METRIC TENSOR ESTIMATES, GEOMETRIC
CONVERGENCE, AND INVERSE BOUNDARY PROBLEMS

MICHAEL ANDERSON, ATSUSHI KATSUDA, YAROSLAV
KURYLEV, MATTI LASSAS, AND MICHAEL TAYLOR

ABSTRACT. Three themes are treated in the results announced here. The first is the
regularity of a metric tensor, on a manifold with boundary, on which there are given
Ricci curvature bounds, on the manifold and its boundary, and a Lipschitz bound
on the mean curvature of the boundary. The second is the geometric convergence
of a (sub)sequence of manifolds with boundary with such geometrical bounds and
also an upper bound on the diameter and a lower bound on injectivity and boundary
injectivity radius, making use of the first part. The third theme involves the unique-
ness and conditional stability of an inverse problem proposed by Gel’fand, making
essential use of the results of the first two parts.

1. Introduction

Here we announce results on regularity, up to the boundary, of the metric tensor
of a Riemannian manifold with boundary, under Ricci curvature bounds and control
of the boundary’s mean curvature; an application to results on Gromov compactness
and geometric convergence in the category of manifolds with boundary; and then
an application of these results to the study of an inverse boundary spectral problem
introduced by I. Gel’fand. Details are given in [AK2LT].

Regularity of the metric tensor away from the boundary has been studied and
used in a number of papers, starting with [DTK]. One constructs local harmonic
coordinates and uses the fact that, in such harmonic coordinates, the Ricci tensor
has the form

(11) Agﬂm - Bém(ga Vg) = —2Ricgp -
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Here A is the Laplace-Beltrami operator, applied componentwise to the components
of the metric tensor, and By, is a quadratic form in Vg;;, with coeflicients that
are smooth functions of g;; as long as the metric tensor satisfies a bound Ci|n|? <
gjk(x)njnk < Calnl?, with 0 < C; < Cy < oo. If one is given information on the
Ricci tensor, one can regard (1.1) as an elliptic PDE for the metric tensor, and
obtain information on its components, in harmonic coordinates.

The notion of compactness of a family of Riemannian manifolds and of geometric
convergence issues from work of J. Cheeger [Ch] and M. Gromov (cf. [Gr], the revised
and translated version of his 1981 work). The role of harmonic coordinates in the
study of such geometric convergence has been exploited in a number of papers. The
paper [Anl] established compactness given a sup norm bound on the Ricci tensor,
an upper bound on the diameter, and a lower bound on the injectivity radius, for
a family of compact Riemannian manifolds of a fixed dimension. Convergence was
shown to hold, for a subsequence, in the C"-topology, for any r < 2.

One of our motivations to extend the scope of these results to the category of
manifolds with boundary arises in the study of a class of inverse problems. In these
problems, one wants to determine the coefficients of some partial differential equa-
tion in a bounded region via measurements of solutions to the PDE at the boundary.
Such problems arise in various areas, including geophysics, medical imaging, and
nondestructive testing. One problem, formulated by I. Gel’fand [Ge], consists of
finding the shape of a compact manifold M with boundary M and the metric
tensor on it from the spectral data on M. Namely, if Ry is the resolvent of the
Neumann Laplacian AV on M, the Gel’fand data consists of the restriction of the
integral kernel Ry(z,y) of the resolvent to x,y € OM, as A varies over the resolvent
set of AN, Another formulation of Gel’fand’s inverse problem will be given in §4.

For such an inverse problem, the first issue to investigate is uniqueness. In the
context of C'*° metric tensors, this was established for the Gel’fand problem in
[BK1]. As we will explain below it is important to obtain uniqueness with much
less regular coefficients.

Once uniqueness results have been obtained, one has to face up to the issue
of ill posedness of the inverse problem. That is, one can make large changes in
M that have only small effects on boundary data obtained from examining the
boundary behavior of the resolvent kernel mentioned above. For example, given
(M, g), one could take an auxiliary manifold X, without boundary, of the same
dimension as M, remove a small ball from X and from the interior of M, and
connect these manifolds by a thin tube. One is faced with the task of stabilizing
this ill posed inverse problem. One ingredient in this process involves having some
a priori knowledge of the quantities one is trying to determine, typically expressed
in terms of a priori bounds on these quantities in certain norms.

