 0 or . . . or fm(x, y) = 0

g1(x, y) = 0 or g2(x, y) = 0 or . . . or gn(x, y) = 0

where f1, . . . , fm are some functions that factor f and g1, . . . , gn are some functions that factor g.
In order to find the equilibrium solutions of (H1), or equivalently all pairs of numbers (x, y) solv-
ing (H3), we then need to find ALL solutions of each of the mn systems of equations

{

fi(x, y) = 0

gj(x, y) = 0
i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

In the case of (H4) above, we get 2·2=4 systems:
{

x = 0

y = 0

{

x = 0

100− x = 0

{

25− y = 0

y = 0

{

25− y = 0

100− x = 0

Each of these is a system of linear equations, which happens to be easy to solve. In general, some
of these systems may not be so easy to solve (you should still be able to do so if they are linear!).
In this case, the second and third systems of equations have no solutions, while the first and the
fourth give us (x, y) = (0, 0) and (x, y) = (100, 25), respectively.

H.3 We are interested in knowing what happens with the point (x(t), y(t)), where (x, y) =
(x(t), y(t)) is a solution of (H1), as t increases. One special property of systems of autonomous
equations is that if (x, y)=(x(t), y(t)) is a solution of such a system, e.g. of (H1), then so is

(

x̃, ỹ
)

=
(

x̃(t), ỹ(t)
)

=
(

x(t−a), y(t−a)
)
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for any fixed constant a. As the time parameter t increases, the points (x(t), y(t)) and (x̃(t), ỹ(t))
trace the same path in the xy-plane, but (x̃(t), ỹ(t)) is delayed by time a. Thus, the behavior
of a solution (x(t), y(t)) of (H1) is well-represented by the directed curve in the xy-plane traced
by (x(t), y(t)) as t increases. Such a curve is called a phase trajectory for the system (H1). It
shows every point in the xy-plane the path (x(t), y(t)) passes through as t increases, though it does
not specify at what value of t the solution (x, y)= (x(t), y(t)) arrives at each given point (except
possibly for t = 0). Different phase trajectories for the same system generally do not intersect,
but may converge at some point. It is usually much easier to find explicit xy-equations describing
phase trajectories for a system of differential equation than actual solutions. These curves in the
xy-plane (the trajectories, not solutions, which are functions, not curves) satisfy the differential
equation obtained by dividing the second equation in (H1) by the first and viewing y as a function
of x:

dy

dx
=

g(x, y)

f(x, y)
, y = y(x).

Solutions to this equation in a specific case can be analyzed using the direction field for the xy-
differential equation. In the case of (H2), we get

dy

dx
=

− 1

10
y + 1

1000
xy

1

20
x− 1

500
xy

= −y(100− x)

2x(25− y)
, y = y(x).

This equation is separable and thus solvable. From this we find that the phase trajectories in the
first quadrant of the xy-plane (not including the axes) are closed curves circling around the only
equilibrium point in the first quadrant.

y

x

25

50

10050 150 200

P0

P1

P2

P3

x y

t
0

50

100

150

200

25

50
P1

P3

P0

P1

P3

P0

x

y

Figure 1: The left diagram shows a phase trajectory and the equilibrium points (the two large dots)
for the system (H2); a solution (x(t), y(t)) of (H2) goes around this curve counter-clockwise as t
increases. The right diagram shows the corresponding graphs of x=x(t) and y=y(t) as functions
of time.

H.4 Another way to represent a solution (x, y) = (x(t), y(t)) to the system (H1) is by sketching
the graphs of x=x(t) and y= y(t) as functions of time. It is most appropriate to do so with the
same horizontal t-axis, but different vertical x- and y-axes. The second diagram in Figure 1 shows
rough graphs of the functions x=x(t) and y=y(t) for the solution (x(t), y(t)) of (H2) whose phase
trajectory is shown in the first diagram. The t-axis is shared by the two graphs, but the vertical
axes are different. In particular, the x-axis has nothing to do with the y-graph; so y(0) ≈ 25,
not 75. Similarly, the y-axis has nothing to do with the x-graph; so at the last time point shown
on the graph x ≈ 100, and not 35. The intersection points of the two graphs are pretty much
irrelevant as x and y may represent very different quantities, in addition to the x-axis and y-axes
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having different scales. What the sketch does tell us is the x-value(s) at the time(s) when y-value
was something and vice versa, usually without specifying the corresponding value of time t. For
example, the first time x was about 45 (the first x-min), y was about 25; because both graphs are
periodic, y ≈ 25 when x reaches about 45 for the second time. Both of these facts are indicated
by the tiny vertical unlabeled line segments in the second diagram in Figure 1. This tells us that
roughly (45, 25) should be a point on the corresponding phase trajectory (labeled P2 on the first
diagram in Figure 1). Furthermore, this is the left-most point on the trajectory (because this is the
minimal value of x on the graph) and the trajectory passes through this point at least twice. Since
a solution of (H1) is determined by its value at t=0 (or any other fixed value of t), the latter im-
plies that the corresponding trajectory keeps on going around a simple closed curve in the xy-plane.

H.5 One of the central (and hard!) themes is to roughly sketch the graphs of x = x(t) and
y= y(t) as functions of t from the phase trajectory traced by (x, y) = (x(t), y(t)) in the xy-plane
and vice versa. In order to do so, first determine the extremal points of the phase trajectory
or of the graphs (whichever you are given) and the limiting behavior if any. For example, the
phase trajectory in the first diagram in Figure 1 has four extremal points that are traversed in the
order P0, P1, P2, P3, P0, P1, . . .; it has no limiting behavior (it keeps on circling around instead of
approaching some point). If our trajectory instead spiraled down to the point (100,25), it would
have had lots of extremal of points (one after each quarter-turn) and would have also approached
(100,25) as t−→∞. The trajectory in the second sketch in Figure 2 limits to (1150,200) as t−→∞.

