MAT 127: Calculus C, Fall 2009 Solutions to Midterm II

Problem 1 (15pts)

Determine whether each of the following sequences converges or diverges; justify your answer. You do not have to determine the limit if the sequence converges.

$$
\begin{aligned}
&(\mathrm{a} ; 5 \mathrm{pts}) \quad a_{n}=\frac{(-1)^{n} n^{4}}{3 n^{4}+1} \text { diverges because } \\
& a_{n}=\frac{(-1)^{n} n^{4}}{3 n^{4}+1}=(-1)^{n} \frac{n^{4} / n^{4}}{3 n^{4} / n^{4}+1 / n^{4}}=(-1)^{n} \frac{1}{3+1 / n^{4}}
\end{aligned}
$$

as $n \longrightarrow \infty$ the fraction approaches $1 / 3$, while the entire expression keeps on jumping from near $1 / 3($ even $n)$ to near $-1 / 3($ odd $n)$.

Grading: correct answer 2 pts; dividing by n^{4}, obtaining $1 / 3$ as limit of the fraction, and some comment on the sign 1 pt each (-1 pt for $m c e$); wrong answer with complete explanation containing $m c e$ in division by n^{4} or forgetting $(-1)^{n}$ max 2 pts.
(b; 5pts) $\quad a_{n}=1+\frac{\sin (n \pi / 2) \ln n}{n} \quad$ converges because $(\ln n) / n$ approaches 0 , while $|\sin (n \pi / 2)| \leq 1$; so $\sin (n \pi / 2)(\ln n) / n \longrightarrow 0$ and $a_{n} \longrightarrow 1$.

Grading: correct answer 2 pts ; correct statements regarding ($\ln n) / n$ and $\sin (n \pi / 2) 2 \mathrm{pts}$ and 1 pt , respectively; so ... not required; wrong answer with complete explanation misidentifying $\lim _{n \longrightarrow \infty}(\ln n) / n \max 2$ pts.

$$
(\mathrm{c} ; 5 \mathrm{pts}) \quad a_{1}=1, \quad a_{n+1}=\frac{a_{n}+9}{2} \quad \text { converges because }
$$

- $a_{n} \leq 9$ for all n : this is true for $n=1$; if this is true for n, $a_{n+1}=\left(a_{n}+9\right) / 2 \leq(9+9) / 2=9$ and so this is true for $n+1$;
- $a_{n} \leq a_{n+1}: a_{n+1}=\left(a_{n}+9\right) / 2 \geq\left(a_{n}+a_{n}\right) / 2=a_{n}$.

So $\left\{a_{n}\right\}$ converges by the Monotonic Sequence Theorem.
Grading: correct answer 2pts; bounded above 2pts; increasing 1pt; last sentence not required; wrong answer 0pts regardless of explanation.

Alternatively (bonus 2 pts, whether or not in addition to a standard argument): the sequence $\left\{a_{n}\right\}$ is obtained by starting with some $a_{1}<9$, then taking a_{2} to be the mid-point of the segment $\left[a_{1}, 9\right]$, a_{3} to be the mid-point of the segment $\left[a_{2}, 9\right]$, and so on. This sequence of consecutive mid-points approaches 9 , since at each step the new distance to 9 is reduced to $1 / 2$ of the old distance to 9 .

Grading: the substance must be identical to the above for full credit, but could be worded (with a bit of care) in terms of the sequence $b_{n}=9-a_{n} ; 2$ nd half of last sentence not required.