In the case of trying to determine an unknown Riemannian manifold with bound-
ary M, from boundary spectral data, it is natural to make a priori hypotheses on
geometrical properties of M. Furthermore, if one must make such a priori hypothe-
ses, it is desirable to get by with as weak a set of hypotheses as possible. There is
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then a tension between the desire to make weak a priori hypotheses and the need
to establish uniqueness results. For preliminary results in this direction see [K2L)],
[Ka].

In our work we impose a priori sup norm bounds on the Ricci tensor of M, and of
OM . This, together with a Lipschitz norm bound on the mean curvature of 9M —»
M, is shown to imply certain regularity, up to the boundary, of the metric tensor
of M, when one is in “boundary harmonic coordinates”. To be precise, we obtain
regularity in the Zygmund space C2(M), a degree of regularity better than C” for
any r < 2 and just slightly worse than C2. This result has the following important
advantage over a C2~¢ estimate. The Hamiltonian vector field associated with the
metric tensor has components with a log-Lipschitz modulus of continuity. Hence,
by Osgood’s theorem, it generates a uniquely defined geodesic flow, on the interior
of M, and also for geodesics issuing transversally from OM. A more complete
description of these results is given in §2.

In §3 we describe a compactness result for families of compact Riemannian man-
ifolds, of dimension n, with boundary, for which there are fixed bounds on the sup
norms of Ricys and Ricgar, on the Lipschitz norm of the mean curvature of OM,
and on the diameter, and fixed lower bounds on the injectivity and boundary in-
jectivity radius. It turns out that a sequence of such Riemannian manifolds has a
subsequence, converging in the C"-topology, for all r < 2, whose limit (M, g) has
metric tensor in C2(M).

In §4 we discuss Gel’fand’s inverse boundary problem, recast in the form of an
inverse boundary spectral problem. We describe how, having boundary spectral
data, we can recognize whether a given function h € C(OM) has the form h(z) =
re(z) = dist(z, 2), for some 2 € M, all z € M, thus recovering the image in C(M)
of M under the boundary distance representation. Such a representation, whose use
was initiated in [Ku] and [KuL], plays an important role in the uniqueness proof,
but for it to work we need to know that geodesics from points in M, pointing
normal to the boundary, are uniquely defined. As noted above, this holds when the
metric tensor in in C2(M), and we obtain a uniqueness result in this category. This
fits in perfectly with the compactness result described in §3, to yield a result on
stabilization of this inverse problem.
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2. Boundary Regularity for the Ricci Equation

In this section we describe the key results on local regularity at the boundary of
a metric tensor on which there are Ricci curvature bounds and a Lipschitz bound
on the mean curvature. Our set-up is the following.

Let B be a ball about 0 e R*, Q@ =Bn{z:2" > 0}. Let T =BnN{z:z" =0}
and set O = QU X. Let g be a metric tensor on , and denote by h its restriction
to X. We make the following hypotheses:

(2.1) gjx € H"?(Q), for some p > n,
(2.2) hjr € HY?(E), 1<jk<n-1,
(2.3) Ric” € L®(Q),

(2.4) Ric” € L®(%),

(2.5) H € Lip(%),

Here H denotes the mean curvature of ¥ C €, i.e., H = Tr A/(n — 1), where A
is the Weingarten map, a section of End(7'Y). Our goal is to establish the following
result.

Theorem 2.1. Under the hypotheses (2.1)—(2.5), given z € Q, there exist local
harmonic coordinates on a neighborhood U of z in Q0 with respect to which

(2.6) g € C2(D).