After determining the extremal points of a given phase trajectory, mark the x- and y-coordinates of
each of them above the same t-point and do so in the order the extremal points are traversed. So if
we start at P0 in the first sketch in Figure 1, mark x=210 and y=25 above t=0 (however, remem-
ber that the x and y-scales may not be the same). After that, mark the x and y-coordinates of P1,
100 and say 52, over some t= t1 > 0. Then mark the x and y-coordinates of P2, say 45 and 25, over
some t= t2 > t1; continue on to P3 and then P4 =P0. In order to indicate the periodic behavior
of the trajectory, this should be done for at least one full period (so the x and y-coordinates of at
least P0 must be marked over two different t-values); it is preferable to continue for slightly longer.
If the trajectory has a limiting point, the graphs should be done for long enough to indicate that
they approach some asymptotes, such as in the first sketch in Figure 2. Make sure to distinguish
between the x-points and the y-points (for example, use a pencil and a blue pen). Once you have
marked the coordinates of the extremal points, connect the x-points by a smooth curve which is
monotonic between any two of them and do the same for the y-points. To get a more precise sketch,
you could also use coordinates of the non-extremal points on the phase trajectory, but using just
the extremal points and the limiting behavior will suffice in most cases. Note that the t-axis should
have no indication of scale; the only labels on it should be t on the very right and 0, provided the
starting point of the trajectory is given. The scales of the x and y-axes and the labels on them
in the “graphs sketch” should be analogous to the scales and the labels on these axes in the xy-plane.

If you start with graphs of x=x(t) and y=y(t), begin by marking the peaks and sags on each of the
two graphs as well as the point on the other graph on the same vertical line as each of the peaks and
sags. The x-values and y-values at these points give extremal points on the corresponding phase
trajectory; you should also mark the starting point (x0, y0)= (x(0), y(0)). Once you have marked
the extremal points in the xy-plane, connect them by a smooth curve in the order of increasing t
so that the curve does not change its general direction (e.g. up and to the right) between any two
of the points. If the graphs are periodic, the phase trajectory will be a closed curve. If the graphs
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Figure 2: The left diagram shows graphs of some functions x=x(t) and y=y(t). The right diagram
shows the phase trajectory traced by (x, y)=(x(t), y(t)) in the xy-plane.

have asymptotes, the phase trajectory will have a limiting point which is approached from the last
extremal marked point (it is possible that there are infinitely many extremal points approaching
the limiting point). For example, in the case of the first sketch in Figure 2, the starting values of
x and y give the point (800, 700) in the xy-plane. Then mark the sag on the y-curve along with
the point on the x-curve directly above it and the peak on the x-curve along with the point on the
y-curve directly below it. The x-value and y-value of the first pair give the point P1 ≈ (1200, 50)
in the xy-plane; the second pair gives the point P2 ≈ (1300, 100) in the xy-plane. Connect the
three points by a smooth curve in the xy-plane that does not change the general direction and
after passing P2 heads toward (1150, 200); this is because the x-graph approaches x=1150 and the
y-graph approaches y = 200 as t−→∞. In the case of the first diagram in Figure 2, the x- and
y-scales are the same, but usually this is not the case.

In general, various features of a phase trajectory in the xy-plane correspond to some features of
the graphs of x=x(t) and y=y(t). Here is a partial “dictionary”:

phase trajectory in xy-plane graphs of x=x(t) and y=y(t) Examples

starting point P0 (at t=0) points above t=0 Figs 1,2 above
local left/right-most point local min/max in x-graph in MIIf09 solutions
local bottom/top point local min/max in y-graph Figs 3,4 on p543 in Stewart

cycle (closed loop) periodic Figs 1 above, Figs 3,4 on p543

limiting point horizontal asymptotes Fig 2 above, in MIIf09 solutions

spiraling down to a point
decaying oscillations around

Fig for 7.2 11
horizontal line

Note: The process of going between a phase trajectory and corresponding graphs, in either direc-
tion, does not require knowing the corresponding system of differential equations. For example,
it was not specified on some of the homework exercises. Knowing the system may help you check
that you have completed this process correctly. If Pi=(xi, yi) is a horizontally extremal point of
a phase trajectory for the system (H1), then f(xi, yi)= 0. If it is a vertically extremal point of a
phase trajectory for the system (H1), then g(xi, yi) = 0. In the case of the system (H2) and the
first sketch in Figure 1, the former means that the y-coordinates of P0 and P2 are both 25; the
latter means that the x-coordinates of P1 and P3 are both 100. Similarly, if the graph of x=x(t)
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as a function of t has a peak or a sag at xi and the y-value on the same vertical line is yi, then
f(xi, yi) = 0. If the y-graph has a peak or a sag at yi and the x-value on the same vertical line
is xi, then g(xi, yi)=0. In the case of the system (H2) and the second sketch in Figure 1, the latter
means that y = 25 on a vertical line passing through an x-peak or x-sag; the former means that
x=100 on a vertical line passing through a y-peak or y-sag.

H.6 Systems of 2 autonomous first-order differential equations can be used to model interactions
of two species. In such cases, x(t) denotes the population of one of the species at time t, while y(t)
denotes the population of the other species. Such a system normally has an equilibrium point (0, 0)
corresponding to no population of either species. With y = 0, the dx

dt equation in (H1) describes

the growth rate of the first species in the absence of the second; with x= 0, the dy
dt equation in

(H1) describes the growth rate of the second species in the absence of the first. Each of these
reduced equations is likely to be an exponential growth/decay equation or a logistic growth equa-
tion. In the exponential growth case, the population of the species increases exponentially in the
absence of the other species; in the exponential decay case, the population decays out to 0 in the
absence of the other species. In the logistic growth case, the population approaches the carrying
capacity; this gives an equilibrium point (K, 0) or (0,K), where K is the carrying capacity for the
first population or the second population. There may well be other equilibrium points, with both
populations nonzero; these correspond to the two populations precisely matched up to “support”
each other (including possibly by one feeding on the other).