Problem 2 (20pts)

Each of the following sequences converges (you do not need to check this); determine its limit (show your work!).

$$
\begin{aligned}
(\mathrm{a} ; 6 \mathrm{pts}) \quad a_{n} & =\frac{n}{1+\sqrt{4 n^{2}+1}} \\
a_{n} & =\frac{n / n}{1 / n+\sqrt{4 n^{2}+1} / n}=\frac{1}{1 / n+\sqrt{4 n^{2} / n^{2}+1 / n^{2}}}=\frac{1}{1 / n+\sqrt{4+1 / n^{2}}}
\end{aligned}
$$

So $a_{n} \longrightarrow 1 /(0+\sqrt{4+0})=1 / 2$
Grading: correct answer 3pts; dividing by $n 1 \mathrm{pt}$; 2 pts to the answer; mce -1 pt (from 6 pts); taking n under $\sqrt{ }$ without squaring it resulting in limit of $0-2 \mathrm{pts}$ (from 6 pts)
(b; 7pts) $\quad a_{n}=\frac{5^{n}}{n!} \quad$ (reminder: $n!=1 \cdot 2 \cdot \ldots \cdot n$)
1st Approach. Since the limit exists and $a_{n+1}=\frac{5}{n+1} a_{n}$,

$$
\lim _{n \longrightarrow \infty} a_{n}=\lim _{n \longrightarrow \infty} a_{n+1}=\lim _{n \longrightarrow \infty}\left(\frac{5}{n+1} a_{n}\right)=\left(\lim _{n \longrightarrow \infty} \frac{5}{n+1}\right) \cdot\left(\lim _{n \longrightarrow \infty} a_{n}\right)=0 \cdot\left(\lim _{n \longrightarrow \infty} a_{n}\right)=0
$$

$m c e=$ minor computational error
ok without $n \longrightarrow \infty$

2nd Approach. $a_{n} \geq 0$ for all n and

$$
a_{5+n}=\frac{5^{5}}{5!} \cdot \frac{5}{6} \cdot \frac{5}{7} \cdot \ldots \cdot \frac{5}{5+n} \leq a_{5} \cdot\left(\frac{5}{6}\right)^{n} .
$$

Since the geometric sequence $a_{5}(5 / 6)^{n}$ converges to 0 (as does the constant sequence $\{0\}$), $\left\{a_{n}\right\}$ also converges to 0
3rd Approach. Since $a_{n}>0$ and $\lim _{n \longrightarrow 0} \frac{a_{n+1}}{a_{n}}=\lim _{n \longrightarrow 0} \frac{5}{n+1}=0$, the series $\sum_{n=1}^{\infty} a_{n}$ converges and thus $a_{n} \longrightarrow 0$

Grading: correct answer 3pts; in 1st approach, recursion statement and its application 2pts each (exists not required); in 2nd approach, lower and upper bounds 2pts each (as does not required); in 3rd approach, 3pts for series convergence statement and 1 pt for sequence convergence conclusion; wrong answer 0pts regardless of explanation.
$(\mathrm{c} ; 7 \mathrm{pts}) \quad \sqrt{6}, \sqrt{6+\sqrt{6}}, \sqrt{6+\sqrt{6+\sqrt{6}}}, \sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}, \ldots$
This sequence satisfies $a_{n+1}=\sqrt{6+a_{n}}$. Thus, if a is its limit, $a=\sqrt{6+a}$. So $a^{2}-a-6=0$; this gives $a=3,-2$. Since a is non-negative, $a=3$

Grading: correct answer 3pts; recursion statement 2pts; following limit statement 2pts; -1pt (from 7 pts) for each $m c e$; non-positive answer or 2 answers (e.g. 3 and -2) 0 pts regardless of explanation.

Problem 3 (20pts)

Determine whether each of the following series converges or diverges; justify your answer. You do not have to compute the sum if the series converges.
(a; 6pts) $\quad \sum_{n=1}^{\infty}(-1)^{n}$
diverges because
(1) the sequence of partial sums $s_{n}=\sum_{k=1}^{k=n}(-1)^{k}$ alternates between -1 and 0 and thus diverges;
(2) the terms $(-1)^{n}$ alternate between -1 and 1 and thus do not converge (to 0);
(3) this is a geometric series with (common ratio) $r=-1$ and thus does not converge.

