
MAT 127: Calculus C, Spring 2022
Solutions to Midterm II

Problem 1 (20pts)

Answer Only: no explanation is required. Write your answer to each question in the correspond-
ing box in the simplest possible form. No credit will be awarded if the answer in the box is wrong;
partial credit may be awarded if the answer in the box is correct, but not in the simplest possible
form. In (a)-(c), assume that the limits exist.

(a; 5pts) Find the limit of the sequence an = cos

(

nπ

n+π

)

−1

This is similar to HW6 VI.1,2. Note that

an = cos

(

nπ/n

(n+π)/n

)

= cos

(

π

n/n+π/n

)

= cos

(

π

1+π/n

)

.

Plugging in n = ∞, we obtain

an −→ cos

(

π

1+π/∞

)

= cos

(

π

1+0

)

= cosπ = −1.

Grading: wrong answer 0pts; cosπ 3pts; as above 5pts

(b; 5pts) Find the limit of the sequence an =

(

1− 3

n

)9n

e−27

This is similar to HW6 WA 3. Let bn = ln an, so that

bn = 9n · ln
(

1− 3

n

)

= 9
ln
(

1− 3 1

n

)

1/n
.

Replacing 1/n−→0+ with x−→0 makes sense in this case and

lim
n−→∞

bn = 9 lim
x−→0

ln(1−3x)

x
= 9 lim

x−→0

1

1−3x · (−3)

1
= 9

1

1−3·0
· (−3)

1
= −27.

The above limit computation uses l’Hospital. It is applicable here, since ln(1−3x), x −→ 0 as
x−→ 0 (the top and bottom of a fraction must both approach 0 or ±∞ for l’Hospital to apply).
Since bn −→ −27, an = ebn −→ e−27.

Grading: wrong answer 0pts; as above 5pts



(c; 5pts) Find the limit of the sequence recursively defined by

√
5− 1

2

a1 = 1, an+1 =
1

1+an
if n≥1

This is similar to HW6 WA4 and VI.3, except the sequence is now assumed to be convergent.
Then,

a = lim
n−→∞

an = lim
n−→∞

an+1 = lim
n−→∞

1

1+an
=

1

1+ lim
n−→∞

an
=

1

1+a
.

So, a=1/(1+a) or a2+a−1=0. This gives

a =
−1±

√

12 − 4(−1)

2
=

−1±
√
5

2
.

Since an>0 for all n, a≥0 and so we must take + above.

Grading: wrong answer 0pts; as above (with either order of the terms in the numerator or split
into fractions) 5pts; not in the simplest form 4pts

(d; 5pts) Write the number 1.054 = 1.0545454 . . . as a simple fraction
58

55

This is similar to HW7 WA4,5:

1.054 = 1 + .054 + .054 · 1

100
+ .054 · 1

1002
+ . . .

= 1 +
54/1000

1− 1

100

= 1 +
54/10

99
= 1 +

3

55
=

55 + 3

55
=

58

55

Grading: wrong answer 0pts; as above 5pts; 1 3

55
or not simplified 4pts; both issues 3pts
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Problem 2 (15pts)

Suppose a1, a2, a3, . . . is a sequence such that a1, a2, a3 . . . ≥ 0 and the series
∞
∑

n=2

an converges.

For each question below, circle your answer and justify it below

(a; 2pts)Does the sequence a1, a2, a3, . . . converge? yes no impossible to tell

Since the series
∞
∑

n=2

an converges, the sequence a2, a3, . . . converges (to 0). This is by the Test for

Divergence of Series. Sticking a1 at the beginning of a sequence does not affect its convergence.

Grading: wrong answer 0pts regardless of explanation; correct answer 1pt; minimal explana-
tion 1pt (the sticking comment not necessary)

(b; 3pts)Does the series
∞
∑

n=2

1

2+an
converge? yes no impossible to tell

Since the sequence
1

2+an
converges to

1

2+0
=
1

2
6= 0, the series

∞
∑

n=2

1

2+an
diverges. This is by the

Test for Divergence of Series.

Grading: wrong answer 0pts regardless of explanation; correct answer 1pt; sequence not converg-
ing to 0 1pt; minimal explanation for the latter (or converges to 1/2) 1pt

(c; 5pts)Does the series
∞
∑

n=1

√
an converge? yes no impossible to tell

Since an −→ 0,
√
an > an for all n large. Thus, the convergence of the series

∞
∑

n=2

an says nothing

about the convergence of the series

∞
∑

n=1

√
an. For example, if an=1/n4, then both series converge

by the p-Series Test. If an = 1/n2, then the first series converge and the second diverges by the
p-Series Test.