The terms in the dx
dt equation that involve y indicate whether the second species has a positive or

negative effect on the first; the terms in the dy
dt equation that involve x indicate whether the first

species has a positive or negative effect on the second. From considering these terms, it should be
possible to determine whether the system models a predator-prey relation (+/−), that of cooper-
ation for mutual benefit (+/+), or of competition for common resources (−/−).

In the case of (H2),

dx

dt
=

1

20
x if y = 0,

dy

dt
= − 1

10
y if x = 0.

So, in the absence of the second species, the first obeys an exponential growth equation and thus
increases exponentially with time. In the absence of the first species, the second obeys an expo-
nential decay equation and thus eventually dies out. Since xy has a negative coefficient in the dx

dt

equation in (H2) and positive in the dy
dt equation, the presence of the second species has negative

effect on the first and the presence of the first species has positive effect on the second. This
suggests that the first species is prey and the second is predator.
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I: Sequences

I.1 A sequence is an infinite string of numbers. It can be specified in several ways:

• list the numbers; for example, −1, 1/2,−1/6, 1/24,−1/120, . . .;

• give a formula for the n-th number in the sequence; for example an=(−1)n/n! for n≥1;

• through recursive definition; for example, a1 =−1, an+1 =−an/(n+1) for n≥ 1, or f0 = 0,
f1=1, fn+2=fn+1+fn for n≥0. The first of these sequences is the same as the two sequences
above; the second one is the famous Fibonacci sequence.

A sequence does not have to start with a1; it could start with a0 or with any other an0
, as long as

an is specified for all n≥n0. Since it is just a string of numbers, the first number could be called
a1, or a0, or a−10; the second number in the sequence would then have to be called a2, a1, or a−9,
respectively.

I.2 Given a sequence a1, a2, . . ., we’d like to know whether it gets closer and closer to some
number a or there is no such number. In the former case, the sequence is said to converge to a and
this is written as lim

n−→∞
an=∞; in the latter case, the sequence is said to diverge. In many cases,

it is fairly straightforward to determine whether a sequence converges (and if so to what limit) or
diverges. For example, if

an = (−1)n
√
n4 + n2

n2 +
√
n2 + 1

,

simply divide top and bottom by n2 (you have to divide by the same thing!):

an = (−1)n
√
n4 + n2/n2

n2/n2 +
√
n2 + 1/n2

= (−1)n
√

n4/n4 + n2/n4

1 +
√

n2/n4 + 1/n4

= (−1)n
√

1 + 1/n2

1 +
√

1/n2 + 1/n4
;

(I1)

so the fraction approaches
√
1/(1 +

√
0) = 1, but the sign alternates. So the terms an with n odd

converge to -1, while the terms an with n even converge to 1. Thus, the entire sequence diverges

(there is no single number to which all of the terms approach):

“2 limits” = “no limit” = “diverge”

The above trick of dividing top and bottom of a fraction by a power of n is the most common

approach to dealing with sequences given by fractions. In MAT 125, a similar trick involved divid-
ing by a power of x. In order to reduce your chances of making minor computational errors, which
may even alter the qualitative answer (and thus be heavily penalized), it is best not to skip steps
in a computation like (I1). In particular, be careful when taking a power of n under a square root.

I.3 Some sequences are of the form an= f(bn) for some fairly simple function f and some fairly
simple sequence bn. For example, if an = e1/n, then the sequence bn=1/n converges to 0 and since
ex is continuous at 0,

lim
n−→∞

e1/n = e
lim

n−→∞

1/n
= e0 = 1.
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On the other hand, the sequence an = cos(πn) is divergent, since it alternates between 1 and −1.

I.4 If an=f(n) for some function f=f(x) defined on the positive real line, then

lim
n−→∞

an = lim
x−→∞

f(x)

if the second limit exists (the first limit may exist even if the second does not). This may allow
using l’Hospital for limits of functions. For example, if an=(lnn)/n, then

lim
n−→∞

an = lim
x−→∞

lnx

x
= lim

x−→∞

(lnx)′

x′
= lim

x−→∞

1/x

1
= 0.

If an=n · sin(1/n), then

lim
n−→∞

an = lim
n−→∞

sin(1/n)

1/n
= lim

x−→0

sinx

x
= lim

x−→0

(sinx)′

x′
= lim

x−→0

cosx

1
= 1.

This approach is not suitable for many sequences, including those involving n! and (−1)n.

I.5 If a sequence {an} is defined recursively as an+1=f(an), for some function f and with some
initial condition, and it converges to a, then a=f(a); this is obtained by taking the limit of both
sides of an+1 = f(an). So if the sequence an is known to have a limit, one simply needs to solve
the equation a= f(a); it may have several solutions, but it should be possible to rule out all but
one of them as possible limits (perhaps only one solution of a=f(a) is non-negative and an>0 for
all n). This trick applies in

(a) a1 = 2, an+1 =
an + 6

2

(b) a1 =
√
2, an+1 =

√
2an,

√
2,

√

2
√
2,

√

2

√

2
√
2, . . .

(c) a1 =
√
2, an+1 =

√
2 + an,

√
2,

√

2 +
√
2,

√

2 +

√

2 +
√
2, . . .

Note: given the right-most presentations of sequences on the second and third lines above, you
should be able to convert them to the recursive definitions in the middle of the two lines.

