
MAT 127: Calculus C
Notes on the Ratio Test: for Sequences and Series

0 Introduction

In the textbook, the Ratio Test is introduced as one of many convergence tests for series

∞∑

n=1

an = a1 + a2 + . . . .

A convergence test for sequences a1, a2, . . . can be deduced from RT for Series using the Divergence
Test for Series. However, this convergence test can also be obtained more directly. Just like RT
for Series, RT for Sequences works well for some sequences and is useless for others. On the other
hand, RT for Series is perhaps the most frequently used convergence test for series, while RT for
Sequences is perhaps the least frequently used convergence test for series (but it does work very
nicely in some cases!).

In order to use either of the ratio tests, look at the ratio of the absolute values of two consecutive
terms, |an+1|/|an|; note that the higher-numbered term goes to the top of this fraction and the
lower-numbered term goes to the bottom. For example, for the sequence an = (−1)n7n/n!, this
ratio is

|an+1|
|an|

=
7n+1/(n+1)!

7n/n!
=

7n+1

7n
· n!

(n+1)!
=

7n · 7
7n

· n!

n! · (n+1)
=

7

n+1
.

This produces a new sequence a2/a1, a3/a2, a4/a3, . . ., which consists of non-negative terms.

1 Ratio Test for Sequences

First, suppose we want to determine whether the sequence a1, a2, . . . has a limit. We could instead
look at the sequence of the absolute values of the ratios of consecutive terms |an+1|/|an|. If the
latter sequence has a limit L (which must necessarily be non-negative) and

L ≡ lim
n−→∞

|an+1|
|an|

< 1, then lim
n−→∞

an = 0. (1)

On the other hand, if

L ≡ lim
n−→∞

|an+1|
|an|

> 1 or
|an+1|
|an|

−→ ∞, then |an| −→ ∞, (2)

and so the sequence an diverges (or possibly “converges” to infinity). Finally, if

L ≡ lim
n−→∞

|an+1|
|an|

= 1, then this test says nothing. (3)

In this last case, you’ll need to find some other way to determine if the sequence a1, a2, . . . converges.



For example, for the sequence an = (−1)n7n/n!,

lim
n−→∞

|an+1|
|an|

= lim
n−→∞

7

n+ 1
=

7

∞+ 1
= 0.

Since 0 < 1, this sequence converges to 0. On the other hand, for the sequence an = 2n/n,

|an+1|
|an|

=
2n+1/(n+1)

2n/n
=

2n+1

2n
· n

n+1
=

2n · 2
2n

· 1

n/n+ 1/n
= 2

1

1 + 1/n
−→ 2

1

1 + 1/∞ = 2
1

1 + 0
= 2.

Since 2 > 1, this sequence diverges (actually “converges” to ∞).

For the sequence 1, 1, 1, . . ., the limit of the ratios of the absolute values of consecutive terms is 1
(all of these ratios are 1) and this sequence converges 1. For the sequence −1, 1,−1, 1 . . ., the limit
of the ratios of the absolute values of consecutive terms is also 1 (all of these ratios are again 1), but
this sequence diverges (it keeps on jumping between 1 and -1). This shows that RT for Sequences
is useless in the case

L ≡ lim
n−→∞

|an+1|
|an|

= 1.

Even a sequence a1, a2, a3, . . . with L=1 and an>0 need not converge. For example, let

a1 = 2
1

1 , a2 = 2
1

1
+

1

2 , a3 = 2
1

1
+

1

2
+

1

3 , . . . . (4)

Then,

|an+1|
|an|

=
2

1

1
+

1

2
+...+ 1

n
+

1

n+1

2
1

1
+

1

2
+...+ 1

n

=
2

1

1
+

1

2
+...+ 1

n · 2
1

n+1

2
1

1
+

1

2
+...+ 1

n

= 2
1

n+1 −→ 2
1

∞+1 = 20 = 1.

However,

2
1

1
+

1

2
+...+ 1

n −→ 2∞ = ∞,

because the harmonic series
∞∑

n=1

1

n
=

1

1
+

1

2
+

1

3
+ ...

diverges by the p-Series Test (this is p=1, Harmonic Series). Thus, the sequence of positive terms
a1, a2, . . . described in (4) diverges (it actually “converges” to ∞), even though L=1 in this case.