Grading: wrong answer 0pts regardless of explanation; correct answer 1pt; explanation with
√
an

being larger than an 3pts; illustration with examples 4pts (not in addition to the 3pts).

(d; 5pts)Does the series
∞
∑

n=1

a2n converge? yes no impossible to tell

Since an−→ 0, 0≤ a2n≤ an for all n large. By the Comparison Test, the convergence of the series
∞
∑

n=2

an thus implies the convergence of the “smaller” series
∞
∑

n=1

a2n; the extra term a1 does not

matter. One could also use the Limit Comparison Test, after dropping all an = 0; these do not
effect the convergence of either series.

Grading: wrong answer 0pts regardless of explanation; correct answer 1pt; explanation correct
on the substance 3pts; fully correct 4pts (not in addition to the 3pts).
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Problem 3 (15pts)

Find all values of p for which the series

∞
∑

n=1

(

np

n3+6n2+11n+6
+

5n/2

3n+p

)

converges. Write your answer in the box to the right and justify it below. p < 2

The series
∞
∑

n=1

5n/2

3n+p
=

∞
∑

n=1

√
5
n

3n3p
=

1

3p

∞
∑

n=1

(
√
5

3

)n

is a geometric series with the ratio r =
√
5/3. Since |r|< 1 in this case, this series converges no

matter what p is. This implies that

∞
∑

n=1

(

np

n3+6n2+11n+6
+

5n/2

3n+p

)

=
∞
∑

n=1

np

n3+6n2+11n+6
+

∞
∑

n=1

5n/2

3n+p

and that the series on LHS converges if and only if the first series on RHS converges.

We note that

0 ≤ 1

24

1

n3−p
=

np

n3+6n3+11n3+6n3
≤ np

n3+6n2+11n+6
≤ np

n3
=

1

n3−p
.

By the p-Series Test, the series
∞
∑

n=1

1

n3−p
converges if 3−p > 1, i.e. if p < 2. By the Comparison

Test and the above inequalities, the “smaller” series
∞
∑

n=1

np

n3+6n2+11n+6
then also converges. By

the p-Series Test, the series
∞
∑

n=1

1

24

1

n3−p
=

1

24

∞
∑

n=1

1

n3−p

diverges if 3−p≤1, i.e. if p≥2. By the Comparison Test and the above inequalities, the “larger”

series
∞
∑

n=1

np

n3+6n2+11n+6
then also diverges. Thus, the series in the statement of the problem

converges if and only if p<2.

We can also use the Limit Comparison (or Looks Like) Test to study the convergence of the

series
∞
∑

n=1

np

n3+6n2+11n+6
. The terms in this series are always positive and look like np/n3 (n3

completely dominates n2, etc. as as n−→∞). We verify this by computing

lim
n−→∞

np/(n3+6n2+11n+6)

np/n3
= lim

n−→∞

n3

n3+6n2+11n+6
= lim

n−→∞

n3/n3

(n3+6n2+11n+6)/n3

= lim
n−→∞

1

1+6/n+11/n2+6/n3
=

1

1+6/∞+11/∞+6/∞ = 1 .

Thus, the series
∞
∑

n=1

np

n3+6n2+11n+6
converges if and only if the series

∞
∑

n=1

np

n3
=

∞
∑

n=1

1

n3−p
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converges. By the p-Series Test, the last series converges if and only if 3−p>1, i.e. p<2.

Grading: correct answer 3pts; explanation of convergence of geometric series 4pts; statement of
equivalence of convergence of the original series and its first part as a consequence of this 1pt
(this need not be completely direct, but should be clearly implied in the right context); proper
use of Comparison or Limit Comparison Test and justification 5pts; proper use of p-Series Test 2pts

(bonus 10pts) Pick any value of p for which the above series converges and find the sum of the
resulting series explicitly.

Take p=0. We then compute

∞
∑

n=1

(

1

n3+6n2+11n+6
+

5n/2

3n

)

=

∞
∑

n=1

1

(n+1)(n+2)(n+3)
+

∞
∑

n=1

(
√
5

3

)n

.

The sum of the last series is given by

∞
∑

n=1

(
√
5

3

)n

=

√
5/3

1−
√
5/3

=

√
5

3−
√
5
=

√
5(3+

√
5)

(3−
√
5)(3+

√
5)

=
3
√
5+5

32−5
=

3
√
5+5

4

In order to compute the other sum, we use quick partial fractions twice. To keep things symmetric,
we first split (n+1)(n+3):

1

(n+ 1)(n+ 3)
=

1

+3 − ( +1 )

(

1

n +1

− 1

n +3

)

=
1

2

(

1

n+ 1
− 1

n+ 3

)

.