I.6 Before applying the trick in I.5, one has to know that the sequence {an} has a limit at all.
The convergence/divergence test for sequences which is suitable for all three examples in I.5 is the
Monotonic Sequence Theorem:

if an ≤ an+1 and an ≤ M for all n (≥ some N), then {an} converges and lim
n−→∞

an ≤ M

if an ≥ an+1 and an ≥ m for all n (≥ some N), then {an} converges and lim
n−→∞

an ≥ m

In the first case, the sequence is increasing with n and is climbing below some “roof” M . As it
keeps climbing, but cannot escape past the roof, it must approach some level below the roof (or
the roof itself). In the second case, the sequence is decreasing with n and is descending toward
some “floor” m. As it keeps descending, but cannot escape past the floor, it must approach some
level above the floor (or the floor itself).
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I.7 The second main convergence test for sequences is the Squeeze Theorem for Sequences:

if {an}, {bn}, {cn} are sequences such that an ≤ bn ≤ cn for all n (≥ some N), {an} and
{cn} converge, and lim

n−→∞
an= lim

n−→∞
cn, then {bn} also converges and

lim
n−→∞

an = lim
n−→∞

bn = lim
n−→∞

cn

You might apply this to a specified sequence {bn} and appropriately chosen simpler sequences {an}
and {cn} which converge to the same limit and squeeze {bn} in between. For example, if

bn =
n

n+ 1
+

cosn

n
,

you might take an = n/(n+ 1)− 1/n and cn = n/(n+ 1) + 1/n so that

an ≤ bn ≤ cn, lim
n−→∞

an = lim
n−→∞

cn = lim
n−→∞

n/n

n/n+ 1/n
= 1.

This implies that {bn} also converges and its limit is also 1.

If bn = 7n/n!, then

b7+n =
77+n

(7 + n)!
=

77

7!
· 7
8
· 7
9
· . . . 7

7 + n
≤ b7 ·

(

7

8

)n

;

so the sequence b7+n is squeezed between the constant sequence an=0 and the geometric sequence
cn=b7(7/8)

n which converges to 0 by I.8 below. This implies that the sequences {bn} also converges
to 0. The practical use of the Squeeze Theorem for Sequences is rather limited though. For example,
in the first case above, you know that | cosn| ≤ 1 and thus (cosn)/n−→0; so

lim
n−→∞

bn = lim
n−→∞

n

n+ 1
= 1.

The second case is best dealt with by using the Ratio Test for Sequences; see I.9 below.

I.8 A sequence of the form c, cr, cr2, cr3, . . . is called geometric. It is not difficult to determine
whether it converges:

the geometric sequence c, cr, cr2, cr3, . . . with c 6= 0

• converges if −1 < r ≤ 1 (to 0 if −1 < r < 1; to 1 if r = 1);

• diverges if r ≤ −1 or r > 1.

(I2)

Note that the convergence statement for geometric series, (J3) below, is slightly different.
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I.9 Another convergence test that works well for some sequences is the Ratio Test for Sequences:

• if lim
n−→∞

|an+1|
|an|

< 1, then lim
n−→∞

an = 0;

• if lim
n−→∞

|an+1|
|an|

> 1 or an+1/an −→ ∞, then the sequence an diverges;

• if lim
n−→∞

|an+1|
|an|

= 1, then this test says nothing.

For example, for the sequence an = (−1)n7n/n!,

|an+1|
|an|

=
7n+1/(n+1)!

7n/n!
=

7n+1

7n
· n!

(n+1)!
=

7n · 7
7n

· n!

n! · (n+1)
=

7

n+1
−→ 7

∞+ 1
= 0.

Since 0 < 1, this sequence converges to 0. On the other hand, for the sequence an = 2n/n,

|an+1|
|an|

=
2n+1/(n+1)

2n/n
=

2n+1

2n
· n

n+1
=

2n · 2
2n

· 1

n/n+1/n
= 2

1

1+1/n
−→ 2

1

1+1/∞ = 2
1

1+0
= 2.

Since 2 > 1, this sequence diverges (actually “converges” to ∞).

Since RT for Sequences can detect convergence of sequences a1, a2, . . . with limit 0 only (and even
of only some of these), it works with few sequences. However, whenever it is applicable, RT for

Sequences determines the limit of convergent sequences immediately. RT for Sequences has a good
chance of working for sequences that involve factorials and powers n (e.g. n!, 3n, nn), but has no
chance of working for sequences that involve only powers of n (e.g. n3).

I.10 Finally, there are Limit Rules for Convergent Sequences, which are more or less as expected:

if {an} and {bn} are convergent sequences and c is any number,

lim
n−→∞

(an ± bn) = lim
n−→∞

an ± lim
n−→∞

bn , lim
n−→∞

can = c · lim
n−→∞

an

lim
n−→∞

(anbn) =
(

lim
n−→∞

an
)

·
(

lim
n−→∞

bn
)

lim
n−→∞

an
bn

=
lim

n−→∞
an

lim
n−→∞

bn
if lim

n−→∞
bn 6= 0

The second equation on the first line is a special case of the first equation on the second line: just
take bn=c for all n. Note that the sequences {an ± bn}, {anbn}, and {an/bn} can converge even if
the sequences {an} and {bn} do not; in such cases, the limit rules are useless. Typically the limit
rules are used to compute limits of sequences; in some cases they could also be used to test for
convergence. For example, if the sequence {an} converges, then the sequence {an ± bn} converges
if and only if the sequence {bn} does.
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J: Series

J.1 A series (or infinite series) is the sum of all terms in a sequence:

∞
∑

n=1

an = a1 + a2 + a3 + . . . , (J1)

where a1, a2, . . . is some sequence. The lower limit in the summation need not be 1; if a0 is the
first term of the corresponding sequence, then the lower limit in the sum is 0. Associated to the
infinite sum (J1) is the sequence of partial sums,

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, sn =
k=n
∑

k=1

ak.