Why is (1) true? The assumption in (1) is that the ratios |an+1|/|an| get very close to L as n
increases. Since L<1 in this case, this means that |an+1|/|an| < (L+1)/2 if n is very large, so that

|an+1| <
L+1

2
|an|

for all n larger than some N . Thus,

∣
∣aN+n

∣
∣ <

L+1

2

∣
∣aN+n−1

∣
∣ <

L+1

2
· L+1

2

∣
∣aN+n−2

∣
∣ . . . <

L+1

2
· . . . · L+1

2
︸ ︷︷ ︸

n

∣
∣aN

∣
∣ =

(
L+1

2

)n

|aN |.

Thus, the sequence |aN |, |aN+1|, . . . is squeezed between the sequence 0, 0, . . . and the geometric
sequence

|aN |, L+1

2
|aN |,

(
L+1

2

)2

|aN |, . . .
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This geometric sequence converges to 0 because |(L+1)/2|< 1 in this case. Thus, the sequence
|aN |, |aN+1|, . . . also converges to 0 by the Squeeze Theorem for Sequences and so does the sequence
aN , aN+1, . . .. Since the convergence of a sequence has nothing to do with how it begins, it follows
that the original sequence a1, a2, . . . also converges.

Why is (2) true? The assumption in (2) is that the ratios |an+1|/|an| become larger than some
number r>1 as n increases (in the first case, we can take r=(L+1)/2; in the second case, r can
be taken to be any number larger than 1). Thus, |an+1|>r|an| for all n larger than some N and so

∣
∣aN+n

∣
∣ > r

∣
∣aN+n−1

∣
∣ > r · r

∣
∣aN+n−2

∣
∣ . . . > r · . . . · r

︸ ︷︷ ︸

n

∣
∣aN

∣
∣ = rn|aN |.

So, the terms in the sequence |aN |, |aN+1|, . . . are larger than the terms in the geometric sequence

|aN |, r|aN |, r2|aN |, . . .

This geometric sequence diverges (actually “converges” to ∞) because r> 1 (see box 7 on p560).
Thus, the sequence |aN |, |aN+1|, . . . also diverges (also “converges” to ∞), since its terms are even
larger. Since the convergence of a sequence has nothing to do with how it begins, it follows that
the original sequence a1, a2, . . . also diverges.

Because of (1), (2), and (3), RT for Sequences can detect convergence of sequences a1, a2, . . . with
limit 0 only (and even of only some of these). So it can rarely be used to detect convergent
sequences, but whenever it is applicable, RT for Sequences determines the limit of convergent
sequences immediately. RT for Sequences has a good chance of working for sequences that involve
factorials and powers n (e.g. n!, 3n, nn), but has no chance of working for sequences that involve
only powers of n (e.g. n3).

2 Ratio Test for Series

RT for Series works similarly to RT for Sequences to determine whether certain series

∞∑

n=1

an = a1 + a2 + a3 + . . .

converge. As before, we look at the sequence of the absolute values of the ratios of consecutive
terms |an+1|/|an| (still sequence, not series!). If this sequence has a limit L (which must necessarily
be non-negative) and

L ≡ lim
n−→∞

|an+1|
|an|

< 1, then

∑

an converges. (5)

On the other hand, if

L ≡ lim
n−→∞

|an+1|
|an|

> 1 or
|an+1|
|an|

−→ ∞, then

∑

an diverges. (6)

Finally, if

L ≡ lim
n−→∞

|an+1|
|an|

= 1, then this test says nothing. (7)
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In this last case, you’ll need to find some other way to determine if the series
∑

an converges.

For example, for the series
∑

(−1)n
7n

n!
, an = (−1)n7n/n! and thus

lim
n−→∞

|an+1|
|an|

= lim
n−→∞

7

n+ 1
=

7

∞+ 1
= 0.

Since 0 < 1, this series converges. We will see at the end of the course, using power series, that

∞∑

n=0

(−1)n
7n

n!
≡ 1− 7

1!
+

72

2!
− 73

3!
+ . . . = e−7 .

Try this on your calculator: as you add/subtract more and more of the terms, the total should
approach e−7.

On the other hand, for the series
∑

2n/n, an = 2n/n and thus

|an+1|
|an|

=
2n+1/(n+1)

2n/n
=

2n+1

2n
· n

n+1
=

2n · 2
2n

· 1

n/n+ 1/n
= 2

1

1 + 1/n
−→ 2

1

1 + 1/∞ = 2
1

1 + 0
= 2.