Here C2(U) is a Zygmund space, as mentioned in §1. The harmonic coordinates
for which (2.6) holds are arbitrary coordinates (u!,...,u") satisfying Au/ = 0 on
a chart not intersecting ¥. On a neighborhood of a point in ¥, these coordinates
are “boundary harmonic coordinates,” which are defined as follows. We require
(ul,...,u™) to be defined and regular of class at least C* on a neighborhood of z
in Q, and Au’ = 0. We require that v/ = u/|y be harmonic on ¥, i.e., annihilated
by the Laplace-Beltrami operator of ¥ with its induced metric tensor. We require
u™ to vanish on ¥, and we require (u!,...,u") to map a neighborhood of z in
diffeomorphically onto Q.

Regarding the fact that the hypotheses (2.1)—(2.2) imply that various curvature
tensors are well defined, it can be shown that

gjk € C(ﬁ) ﬂH1’2(Q) =T € L2(Q), Rabjk € H71’2(Q) + Ll(ﬂ)

2.7
27) = Ricy, € H12(Q) + L1 (D).

The hypothesis (2.1) is stronger than the hypothesis in (2.7). It implies g;x € C™(2)
for some r > 0, so (2.7) is applicable both to g;xr on Q and, in view of (2.2), to hjy
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on ¥. One also shows that the Weingarten map has the property A € By, ,1,/ P(y),
as a consequence of (2.1). Thus we have a priori that H € B, ,1,/ P(%), and the
hypothesis (2.5) strengthens this condition on H, in a fashion that is natural for
the desired conclusion of Theorem 2.1.

Our approach to the proof of Theorem 2.1 is to obtain the result as a regularity
result for an elliptic boundary problem. We use the PDE (1.1) (the “Ricci equa-
tion”) for the components of the metric tensor, in boundary harmonic coordinates,
and use Dirichlet boundary conditions on some components of g;; and Neumann
boundary conditions on complementary components; see (2.9) and (2.12)—(2.13) for
a more precise description.

The proof of Theorem 2.1 in [AK2LT] is done in stages. First it is shown that the
conclusion of Theorem 2.1 holds when the hypotheses (2.1)—(2.2) are strengthened
a bit.

Proposition 2.2. In the setting of Theorem 2.1, replace hypotheses (2.1)—(2.2) by
(2.8) gjk € C*T5(Q), for some s € (0,1),
and retain hypotheses (2.8)—(2.5). Then the conclusion (2.6) holds.

In addition to providing a first step toward establishing Theorem 2.1, Proposition
2.2 is itself sufficiently strong for the application to geometric convergence described
in §3.

The demonstration of Proposition 2.2 begins with a construction of boundary
harmonic coordinates, mentioned above. In these new coordinates, (2.8) and (2.3)—
(2.5) are preserved. Now in harmonic coordinates the metric tensor satisfies the
elliptic PDE (1.1), and from (2.8) and (2.3) we have Fy,, = By —2 Ricy, € L°(Q),
and the coefficients of A have the same degree of regularity as g;; in (2.8).

Now, if j, k < n—1, then well known local regularity results on X following from
(2.4) give gjk|2 = hjr € H*P(X), V p < oo, but in fact there is the following
refinement, established in Proposition II1.10.2 of [T2]:

(2.9) Gik|y, = hjr €9, 1<jk<n-1.

Here h2>° denotes the bmo-Sobolev space of functions whose derivatives of order
< 2 belong to bmo, the localized space of functions of bounded mean oscillation.
We have the following (after perhaps shrinking ) to a smaller neighborhood of z).
See [AK2LT] for details.

Lemma 2.3. Under the hypotheses of Proposition 2.2, we have, in boundary har-
monic coordinates,

(2.10) gk €C2Q), 1<jk<n-1.

To continue, following [An2], we switch over to PDE for g‘™. Parallel to (1.1),
we have

(2.11) Agt™ = B'™(g,Vg) + 2(Ric?)t™ = Fim,
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and (2.8) and (2.3) give F*™ € L>(Q). We take m = n and proceed to derive
Neumann-type boundary conditions for the components g¢*, 1 < £ < n. In fact, as
shown in [AK2LT],

(2.12) Ng™ = -2(n—1)Hg"™, on X,

and, for 1 </<mn—-1,

1 1
en _ ¢
(2.13) Ng”——(n—l)Hg"+§W
Here H is the mean curvature of ¥, which we assume satisfies (2.5), and N is the
unit normal field to X, pointing inside Q.

