Find

$$\sqrt[4]{47 - \frac{1}{47 - \frac{1}{47 - \dots}}}$$

Express your answer in the form $\frac{a \pm \sqrt{b}}{2}$ (specifying the sign).

We need to compute $\sqrt[4]{x}$, where x is the limit of the sequence x_1, x_2, \ldots defined by

$$x_1 = 47, \qquad x_{n+1} = 47 - \frac{1}{x_n}.$$

By the *Monotonic Sequence Theorem*, this sequence converges to (has a limit) $x \ge 46$ because it is bounded below by 46 and is decreasing. Both properties are checked using induction:

- clearly $x_1 > 46$; if $x_n > 46$ for some $n \ge 1$, then $x_{n+1} = 47 1/x_n > 46$, since $1/x_n < 1$; thus, $x_n > 46$ for all n;
- clearly $x_1 > x_2$; if $x_n > x_{n+1}$ for some $n \ge 1$, then $1/x_n < 1/x_{n+1}$ and thus

$$x_{n+1} = 47 - \frac{1}{x_n} > 47 - \frac{1}{x_{n+1}} = x_{n+2};$$

thus, $x_n > x_{n+1}$ for all n.

Taking the limit of the recursion equation gives

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(47 - \frac{1}{x_n} \right) = 47 - \frac{1}{\lim_{n \to \infty} x_n} = 47 - \frac{1}{x} \implies x = 47 - \frac{1}{x}$$

So our limit x is one of the roots of the quadratic equation $x^2 - 47x + 1 = 0$,

$$x_{\pm} = \frac{47 \pm \sqrt{47^2 - 4}}{2}$$

Both of these roots are positive, and our x is the larger of the two because $x \ge 46$.

It remains to compute $\sqrt[4]{x_+}$. The roots x_{\pm} of the quadratic equation $x^2 - 47x + 1 = 0$ satisfy

Thus, $y_+ = \sqrt[4]{x_+}$ and $y_- = \sqrt[4]{x_-}$ are the roots of the quadratic equation

$$y^{2} - 3y + 1 = 0 \implies y_{\pm} = \frac{3 \pm \sqrt{3^{2} - 4}}{2} \implies \sqrt[4]{x} = \frac{3 \pm \sqrt{5}}{2}$$

Note that we take the larger y-root because $x_+ > x_-$.

Note: The first part of this problem is a typical calculus exercise on sequences (in MAT 127/132); the second part is high-school Algebra II.