Since 2 > 1, this series diverges. In fact, if you are asked to determine whether some series
∑

an
converges or diverges, you should always begin by applying the Divergence Test for Series first,
i.e. testing whether the sequence a1, a2, . . . converges to 0 (if this sequence does not converge to 0,
the series do not converge at all, but the converse need not hold). So, if you are asked to
determine whether the series

∞∑

n=1

2n/n =
21

1
+

22

2
+

23

3
+ . . .

converges, first check whether the sequence an = 2n/n converges to 0. Since this sequence involves
an exponential of n, try RT for Sequences. Since |an+1/an| −→ 2 by the above, by (2) this sequence
does not converge at all, so the corresponding series diverges as well.

Remark: If you find that the sequence a1, a2, . . . does converge to 0, then you cannot conclude

that the series
∑

an converges and must use one of the many other convergence tests for series
(that is why they are there; otherwise, they would not be needed). In the case of the series,

∞∑

n=0

(−1)n
7n

n!
≡ 1− 7

1!
+

72

2!
− 73

3!
+ . . . ,

|an+1/an| −→ 0 by the above. So the sequence |an| converges to 0 by (1), and you must then find
another convergence test to determine if the series itself converges. In this case, you can then apply
RT for Series to conclude that the series converges, having already computed the limit L of the
ratios of the absolute values of consecutive terms. So, for the series

∑
an to which RT for Series

is applicable, there is no harm in forgetting to start with the Divergence Test for Series. However,
always starting with the Divergence Test for Series provides a systematic approach to analyzing
whether a series converges.
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The sequence an = 1/np converges to 0 if p>0. However, by the p-Series Test on p578, the series

∞∑

n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+ . . .

converges if and only if p>1. No matter what p is,

|an+1|
|an|

=
1/(n+1)p

1/np
=

(
n

n+1

)p

=

(
1

1+1/n

)p

−→
(

1

1+1/∞

)p

= 1.

This shows that RT for Series is useless in the case

L ≡ lim
n−→∞

|an+1|
|an|

= 1,

and you have to find some other convergence test to use.

Why is (5) true? The assumption in (5) is that the ratios |an+1|/|an| get very close to L as n
increases. Since L<1 in this case, this means that |an+1|/|an| < (L+1)/2 if n is very large, so that

|an+1| <
L+1

2
|an|

for all n larger than some N . Thus,

∣
∣aN+n

∣
∣ <

L+1

2

∣
∣aN+n−1

∣
∣ <

L+1

2
· L+1

2

∣
∣aN+n−2

∣
∣ . . . <

L+1

2
· . . . · L+1

2
︸ ︷︷ ︸

n

∣
∣aN

∣
∣ =

(
L+1

2

)n

|aN |.

Since (L+1)/2 < 1 in this case, the geometric series

∞∑

n=0

(
L+1

2

)n

|aN | = |aN |
∞∑

n=0

(
L+1

2

)n

converges. Thus, the series of positive terms

∞∑

n=0

|aN+n| = |aN |+ |aN+1|+ |aN+2|+ . . .

also converges by the Comparison Test. Since the convergence of a series has nothing to do with
how it begins, it follows that the series

∞∑

n=1

|an| = |a1|+ |a2|+ |a3|+ . . .

also converges. By the Absolute Convergence Theorem, this implies that the original series

∞∑

n=1

an = a1 + a2 + a3 + . . .
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also converges (making some terms negative and some positive cannot increase the absolute value
of the sum).

Why is (6) true? In this case, the sequence an does not converge to 0 (in fact, does not converge
at all) by (2). Thus, the series

∑
an diverges by the Divergence Test for Series.

Similarly to RT for Sequences, RT for Series is applicable to only some series. Unlike RT for
Sequences, it is applicable in many non-trivial cases that cannot be resolved with the Divergence
Test for Series. Similarly to RT for Sequences, RT for Series has a good chance of working for
series that involve factorials and powers n (e.g. n!, 3n, nn), but has no chance of working for series
that involve only powers of n (e.g. n3).