Having (2.11)—(2.13), we can establish further regularity of the functions g‘".
The following is proven in [AK2LT].

g*0kg™, on X.

Lemma 2.4. In boundary harmonic coordinates, we have
(2.14) g¢meC?@), 1<t<n.

One then verifies that Lemmas 2.3 and 2.4 yield gn; = gen € C2(). These re-
sults yield Proposition 2.2. To establish Theorem 2.1 in full strength, we need to
work harder, especially on the Neumann problem. We continue to have (2.11); how-
ever, this time it is not so straightforward to produce the Neumann-type boundary
conditions (2.12)—(2.13). Consider (2.12). The right side is well defined; we have
Hg™|y, € C%(X), for some s > 0. As for N, the unit normal field to ¥ is also
Hélder continuous of class CT. But applying N to g™ € H'P(Q) does not yield an
object that can be evaluated on ¥. One has the same problem with the left side of
(2.13), and the right side of (2.13) is also problematic.

However, we are able to show that a weak formulation of the Neumann boundary
condition is applicable, and we establish regularity results for weak solutions to the
Neumann strong enough to complete the proof of Theorem 2.1. See [AK2LT] for
details.

3. Geometric convergence for manifolds with boundary

A sequence (My, gx) of compact Riemannian manifolds with boundary dM, is
said to converge in the C"-topology (given 0 < r < 00) to a compact Riemannian
manifold (M, g) provided that g is a C™ metric tensor on M and, for k sufficiently
large, there exist diffeomorphisms Fy, : M — M, such that F} g, converges to g in
the C"-topology. (Necessarily Fj, : M — OMy.) In this section we will identify
classes of Riemannian manifolds with boundary that are pre-compact in the C"-
topology, for any given r < 2.
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We work with families of Riemannian manifolds with boundary of the following
sort. Fix the dimension, n. Given Ry, g, So,do € (0, 00), denote by M(Ry, %9, So, do)
the class of compact, connected, n-dimensional Riemannian manifolds with bound-
ary (M, g), with smooth metric tensor, with the following four properties:

(3.1) ||RiCM||Loo(M) < Ry, ||RicaM||Loo(8M) < Ry,
where Ric denotes the Ricci tensor.
(3.2) iM > 10, tom > to, iy > 2ip.

Here iy denotes the injectivity radius of M, igyr that of M, and iy the boundary
injectivity radius of M.

(3.3) |1 H ||Lip(aar) < So,
where H is the mean curvature of OM in M.
(3.4) diam (M, g) < dy.

We recall the concept of boundary injectivity radius, 4. It is the optimal quantity
with the following property. Namely, there is a collar neighborhood C of M in M
and a (unique) function f € C2(C) such that f|8M =0, |Vfl=1, f(C)DI0,ip).
With this, local coordinates (v',...,v™ 1) on an open set in M can be continued
inside, as constant on the integral curves of Vf, to produce, along with v™ = f,
a set of “boundary normal coordinates.” To further clarify the first part of (3.2),
we mean that Exp, : B,(0) = M, where B,(0) = {v € T,M : g(v,v) < p°},
is a diffeomorphism for p = ig if dist(p,0M) > iy and it is a diffeomorphism for
p = dist(p, OM) if dist(p, OM) < io.

The main result announced in this section is the following.

Theorem 3.1. Given Ry, 19, So,do € (0,00), M(Ry, 19, So,do) is precompact in the
C" -topology for eachr < 2. In particular, any sequence (My, gi) in M(Ry, o, So, do)
has a subsequence that converges in the C"-topology to a limit (M, g). Furthermore,
the metric tensor g belongs to C2(M).