The (infinite) series (J1) is said to converge to s if the sequence {sn} of the partial sums (not the
original sequence {an}!!!) converges to s. If the partial sums sn do not have a limit, the series (J1)
is said to diverge. Thus, if the series (J1) converges to some number s, then the partial sums sn
approach s and so

an = sn − sn−1 =
(

sn − s
)

−
(

sn−1 − s
)

approaches 0. This gives the most important statement regarding convergence of series:

if the sequence {an} diverges or it converges, but lim
n−→∞

an 6= 0,

then the series
∞
∑

n=1

an diverges
(J2)

For example, the series
∞
∑

n=1

(−1)n and
∞
∑

n=1

cos(nπ/2) diverge, because neither of the sequences

{(−1)n} nor {cos(nπ/2)} converges to 0 (in fact, neither of the two sequences converges at all).
The partial sums sn in the first case alternate between −1 and 0 and so indeed do not approach
any number. In the second case, the partial sums cycle through 0,−1,−1, 0 and so do not approach
any number either.

WARNING: The most important statement about convergence of power series can never be

used to conclude that a series converges; this is the reason that there are lots of other convergence

tests for series. For example, the series
∞
∑

n=1

1

n
does not converge, according to the p-Series Test

in (J10) below, even though 1/n−→0.

J.2 Computing the sum of an infinite series is usually difficult, but possible in some cases. A

geometric series is the sum of a geometric sequence and so has the form
∞
∑

n=0

crn. The sequence of

partial sums in this case is

s0 = c, s1 = c+ cr, s2 = c+ cr + cr2, . . .

sn = c+ cr + . . .+ crn = c(1 + r + . . .+ rn) =

{

1−rn+1

1−r c, if r 6=1;

(n+1)c, if r=1.

11



If c 6= 0 and |r| ≥ 1, by the last line the sequence sn diverges. If |r|< 0, then rn+1 −→ 0 and so

sn −→ 1/(1−r). Since the convergence of the series
∞
∑

n=0

crn is the same the convergence of the

sequence sn (but not of an), we find that

∞
∑

n=0

crn =
c

1− r
if |r|<1 (note the lower limit on the sum)

∞
∑

n=0

crn diverges if |r|≥1 and c 6=0

(J3)

In the second case, the sequence an = crn being summed does not converge to 0 by (I2). Thus,
the conclusion in this case also follows from the most important statement about convergence of
series in (J2) above.

As an application, we can write the number 2.137 = 2.1373737 . . . as a simple fraction:

2.137 = 2.1 + .037 + .037 · 1

100
+ .037 · 1

1002
+ . . . =

21

10
+

37/1000

1− 1

100

=
21

10
+

37/10

99

=
21 · 99 + 37

990
=

2116

990
=

1058

495

This is another example when skipping steps might increase the chance of a computational error.

J.3 Infinite series can also be summed up in the cases of pairwise cancellation. Such series have
the form

∞
∑

n=1

(

bn−bn+m

)

= (b1 − b1+m) + (b2 − b2+m) + . . .+ (b1+m − b1+2m) + (b2+m − b2+2m) + . . .

for some fixed integer m≥0 or can be put into this form after some algebraic manipulations (the
lower limit can be anything). Note that lots of terms above cancel in pairs. If n≥m, the n-th
partial sum is then

sn = a1 + a2 + . . .+ an = (b1 − b1+m) + (b2 − b2+m) + . . .+ (bn − bn+m)

=
k=m
∑

k=1

bk −
k=n+m
∑

k=n+1

bk,
(J4)

since the second term in the k-th pair cancels with the first term in the (k+m)-th, provided
k≤n−m. This leaves the first terms in the first m pairs and the second terms in the last m pairs.
As n−→∞, the first sum on the second line in (J4) does not change. So the sequence {sn} (and

thus the series

∞
∑

n=1

(

bn − bn+m

)

) converges if and only if the sequence

s−n =
k=n+m
∑

k=n+1

bk = bn+1 + bn+2 + . . .+ bn+m
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does. This happens if the sequence {bn} converges, but may happen even if {bn} diverges. For
example, all of the series

∞
∑

n=1

(

sin(1/n)− sin(1/(n+1))
)

,
∞
∑

n=1

(

cos(1/n)− cos(1/(n+2))
)

,
∞
∑

n=1

(−1)n
(

ln(n)− ln(n+2)
)

converge, while the series

∞
∑

n=1

(

cos(n)− cos(n+1)
)

,
∞
∑

n=1

(

ln(n)− ln(n+1)
)

,
∞
∑

n=1

(

en − en+1
)

diverge.

The simplest possible case, called telescoping cancellation, occurs when bn −→ 0, so that the last
sum in (J4) disappears as n−→∞:

∞
∑

n=1

(

bn−bn+m

)

=
n=m
∑

n=1

bn if lim
n−→∞

bn = 0, m ≥ 0 (J5)

This is frequently used in conjunction with partial fractions. For example,

∞
∑

n=2

1

n2 − 1
=

∞
∑

n=2

1

+1 − ( −1 )

(

1

n −1

− 1

n +1

)

=
1

2

∞
∑

n=2

(

1

n− 1
− 1

n+ 1

)

=
1

2

(

(

1

1
− 1

3

)

+

(

1

2
− 1

4

)

+

(

1

3
− 1

5

)

+

(

1

4
− 1

6

)

+ . . .

)

=
1

2

(

1 +
1

2

)

=
3

4

In this case, bn=1/(n−1) for n≥2 and m=2. Generally, re-writing LHS of (J5) as

∞
∑

n=1

bn −
∞
∑

n=1

bn+m

will constitute a serious error, since these two sums may not converge. For example,

∞
∑

n=2

1

n− 1
=

∞
∑

n=1

1

n

does not converge by the p-Series Test in (J10) below. The condition lim
n−→∞

bn = 0 in (J5) is

absolutely essential. For example, the series

∞
∑

n=1

ln

(

n+ 1

n

)

=
∞
∑

n=1

(

ln(n+1)− lnn
)

does not converge at all, because the sequence of partial sums

sn =
k=n
∑

k=1

(

ln(k+1)− ln k
)

= ln(n+1)− ln 1 = ln(n+1)
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diverges. The formula (J5) with bn =− lnn and m= 1 would have produced b1 = 0 for the sum
of the infinite series. This is impossible in this case since all the summands are positive. The
formula (J5) cannot be applied in this case because the limit condition in (J5) is not satisfied.