3 Summary of Ratio Tests

RT for Sequences a1, a2, a3 . . . and RT for Series a1 + a2 + a3 + . . . involve studying the sequence
of the ratios of the absolute values of consecutive terms, |an+1|/|an|. Depending on what happens
with this last sequence, we may be to conclude that the original sequence/series converges or di-
verges. This is summarized in the table below.

If then the sequence a1, a2, . . . the series a1 + a2 + . . .

lim
n−→∞

|an+1|
|an|

< 1 converges to 0 converges

lim
n−→∞

|an+1|
|an|

> 1 or |an+1|
|an|

−→ ∞ diverges diverges

lim
n−→∞

|an+1|
|an|

= 1 ? ?

The two ratio tests work extremely well in some cases and not at all in others. They have a good
chance of working for series that involve factorials and powers n (e.g. n!, 3n, nn), but no chance of
working for series that involve only powers of n (e.g. n3).

4 Remainder Estimate

All convergence tests for series implicitly come with a “reminder estimate”. These describe how
close the first few terms of a convergent series come to the sum of the entire series, i.e. how small
the sum of the rest of the terms is. These remainder estimates can be useful for estimating the
sum of a convergent series with specified precision (e.g. within .000001). The book explicitly states
remainder estimates for two convergence tests:

(1) the Integral Test. This is useful for series
∑

an with an = f(n), where f is a continuous,
positive, decreasing function on some interval (a,∞) with f(x) −→ 0 as x −→ ∞, such
as f(x) = x−3/2.

(2) the Alternating Series Test. This is useful for series
∑

an with an alternating in sign and
with |an| monotonically decreasing to 0, such as an=(−1)n/n.
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While these series include many important ones, not all series are of these two forms. For example,

e =
∞∑

n=0

1

n!
= 1 +

1

1!
+

1

2!
+

1

3!
+ . . . . (8)

Another particularly interesting example is a series which can be used to estimate π:

1

π
=

2
√
2

9801

∞∑

n=0

(4n)!(1103+26390n)

(n!)43964n
.

RT for Series can be used to show that each of these two series converges. It can also be used to
determine how many terms at the beginning of the series are needed to compute the infinite sum
with specified precision, i.e. make the sum of the remainder of the series smaller than the desired
precision.

Suppose we are given a series
∑

an and

L ≡ lim
n−→∞

|an+1|
|an|

< 1.

In particular, the series converges by RT for Series. Since the ratios |an+1|/|an| get arbitrary close
to L< 1, for any given r ∈ (L, 1), such as r= (L+1)/2, we can choose a large number N so that
|an+1|/|an|≤r whenever n≥N . Thus, whenever k≥0

|aN+k| ≤ r|aN+k−1| ≤ r2|aN+k−2| ≤ rk|aN |,

and so for any n≥0

∣
∣
∣
∣

∞∑

k=n

aN+k

∣
∣
∣
∣
≤

∞∑

k=n

|aN+k| <
∞∑

k=n

rk|aN | = |aN |
1− r

rn.

Thus, the absolute value of the sum aN+n+ aN+n−1+ . . . is at most |aN |rn/(1−r), and so the sum
of the finitely many preceding terms is less than |aN |rn/(1−r) away from the infinite sum.

For example, in the case of the infinite series (8), an=1/n! and so

|an+1|
|an|

=
1/(n+1)!

1/n!
=

n!

(n+1)!
=

n!

n! · (n+1)
=

1

n+1
−→ 1

∞+ 1
= 0 ;

so L=0 and the series converges by RT for Series. If we take r=(L+1)/2=1/2, then

|an+1|
|an|

=
1

n+1
≤ 1

2

whenever n≥N=1, and

∣
∣
∣
∣

∞∑

k=n

1

(1+k)!

∣
∣
∣
∣
<

|a1|
1− r

rn =
1

1− 1/2
· 2−n =

1

2n−1
=⇒ e−

k=n∑

k=0

1

n!
<

1

2n−1
. (9)
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In fact, we can get a much better estimate for the remainder

e−
k=n∑

k=0

1

n!
=

∞∑

k=n+1

1

k!

by using r=1/(n+2). Since (1/(k+1)!)/(1/k!) ≤ 1/(n+2) whenever k≥(n+1), this gives

∞∑

k=n+1

1

k!
≤

∞∑

k=0

1

(n+1)!
·
(

1

n+2

)k

=
1

(n+1)!
· 1

1− 1

n+2

=
1

(n+1)!
· n+ 2

n+ 1
=

n+2

(n+1) · (n+1)!
.