Thus,
∞
∑

n=1

1

(n+1)(n+2)(n+3)
=

1

2

( ∞
∑

n=1

1

(n+1)(n+2)
−

∞
∑

n=1

1

(n+2)(n+3)

)

.

We now apply quick partial fractions to the terms in the first series on RHS:

1

(n+ 1)(n+ 2)
=

1

+2 − ( +1 )

(

1

n +1

− 1

n +2

)

=
1

n+ 1
− 1

n+ 2

The sequence of partial sums for the first series above is thus given by

sn =
k=n
∑

k=1

(

1

k+1
− 1

k+2

)

=

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+

(

1

4
− 1

5

)

+ . . .+

(

1

n+1
− 1

n+2

)

=
1

2
− 1

n+ 2
.

By the definition of the sum of a series, this implies that

∞
∑

n=1

1

(n+1)(n+2)
= lim

n−→∞

sn =
1

2
− 1

∞+2
=

1

2
.

From this, we also find that

∞
∑

n=1

1

(n+2)(n+3)
=

∞
∑

k=2

1

(k+1)(k+2)
=

∞
∑

k=1

1

(k+1)(k+2)
− 1

(1+1)(1+2)
=

1

2
− 1

6
=

1

3
.
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The first equality above is obtained by replacing n+1 (with n≥1) by k≥2; the second is obtained
by adding the k=1 term back into the series and subtracting it off outside of the series. We can

also compute

∞
∑

n=1

1

(n+2)(n+3)
similarly to

∞
∑

n=1

1

(n+1)(n+2)
. In this case, sn=

1

3
− 1

n+3
.

Putting everything together, we obtain

∞
∑

n=1

(

1

n3+6n2+11n+6
+

5n/2

3n

)

=
1

2

(

1

2
− 1

3

)

+
3
√
5+5

4
=

1

12
+

3
√
5+5

4
=

16+9
√
5

12

The sum of the series can be similarly computed for p = −1, 1, 2, but the computation becomes
more difficult (especially for p=−1).

Grading: sum of geometric series fully simplified and with p chosen 2pts (no square roots in de-
nominator); partial fractions 4pts (with reductions for computational errors); pairwise cancellation
done properly 2pts; rest 2pts; reduction if the answer is not fully simplified

6



Problem 4 (10pts)

Determine the sequence sn of partial sums (sum of the first n terms) corresponding to the series

∞
∑

n=1

(−1)n

(

cos

(

π

2n

)

− cos

(

π

2(n+2)

)

)

.

Does this series converge? If so, what is its sum? Justify your answers.

The sequence of partial sums is given by

sn =
k=n
∑

k=1

(−1)k

(

cos

(

π

2k

)

− cos

(

π

2(k+2)

)

)

=−
(

cos
( π

2 · 1
)

− cos
(

π
2·3

)

)

+

(

cos
( π

2 · 2
)

− cos
(

π
2·4

)

)

−
(

cos
(

π
2·3

)

− cos
( π

2 · 5
)

)

+

(

cos
(

π
2·4

)

− cos
( π

2 · 6
)

)

. . .+ (−1)n
(

cos
( π

2n

)

− cos
( π

2(n+2)

)

)

=− cos
(π

2

)

+ cos
(π

4

)

− (−1)n−1 cos
( π

2(n+1)

)

− (−1)n cos
( π

2(n+2)

)

=

√
2

2
− (−1)n−1 cos

( π

2(n+1)

)

− (−1)n cos
( π

2(n+2)

)

.

The second term in each pair with k≤n−2 gets canceled by the first term in the pair k+2. This
leaves the first terms in the first two pairs and the second terms in the last two pairs. While this
reasoning does not directly apply to s1, the above formula is valid for all n≥1.

We note that

lim
n−→∞

(

cos
( π

2(n+1)

)

− cos
( π

2(n+2)

)

)

= lim
n−→∞

cos
( π

2(n+1)

)

− lim
n−→∞

cos
( π

2(n+2)

)

= cos
( π

2(∞+1)

)

− cos
( π

2(∞+2)

)

= cos 0− cos 0 = 0.

By the Squeeze Theorem for Sequences, this implies that

lim
n−→∞

(

−(−1)n−1cos
( π

2(n+1)

)

−(−1)ncos
( π

2(n+2)

)

)

= lim
n−→∞

(−1)n
(

cos
( π

2(n+1)

)

−cos
( π

2(n+2)

)

)

= 0.

Therefore, the sequence sn of partial sums converges to

lim
n−→∞

sn =

√
2

2
+ 0 .