Grading: correct answer 2pts; either explanation 4pts; minor misstatements or omissions in explanations -1 pt each; partial sums, to 0 , and common ratio not required; wrong answer 0pts regardless of explanation.
(b; 7pts) $\sum_{n=1}^{\infty} \frac{1}{3^{n}-2^{n}}$
converges because $1 /\left(3^{n}-2^{n}\right)>0$ and
(1) $\lim _{n \longrightarrow \infty} \frac{1 /\left(3^{n}-2^{n}\right)}{1 / 3^{n}}=\lim _{n \longrightarrow \infty} \frac{1}{1-(2 / 3)^{n}}=1$ and $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ converges being geometric series with $|r|<1 ;$
(1) $\lim _{n \longrightarrow \infty} \frac{1 /\left(3^{n}-2^{n}\right)}{1 / 2^{n}}=\lim _{n \longrightarrow \infty} \frac{(2 / 3)^{n}}{1-(2 / 3)^{n}}=0$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges being geometric series with $|r|<1 ;$
ok without
$n \longrightarrow \infty$
(3) $1 /\left(3^{n}-2^{n}\right)=1 / 2^{n}\left(1.5^{n}-1\right) \leq 2 / 2^{n}$ and $\sum_{n=1}^{\infty} \frac{2}{2^{n}}$ converges being geometric series with $|r|<1$.

Grading: correct answer 2pts; either explanation 5pts; missing any of the condition checks -1 pt each; wrong answer 0pts regardless of explanation.
(c; 7pts) $\sum_{n=1}^{\infty} \tan ^{2}(1 / n)$

converges because

- $\tan ^{2}(1 / n)>0, \lim _{n \longrightarrow \infty} \frac{\tan ^{2}(1 / n)}{(1 / n)^{2}}=\lim _{x \longrightarrow 0} \frac{\sin ^{2} x}{x^{2}}=1$, and $\sum_{n_{1}}^{\infty} \frac{1}{n^{2}}$ converges;
- $\tan ^{2}(1 / x)$ is positive, continuous, and decreasing on $[1, \infty)$ and $\int_{1}^{\infty} \tan ^{2}(1 / x) \mathrm{d} x=\int_{0}^{1} \frac{\tan ^{2}(u)}{u^{2}} \mathrm{~d} u$; the second integral is finite because $\lim _{u \longrightarrow 0}(\tan u) / u=\lim _{u \longrightarrow 0}(\sin u) / u=1$.

Grading: correct answer 2pts; either explanation 5pts, with $(\sin x) / x$ limit statement 2 pts ; -1 pt for each minor omission or misstatement; wrong answer with complete explanation max 2 pts

Problem 4 (20pts)

(a; 10pts) Write the number $2.0 \overline{7}=2.077777 \ldots$ as a simple fraction (p / q for some integers p, q).

$$
2.0 \overline{7}=2+.07+\frac{.07}{10}+\frac{.07}{10^{2}}+\ldots=2+\frac{7 / 100}{1-\frac{1}{10}}=2+\frac{7}{90}=\frac{187}{90}
$$

Grading: 4pts for setup (1st equality), -1 pt for $m c e$ such as .7 instead of .07 ; 4 pts for sum of geometric series, -1 pt for incorrect numerator (based on the setup), -2 pts for incorrect denominator; 2 pts to simplify the fraction and add in 2 ; -1 pt for $2 \frac{7}{90}$ (does not quite answer the question)
(b; 10pts) Determine the sum of the following convergent series:

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-9}=-\frac{1}{5}+\frac{1}{7}+\frac{1}{27}+\frac{1}{55}+\frac{1}{91}+\ldots
$$

Hint: partial fractions

$$
\frac{1}{4 n^{2}-9}=\frac{1}{(2 n-3)(2 n+3)}=\frac{1}{+3-(-3)}\left(\frac{1}{2 n-3}-\frac{1}{2 n+3}\right)=\frac{1}{6}\left(\frac{1}{2 n-3}-\frac{1}{2 n+3}\right)
$$

This gives

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-9}=\frac{1}{6} \sum_{n=1}^{\infty}\left(\frac{1}{2 n-3}-\frac{1}{2 n+3}\right)=\frac{1}{6} \sum_{n=1}^{\infty}\left(\frac{1}{2 n-3}-\frac{1}{2(n+3)-3}\right)
$$