So we find that

0 < e−
k=n∑

k=0

1

n!
<

n+2

(n+1) · (n+1)!
. (10)

For example, taking n=6 (first seven terms in (8)), we find that

0 < e−
(

1 +
1

1!
+

1

2!
+

1

3!
+

1

5!
+

1

5!
+

1

6!

)

<
8

7 · 7! or 0 < e− 1957

720
<

1

4410
.

The estimate (10) is much better than (9) because

(n+2)/((n+1) · (n+1)!)

1/2n−1
−→ 0

by (1).

5 Concluding Remark (beyond the scope of the course)

The assumptions in (1) and (5) can be weakened, without changing the conclusion. The only
property of the sequence |an+1|/|an| used in the justification of these statements above is that
|an+1|/|an| < r for some number r ∈ (0, 1) and for all n larger than some number N . So the
sequence |an+1|/|an| must eventually stay in the interval [0, r] with r < 1. It does not matter
whether it has an actual limit in this interval or keeps on jumping between some numbers in the
interval. This means that the sequence of ratios contains no subsequence going off to infinity and
the limit of any convergent subsequence is less than 1. The largest of these limits of subsequences
is called lim sup; it must exist even if there is no actual limit of the sequence. The assumptions
in (1) and (5) can be weakened to requiring that

lim sup
|an+1|
|an|

< 1, (11)

instead of requiring that the sequence |an+1|/|an| converge to a number less than 1.

For example, the ratios of consecutive terms for the sequence

1,
1

2
,

1

2 · 3 ,
1

2 · 3 · 4 ,
1

2 · 3 · 4 · 2 ,
1

2 · 3 · 4 · 2 · 3 ,
1

2 · 3 · 4 · 2 · 3 · 4 ,
1

2 · 3 · 4 · 2 · 3 · 4 · 2 , . . .
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cycle between 1/2, 1/3, and 1/4. The largest of these numbers is 1/2, and so

lim sup
|an+1|
|an|

=
1

2
.

Since 1/2 < 1, the original sequence converges to 0, and the corresponding series (sum of the terms
in this sequence) also converges (to 40/23; why?).

The assumptions in (2) and (6) can be weakened similarly. The only property of the sequence
|an+1|/|an| used in the justification of these statements above is that |an+1|/|an| > r for some
number r>1 and for all n larger than some number N . So the sequence |an+1|/|an| must eventually
stay in the interval (r,∞) with r>1. So either there is a subsequence going off to infinity (in which
case its limit is considered to be ∞) or a subsequence converging to some number larger than 1.
The smallest of these limits of subsequences is called lim inf; it must exist even if there is no actual
limit of the sequence. The assumptions in (2) and (6) can be weakened to requiring that

lim inf
|an+1|
|an|

> 1, (12)

instead of requiring that the sequence |an+1|/|an| go off to infinity or converge to a number greater
than 1.

For example, the ratios of consecutive terms for the sequence

1, 2, 2 · 3, 2 · 3 · 4, 2 · 3 · 4 · 2, 2 · 3 · 4 · 2 · 3, 2 · 3 · 4 · 2 · 3 · 4, 2 · 3 · 4 · 2 · 3 · 4 · 2, . . .
cycle between 2, 3, and 4. The smallest of these numbers is 2, and so

lim inf
|an+1|
|an|

= 2 .

Since 2 > 1, the original sequence diverges, as does the corresponding series (sum of the terms in
this sequence).

Since lim inf of any sequence is not larger than lim sup (the two are equal if and only if the entire
sequence converges), the only remaining possibility, in addition to (11) and (12), is

lim inf
|an+1|
|an|

≤ 1 ≤ lim sup
|an+1|
|an|

.

In this case, the ratio tests say nothing and you need to find another test to use.

The above refinements of the original ratio tests are summarized in the table below. Unlike the
table in Section 3, it covers all possibilities. You can learn more about lim inf and lim sup in
MAT 320, if you do well in this course.

If then the sequence a1, a2, . . . the series a1 + a2 + . . .

lim sup |an+1|
|an|

< 1 converges to 0 converges

1 < lim inf |an+1|
|an|

diverges diverges

lim inf |an+1|
|an|

≤ 1 ≤ lim sup |an+1|
|an|

? ?
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