J.4 There are many cases when it can be determined whether a series converges, but it is hard
to determine its sum (this is relatively rare for sequences). There are several convergence tests
for series which, unlike the most important statement for series in (J2) above, can determine con-
vergence. Some tests (Integral, Comparison, Limit Comparison) deal with series that have only
positive terms an (for n ≥ some N); the Ratio and Root Tests for Series do not care about the
signs. Series with terms of different signs are in fact more likely to converge, as indicated by the
Alternating Series Test. In some cases, different tests can be used to determine whether a series
converges.

J.5 The most evident and fundamental convergence test for series with positive terms is the
Comparison Test:

if the sequences {an} and {bn} have positive terms, an ≤ bn for all n (≥ some N), and

the series
∞
∑

n=1

bn converges, then so does the series
∞
∑

n=1

an
(J6)

This test with the roles of an and bn reversed leads to a divergence test for series:

if the sequences {an} and {bn} have positive terms, an ≥ bn for all n (≥ some N), and

the series
∞
∑

n=1

bn diverges, then so does the series
∞
∑

n=1

an

While the Comparison Test is the basis for most other convergence tests for series, it is often easier
to apply one of the other convergence tests instead.

J.6 A close cousin to the Comparison Test is the Limit Comparison Test for series states that

if the sequences {an} and {bn} have positive terms, the sequence an/bn converges, and

the series
∞
∑

n=1

bn converges, then so does the series
∞
∑

n=1

an
(J7)

For example, to determine whether the series
∞
∑

n=1

n

4n
converges, take an=n/4n and bn=1/2n,

lim
n−→∞

(

an
bn

)

= lim
n−→∞

(

n

2n

)

= 0

and
∞
∑

n=1

bn converges by the geometric series test (J3); so
∞
∑

n=1

an also converges. The same argument

applies to
∞
∑

n=1

np

rn
for any r>1 (but the Ratio Test for Series is simpler to use here). More typically,

the Limit Comparison Test is applied to series like

∞
∑

n=1

1

2n − n
,

∞
∑

n=2

1

n2 − n
,

∑

n=1

sinp(1/n) ;
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the summands in these series “asymptotically approximate” 1/2n, 1/n2, and 1/np, respectively.
The Limit Comparison Test with the roles of an and bn reversed leads to a divergence test for
series:

if the sequences {an} and {bn} have positive terms, the sequence an/bn converges,

lim
n−→∞

(an/bn) 6= 0, and the series
∞
∑

n=1

bn diverges, then so does the series
∞
∑

n=1

an

In contrast to the convergence test above, there is the extra condition that an/bn not approach 0;
this makes sense since otherwise we could take an=0, regardless of what bn is. The Limit Com-

parison Test follows from the Comparison Test, but is likely to be more useful in this course.

J.7 The Ratio Test for Series works similarly to the Ratio Test for Sequences:

• if lim
n−→∞

|an+1|
|an|

< 1, then the series

∞
∑

n=1

an converges;

• if lim
n−→∞

|an+1|
|an|

> 1 or an+1/an −→ ∞, the series
∞
∑

n=1

an diverges;

• if lim
n−→∞

|an+1|
|an|

= 1, then this test says nothing.

(J8)

For example, for the series
∑

(−1)n7n/n!,

|an+1|
|an|

=
7n+1/(n+1)!

7n/n!
=

7n+1

7n
· n!

(n+1)!
=

7n · 7
7n

· n!

n! · (n+1)
=

7

n+1
−→ 7

∞+ 1
= 0.

Since 0 < 1, the series converges to 0. On the other hand, for the series
∑

2n/n,

|an+1|
|an|

=
2n+1/(n+1)

2n/n
=

2n+1

2n
· n

n+1
=

2n · 2
2n

· 1

n/n+1/n
= 2

1

1+1/n
−→ 2

1

1+1/∞ = 2
1

1+0
= 2.

Since 2 > 1, the series diverges.

Due to the last case in (J8), the Ratio Test does not work for many series. However, whenever
it is applicable, RT for Series works amazingly well. In particular, you do not need to come up
with another series to compare the given series with as you would for the Comparison Test and
the Limit Comparison Test. RT for Series has a good chance of working for sequences that involve
factorials and powers n (e.g. n!, 3n, nn), but has no chance of working for sequences that involve
only powers of n (e.g. n3).

J.8 Another useful convergence test for series is the Integral Test:

if f is a continuous, positive, and decreasing function on [1,∞), then

the series
∞
∑

n=1

f(n) converges if and only if the improper integral

∫ ∞

1

f(x)dx does (J9)

15



This test is obtained from the geometric interpretation of the integral as the area under the graph,
which can be estimated by rectangles of base one and with heights determined by either left or
right end points. A corollary of this test is the p-series Test:

the series
∞
∑

n=1

1

np
converges if and only if p>1 (J10)

J.9 There are also Rules for Convergent Series, which are more or less as expected:

if the series
∞
∑

n=1

an and
∞
∑

n=1

bn converge and c is any number,

∞
∑

n=1

(an ± bn) =
∞
∑

n=1

an ±
∞
∑

n=1

bn ,
∞
∑

n=1

can = c
∞
∑

n=1

an

Note that these rules do not extend to multiplication and division, unlike what is the case for

sequences. The series

∞
∑

n=1

(an± bn) can converge even if the series

∞
∑

n=1

an and

∞
∑

n=1

bn do not; in such

cases, the above rules are useless. Typically these rules are used to compute sums of series; in some

cases they could also be used to test for convergence. For example, if the series

∞
∑

n=1

an converges,

then the series

∞
∑

n=1

(an ± bn) converges if and only if

∞
∑

n=1

bn does.