Since $1 /(2 n \pm 3) \longrightarrow 0$, it follows that

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-9}=\frac{1}{6} \sum_{n=1}^{\infty}\left(\frac{1}{2 n-3}-\frac{1}{2(n+3)-3}\right)=\frac{1}{6} \sum_{n=1}^{n=3} \frac{1}{2 n-3}=\frac{1}{6}\left(\frac{1}{-1}+\frac{1}{1}+\frac{1}{3}\right)=\frac{1}{18}
$$

Alternatively, start writing out the terms in the series to see that the second term in each pair gets canceled by the first term in the pair three steps later, leaving the first terms in the first three pairs.

You can also look at the sequence of partial sums. For $n \geq 3$,

$$
\begin{aligned}
s_{n} & =\frac{1}{6} \sum_{k=1}^{k=n}\left(\frac{1}{2 k-3}-\frac{1}{2 k+3}\right) \\
& =\frac{1}{6}\left(\left(\frac{1}{-1}-\frac{1}{5}\right)+\left(\frac{1}{1}-\frac{1}{7}\right)+\left(\frac{1}{3}-\frac{1}{9}\right)+\left(\frac{1}{5}-\frac{1}{11}\right)+\ldots\left(\frac{1}{2 n-3}-\frac{1}{2 n+3}\right)\right) \\
& =\frac{1}{6}\left(\frac{1}{-1}+\frac{1}{1}+\frac{1}{3}-\frac{1}{2 n-1}-\frac{1}{2 n+1}-\frac{1}{2 n+3}\right)
\end{aligned}
$$

since the second term in each pair, except for the last three pairs, is canceled by the first term in the pair three steps later; this leaves only the first terms in the first three pairs and the second terms in the last three pairs. Since $s_{n} \longrightarrow 1 / 18$, the sum of the infinite series is $1 / 18$

Grading: PFs correct $4 \mathrm{pts}(-1 \mathrm{pt}$ each if $1 / 6$ is wrong or the overall sign is reversed; -2 pts if fractions have the same sign; -2pts for wrong denominators); clear indication/statement of threestep cancellation 4 pts (use of $\sum_{n=1}^{n=3}$ counts) $1 /(2 n-3) \longrightarrow 0$ or equivalent in first 2 approaches or $s_{n} \longrightarrow 1 / 18$ in 3 rd approach 1 pt ; rest of computation 1 pt ; -3 pts if not precisely first 3 terms are summed.

Problem 5 (25pts)

The populations of bears and salmon in Salmon River Valley are modeled by the following system of differential equations

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} t}=x-\frac{1}{100} x y \\
\frac{\mathrm{~d} y}{\mathrm{~d} t}=y-\frac{1}{50} y^{2}+\frac{1}{1000} x y
\end{array} \quad(x, y)=(x(t), y(t))\right.
$$

where t denotes time. While the bears can live off berries and other plants, they also feed on the salmon in the river. The salmon has no other predators in the valley.
(a; 5pts) Does the function $x=x(t)$ above represent the population of the bears or of the salmon? Explain why. \quad salmon because of either of the following:

- the growth rate of x is reduced by the presence of y, due to the negative coefficient in front of $x y$ in the first equation;
- the growth rate of y is increased by the presence of x, due to the positive coefficient in front of $x y$ in the second equation.