This means that the original series converges and its sum is

∞
∑

n=1

(−1)n

(

cos

(

π

2n

)

− cos

(

π

2(n+2)

)

)

=

√
2

2

Grading: definition of sn or the right setup for computing it 1pt; clear indication or statement of
two-step cancellation and simplifying to final answer for sn 3pts (1/

√
2 is fine here); converges 1pt;

converge/sum for series equivalent to same for sn 1pt each; justification of convergence of sn 3pts
(the tail terms do not approach 0 separately)
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Problem 5 (20pts)

A two-species interaction is modeled by the system of differential equations below, with t denoting
time.

{

dx
dt = − 1

10
x+ 1

50,000xy
dy
dt = y − 1

200
xy

x y

t
0

2, 500

5, 000

7, 500

10, 000

200

400

y

x

(a; 3pts) Which of the following best describes the interaction modeled by this system?

(i) predator-prey (ii) competition for same resources (iii) cooperation for mutual benefit

Circle your answer above and justify it below.

Because of the coefficient of + 1

50,000 in front of xy in the first equation, the x-species benefits from
the presence of the y-species (the growth rate of the former is increased if the population of the
latter is nonzero). Because of the coefficient of − 1

200
in front of xy in the second equation, the

y-species is hurt by the presence of the x-species. The x-species is thus the predator, and the
y-species is the prey (given the above three choices).

Grading: wrong answer 0pts regardless of explanation; correct answer 2pts; two-part justifica-
tion 1pt (anything in parenthesis not required)

(b; 7pts) Find the equilibrium (constant) solutions of the system and explain their significance rela-
tive to the interaction the system is modeling. Answer Only: clearly write down each equilibrium
solution followed by its significance below, with one of these statements per line. Use scrap paper
or the back side of a page in the exam to work out your answer.

(0,0): no predators or prey ever
(200,5000): 5,000 prey are precisely enough to support 200 predators and

be contained by them

We need to find pairs of numbers (x, y) such that
{

dx
dt = 0
dy
dt = 0

⇐⇒
{

− x
10

(

1− 1

5,000y
)

= 0

y
(

1− 1

200
x
)

= 0
⇐⇒

{

x = 0 or y = 5, 000

y = 0 or x = 200

We must consider all possible cases of taking one condition from the first line in the last expression
above and one condition from the second line. This gives 4 possibilities:

{

x = 0

y = 0

{

x = 0

x = 200

{

y = 5, 000

y = 0

{

y = 5, 000

x = 200

The second and third systems of equations have no solutions, while the first and the fourth give us
(x, y) = (0, 0) and (x, y) = (200, 5000), respectively.

Grading: 1 correct pair 2pts, 2 correct 5pts; 3pts reduction for each additional pair (without
going below 0); reasonable significance 1pt each
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(c; 10pts) The diagram above shows the graphs of functions x=x(t) and y= y(t) so that the pair
(x, y) solves the above system of differential equations. Sketch the corresponding (directed) phase
trajectory below, indicating coordinates of whatever points possible. Explain/indicate how you make
your sketch!

x y

t
0

2, 500

5, 000

7, 500

10, 000

200

400
P1

P3

P0

P1

P3

P0

y

x

y

x

2, 500

5, 000

7, 500

10, 000

200 400

P1

P0

P3

P2

Begin by copying the scale labels on the x-axis and y-axis from the left diagram to the right diagram
(just 400 and 200 in the first case). At time t=0, the x and y-populations are 200 and about 10000,
respectively, giving the starting point P0 ≈ (200, 10000) in the phase plane. The first interesting
feature in the two graphs is the peak in the x-graph (corresponding to the right-most point in the
phase trajectory); at this time, the x and y-populations are about 400 and 5000 respectively, giving
the point P1≈ (400, 5000) in the phase plane. The second interesting feature in the two graphs is
the sag in the y-graph (corresponding to the lowest point in the phase trajectory); at this time,
the x and y-populations are 200 and about 2500, respectively, giving the point P2≈ (200, 2500) in
the phase plane. The third interesting feature in the two graphs is the sag in the x-graph (cor-
responding to the left-most point in the phase trajectory); at this time, the x and y-populations
are about 100 and 5000 respectively, giving the point P1 ≈ (100, 5000) in the phase plane. The
next interesting feature in the two graphs is the peak in the y-graph (corresponding to the lowest
point in the phase trajectory); at this time, the x and y-populations are 200 and about 10000,
respectively, giving the point P0 in the phase plane again.

After that, the points repeat periodically. The x-values of 200 and the y-values of 5000 above are
exact because they correspond to the x- and y-coordinates of the nonzero equilibrium in (b). The
rotation in this case is clockwise because the predator is on the horizontal axis.

Grading: x- and y-axes properly marked 1pt; x- and y-axes properly scaled 1pt; correct general
shape, direction, and relation with the equilibrium 5pts; correct starting point, coordinates of the
points, and/or justification up to 3pts
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