K: Convergence/Divergence Tests for Sequences and Series (recap)

The two most important things regarding Chapter 8 are

• distinguishing between sequences and series and their convergence/divergence tests;

• realizing that the convergence/divergence issue concerns what happens with “the infinite tail”.
Thus, dropping the first 159 terms of a sequence or series will not change its convergence/divergence
property. If a series does converge, dropping the first 159 terms will however change the sum of
the infinite series, precisely by the sum of the first 159 terms.

Confusion about these two points, especially the first one, is likely to be the primary reason for
the low scores on the second midterm.

Whether a sequence/series converges or diverges depends primarily on the dominant terms and
the presence of any sign-alternating or oscillatory behavior, such as (−1)n or sinn; factors like
sin(1/n) and cos(1/n) are not oscillatory, since they approach 0 and 1, respectively, as n−→0. It
is generally helpful to try to isolate the dominant terms, essentially by factoring them out. If the
terms are given by a fraction, this usually means dividing top and bottom by the dominant term.
The main dominance relations to remember are:

lim
n−→∞

(lnn)p

nq
= 0, lim

n−→∞

np

eqn
= 0, lim

n−→∞

epn

(n!)q
= 0, lim

n−→∞

(n!)

nn
= 0
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for all p, q > 0; you should know how to justify these statements. However, one has to be careful
with the dominant terms if there are minus signs between them. For example, while the dominant
term of an=

√
9n+2n − 3n may appear to be 3n=

√
9n, in fact

an =
(√

9n+2n − 3n
)

·
√
9n+2n + 3n√
9n+2n + 3n

=
2n√

9n+2n + 3n
=

(

2

3

)n

· 1
√

1 + (2/9)n + 1
;

so the dominant term is (2/3)n (times 1/2, which does not effect convergence). So the sequence an

converges to 0, while the series
∞
∑

n=1

an converges to something positive by the Limit Comparison

Test applied with bn=(2/3)n.

If the terms of a sequence or series naturally split as a sum of two terms, one of which gives rise to a
convergent sequence or series, respectively, then you can drop the convergent term in determining
whether the entire sequence or series converges. For example, the sequence an = (1+ (−1)n)/n
converges if and only if the sequence bn=(−1)n/n does, because the sequence cn=1/n converges
(to 0, which does not matter in this case); so the sequence an does converge (to 0). Since the series
∞
∑

n=1

1

n
does not converge, neither does the series

∞
∑

n=1

1 + (−1)n

n
. However, be careful not to split

off a divergent sequence or series. For example,

lim
n−→∞

(√
9n+2n − 3n

)

6= lim
n−→∞

√
9n+2n − lim

n−→∞
3n ;

∞
∑

n=1

(√
9n+2n − 3n

)

6=
∞
∑

n=1

√
9n+2n −

∞
∑

n=1

3n ;

∞
∑

n=1

1

n(n+1)
=

∞
∑

n=1

(

1

n
− 1

n+1

)

6=
∞
∑

n=1

1

n
−

∞
∑

n=1

1

n+1

because neither of the two limits on the right-hand side on the first line exists and neither of the
four sums on the right-hand sides of the second and third lines exists.

Convergence/divergence of sequences. A sequence is simply an infinite string of numbers described
in some way, typically by an explicit formulas, such as an = (−1)nn4/(3n4+1), or by a recursive
formula, such as an+1=

√
6+an, with some initial condition(s), such as a1=

√
6. While sequence is

a longer word than series, determining whether a sequence converges or diverges is easier.

(SQ1) If a sequence is given by an explicit formula, it is usually possible to determine whether
it converges through a quick inspection. The goal is to plug in n = ∞, possibly after
some algebraic manipulations. If you get a meaningful number by doing so, the sequence
converges to this number (∞/∞, 0 ·∞, 0/0,∞−∞, 1∞ are not meaningful numbers). If it is
meaningless to plug in n=∞ right away, begin by splitting an into parts if possible (often
not; be careful) and determining the dominant term; see above. For example,

an = (−1)n
n4

3n4+1
= (−1)n

1

3 + 1/n4
;

so the dominant term here is (−1)n. If plugging in n=∞ makes sense then, you are done:
the sequence converges. For example, it makes sense to plug in n=∞ into 1/(3+1/n4),
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but not into n4/(3n4+1) or (−1)n/(3+1/n4), because ∞/∞ and (−1)∞ do not make sense.
Typically, a sequence would not converge due to either an oscillatory behavior, which may
be exhibited by a factor of (−1)n or sin(n), or because it (or part of it) approaches ∞, as
n/(lnn) does. However, the presence of an oscillatory factor does not insure divergence.
For example, the sequence

(−1)n
n3

3n4+1
=

(−1)n

n
· 1

3 + 1/n4

converges to 0 because the seemingly oscillatory factor in fact decays to 0. Occasionally (if
terms like 2n, n!, or nn are present), the Ratio Test for Sequences can be useful; see I.9

above.

(SQ2) If a sequence is given by a recursive formula, begin by writing out the first few terms to get
an idea whether the sequence converges or diverges. If it appears to converge, theMonotonic

Sequence Theorem may be useful to justify this (so you may need to use induction to show
that either the sequence is bounded above by something and increasing or bounded below
and decreasing). If it appears to diverge, this is likely due to some oscillatory behavior
or because of going off to infinity; you’ll need to justify that this pattern continues as n
increases.

(SQ3) The Squeeze Theorem for Sequences may be useful in some cases, but is generally avoidable.
In some cases, it may be possible to replace n by x and compute the limit as x−→∞; this
may allow using l’Hospital(if the required conditions are satisfied), but usually this will not
be the fastest approach.

Convergence/divergence of series. A series is the sum of terms in a sequence, with the latter typi-
cally given by an explicit formula when series are encountered. While series is a shorter word than
sequence, determining whether a series converges is much harder and the concept of a series itself
is significantly more abstract.