Grading: correct answer 2 pts ; correct explanation $3 \mathrm{pts},-1 \mathrm{pt}$ for minor omission or misstatement; both explanations fine; wrong answer 0pts regardless of explanation.
(b; 10pts) Find all equilibrium (constant) solutions of the system (show your work!) and explain their significance.
We need to find pairs of numbers (x, y) such that

$$
\begin{aligned}
\left\{\begin{array} { l }
{ \frac { \mathrm { d } x } { \mathrm { d } t } = 0 } \\
{ \frac { \mathrm { d } y } { \mathrm { d } t } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x-\frac{1}{100} x y=0 \\
y-\frac{1}{50} y^{2}+\frac{1}{1000} x y=0
\end{array}\right.\right. & \Longleftrightarrow\left\{\begin{array}{l}
x\left(1-\frac{1}{100} y\right)=0 \\
y\left(1-\frac{1}{50} y+\frac{1}{1000} x\right)=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x=0 \text { or } y=100 \\
y=0 \text { or } 1+\frac{1}{1000} x=\frac{1}{50} y
\end{array}\right.
\end{aligned}
$$

We must consider all possible cases of taking one condition from the first line in the last expression above and one condition from the second line. If $x=0$ is chosen from the first line, we can take either the first condition from the second line, so $y=0$, or the second, so $y=50$. If $y=100$ is chosen from first line, we are forced to take the second condition from the second line, so $x=1000$. Thus, there are three equilibrium points $(0,0),(0,50),(1000,100)$ The significance of these is:
$(0,0)$: no salmon or bears ever
$(0,50)$: in the absence of salmon, the carrying capacity of the "berries and other plants" is 50 bears
(1000,100): 1000 salmon are precisely enough to supplement the "berries and other plants" to support 100 bears and be contained by them
Grading: the 4 th system of conditions on (x, y) is 4 pts if at least one of the previous three systems is present or a statement analogous to the 1 st system is made (only 3 pts otherwise); stopping at an earlier system of conditions is 1 pt less for each step not made (so stopping at the 2 nd system is 2 pts); each correct equilibrium point is 1 pt ; each extra "equilibrium pt", such as $(0,100)$ or $(-1000,0)$, is -1 pt ; reasonable variations of the above significance statements are 1 pt each.
(c;10pts) The left diagram below ${ }^{1}$ shows the phase trajectory for the above system of differential equations that starts at $(500,10)$ at $t=0$. Sketch the corresponding graphs of $x=x(t)$ and $y=y(t)$ as functions of time on the right diagram below ${ }^{2}$; add the appropriate markings to the axes. Explain how you make your sketch!

The starting point of the trajectory is $P_{0}=(500,10)$. Mark the turning points of the trajectory and estimate their coordinates: $P_{1} \approx(1500,100)$ and $P_{2} \approx(1300,120)$; the y-coordinate of P_{1} is exact according to the $\frac{\mathrm{d} x}{\mathrm{~d} t}$ equation. The limiting point is $P_{\infty}=(1000,100)$; this is also exact according to the system of differential equations and (b).

Next copy the markings on x - and y-axes on the left diagram to the right diagram. Mark the asymptotes of both functions: $x=1000$ and $y=100$. Above $t_{0}=0$, mark $x=500$ and $y=10$ for P_{0}, keeping track of which is which. Above some t-value, mark $x=1500$ and $y=100$ for P_{1}; above a higher t-value, mark $x=1300$ and $y=120$ for P_{2}. Now draw a smooth curve through the x-points which is either rising or falling between any two adjacent points and descends to toward the x-asymptote; do the same for the y-points. Finally, label the x - and y-graphs. There should be no markings on the t-axis, except possibly for $t=0$, since the time scale cannot be determined from the phase trajectory.

Grading: x - and y-axes properly marked 1 pt; correct starting values 2 pts (if x - and y-axes are not properly marked, likely loss of 3 pts); next feature x-peak with $y=1002$ pts; followed by y peak 1 pt ; correct asymptotes and direction of approach 2 pts ; some explanation 2 pts (e.g. points marked on the left diagram and their coordinates indicated); -2 pts if the graphs are not labeled or labeled incorrectly (-1 pt if there are other clear indications of which graph is which; the graphs are considered labeled if done in different colors and the x - and y-labels on the axes are changed to the same colors).

[^0]
[^0]: ${ }^{1}$ the original left diagram did not contain the dots marked P_{1} and P_{2} or the steady state label
 ${ }^{2}$ the original right diagram consisted of the three axes and labels t, x, y without color