First, a series

∞
∑

n=1

an converges if and only if the sequence of partial sums {sn} defined by

sn = a1 + a2 + . . .+ an

does; if this happens, the infinite sum of the an’s is defined to be the limit of the sn’s. What this
means is that you keep on adding more and more terms an to the sum and see if the resulting finite
sums (with more and more terms) approach anything. However, in practice, it is almost never
possible to find an explicit formula for sn.

Second, there are lots of divergence/convergence tests for series, most with several assumptions
that you have to remember to check before applying the test. After trying to split off a convergent
part of a series (e.g.

∑

1/n2 from
∑

(1/n2 + (sinn)/n3)) and determining the dominant term, you
might want to try doing the following to determine if the series converges.

(SR0) If the sequence {an} does not converge to 0, the series
∑

an diverges. For example, the
series

∞
∑

n=1

(−1)n ,
∞
∑

n=1

n

2n+ 1
,

∞
∑

n=1

cos(1/n),
∞
∑

n=1

sin(n),
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all diverge. Note that even if lim
n−→0

an = 0, the series
∑

an may still diverge; this is the

reason you need the other half-dozen convergence/divergence tests.

(SR1) If the series is a geometric series
∑

crn or p-series
∑

1/np, you should know immediately if
it converges or diverges; see (J3) and (J10) above. However, be careful not to confuse these
with other similarly looking series; these two types of series are very restrictive, but also
very important.

(SR2) If the series has positive terms only, determine its leading term, such as some power of n,
and apply the Limit Comparison Test with that power of n; see (J7) above. Remember that
sin(1/n) and tan(1/n) look like 1/n as n−→∞, since

lim
n−→∞

tan(1/n)

1/n
= lim

n−→∞

sin(1/n)

1/n
· lim
n−→∞

cos(1/n) = lim
x−→0

sin(x)

x
· 1 = 1.

So by the Limit Comparison Test with bn=1/np, the series

∞
∑

n=1

sinp(1/n),
∞
∑

n=1

tanp(1/n)

converge if and only if p>1. However, sin(n) and tan(n) do not look like n as n−→∞.

(SR3) If the series has positive terms only, but the Limit Comparison Test is not suitable, try to
find a way to use the Comparison Test; see (J6) above. So you’ll still need to guess bn, but
now the second sequence needs to satisfy different requirements (but still 3 of them). For

example, the Limit Comparison Test with bn=1/n2 cannot be used for the series
∞
∑

n=1

| sinn|
n2

because

lim
n−→∞

an
bn

= lim
n−→∞

| sinn|/n2

1/n2
= lim

n−→∞
| sinn|

does not exist. However, we can use the Comparison Test with bn=1/n2, because

0 ≤ an =
| sinn|
n2

≤ bn =
1

n2

and the series

∞
∑

n=1

1

n2
converges by the p-Series Test with p = 2; see (J10) above. This

implies that so does the “smaller” series

∞
∑

n=1

| sinn|
n2

. This argument cannot be used to

directly conclude that the series

∞
∑

n=1

| sinn|
n

diverges1, because the divergence of the series

∞
∑

n=1

1

n
does not imply that the “smaller” series

∞
∑

n=1

| sinn|
n

also diverges.

(SR4) For some series with positive terms only, the Integral Test can be used; see (J9) above.
For this, the function f obtained from the terms of the series by replacing n by x must make

1this series does indeed diverge because | sinx|+| sin(x+1)|≥1/2 for all x
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sense for all x≥1 (or at least for x≥N for some N); for example, x! does not make sense.
You also have to check that the function f obtained in this way is positive, continuous, and
decreasing for x≥ 1 (or at least for x≥N for some N). For example, while the function
f(x) = | sinx|/x makes sense for x≥ 1 and is continuous, it is not decreasing (and or even

positive); so the fact that the integral
∫ | sinx|

x dx diverges does not say anything directly
about the infinite series. The most important use of the Integral Test has been to obtain the
p-Series Test; see (J10) above. It has also been used in the presence of lnn. The Integral

Test can be used to show that all of the series

∞
∑

n=1

1

np
,

∞
∑

n=2

1

n(lnn)p
,

∞
∑

n=3

1

n(lnn)(ln lnn)p
, . . . ,

∞
∑

n=1

sinp(1/n),
∞
∑

n=1

tanp(1/n)

converge if and only if p > 1. Except for the last 2 series, the relevant integral can be
computed fairly easily. In the case of the last 2 series, the integral is much harder to
compute, but it can be shown to be finite if and only if p>1, which suffices. However, it is
simpler to apply the Limit Comparison Test to the last 2 series with bn=1/np.

(SR5) In rare cases, it is possible to determine whether a series converges or diverges by com-

puting the corresponding sequence of partial sums (so directly from the definition
of convergence for series). This can be done when the series has the form

∞
∑

n=1

(

bn − bn+m

)

for some sequence {bn}; see J.3 above. This approach is also useful for computing sums of

series like
∞
∑

n=1

1

n(n+ 2)
via partial fractions and partial sums. However, for showing that

this series converges, it is much simpler to use the Limit Comparison Test.

Each of the convergence tests works only for some series, and the convergence of some series can
be determined using more than one of the convergence tests (but one of them may still be easier
to use). Most importantly, try to see what a given series looks like, in terms of the leading terms
and oscillatory behavior if any; in most cases, you may be able to guess whether it converges or
diverges rather quickly based on these. If you are supposed to justify your answer, make sure
you check that all of the conditions of the test you want to use hold; often this will mean stat-
ing the required properties, but sometimes additional justification may be required. For example,
it is sufficient to state that 1/n≥0, but some explanation is required to justify that 1/(n2−n+1)≥0.

In order to do well on the second midterm, you will need to decide fairly quickly which convergence
test to use for each given series. It will not be possible to do so without a lot of practice. You should
go through all of the sequences and series in the exercises in the book and determine whether each
converges or diverges and why; with some practice, each of them should take you only 30 seconds
or so.

Good luck on the midterm!