Such a result was established in [Anl] in the category of compact manifolds
without boundary; subsequently there have been expositions in [HH] and in [Pe].
Our proof of Theorem 3.1 follows the structure of the argument in [Anl], with
necessary modifications to treat the case of nonempty boundary. In this regard the
boundary regularity results of §2 play a major role. The C2 part of the conclusion is
also more precise than that noted in earlier results. This precision will be of major
value in the application of Theorem 3.1 to results on inverse boundary spectral
problems presented in §4.
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One ingredient in the proof of Theorem 3.1 is to demonstrate the applicability of
a well known “abstract” convergence result, of the sort given in [Pe], pp. 293-296
(extended in the natural fashion to manifolds with boundary). To show that this
applies, it suffices to construct sufficiently good boundary harmonic coordinates.
Doing this brings in the notion of C*-harmonic radius, introduced in [Anl] in the
context of manifolds without boundary. Roughly speaking, there are boundary
harmonic coordinates on balls of this radius, in which the metric tensor satisfies
uniform C? bounds. Similarly there is a natural notion of C2-harmonic radius. We
denote the C2-harmonic radius of (M, g) by

(3.5) (M, g,Q)

where () quantifies these bounds on the metric tensor.

The goal then becomes to show that, given Ry, 9, So,do € (0, 0), there is a lower
bound on the C2-harmonic radius of (M, g) € M(Ry,i9,S0,do). The following key
result is proven in [AK2LT].

Theorem 3.2.. Let Ry,i9, S0, and dy be given, in (0,00), and let Q € (1,2) be
given. Then there exists rapq = ram(Ro, 0, S0, do, @) > 0 such that

(36) 'f'h(M,g, Q) Z ™M, v (H7g) € M(R07i07307d0)'

The proof of Theorem 3.2 given in [AK2LT] involves the following ingredients:
a blow-up argument, use of the regularity results of §2 and of the fundamental
equations of hypersurface theory, and use of the Cheeger-Gromoll splitting theorem.

REMARK. Invoking the definition of the Gromov-Hausdorff topology (cf. [Gr]) we
can show that M(Ry, 19, So,do) is compact in the Gromov-Hausdorff topology and
C"-convergence is equivalent to Gromov-Hausdorff convergence on this compact set,
for any r € [1,2).

4. Gel’fand inverse boundary problem

In this section we discuss uniqueness and stability for the inverse boundary spec-
tral problem. To fix notations, assume that (M,g,0M) is a compact, connected
manifold, with nonempty boundary, provided with a metric tensor g with some lim-
ited smoothness (specified more precisely below). Let AN be the Neumann Lapla-
cian. Denote by (A1), its eigenvalues (counting multiplicity) and by (¢r)32, the
corresponding eigenfunctions.

The Gel’fand inverse boundary problem (in its spectral formulation) is the prob-
lem of the reconstruction of (M, g) from its boundary spectral data, i.e., the collec-
tion (OM, { Ak, drlon}52;)- (We have mentioned Gel’fand’s original formulation in
the introduction.)

The following uniqueness result is proven in [AK2LT].
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Theorem 4.1. Let M be a compact, connected manifold with nonempty bound-
ary and C? metric tensor. Then the boundary spectral data (OM, { Ak, drlon}3 ;)
determine the manifold M and its metric g uniquely.

Such a result was established in the C* case in [BK1]. Some different techniques
are required to treat the C? case. We briefly describe how to determine M as a
topological space, referring to [AK2LT] for further details.

We start with the introduction of some useful geometric objects. Let I' C OM
be open and take ¢ > 0. Then we set

(4.1) MT,t)={z € M :d(z,T) < t},
the domain of influence of I at “time” ¢, and define
(4.2) L(T,t) = FL}(M(T,t)) C 2.

Here, F stands for the Fourier transform of functions from L?(M), i.e., F(u) =
{ur}pe, € €, ur = (u,ér)r2(m), and the subspace L*(M (T, t)) consists of all
functions in L?(M) with support in the set M (T, ).

One ingredient in the proof of Theorem 4.1 is the following. Consider the wave
equation

(02 — A)uf (z,t) =0 in M x R,

(4.3)
uf|t=0 =0, utf|t=0 =0, NuflaMXR+ = f € C(%(F X (O,T)),

where N is the exterior unit normal field to OM. Using Tataru’s unique continuation
theorem [Ta], it was shown in [Bel] (also Theorem 3.10 of [KKL]) that the following
holds.

Proposition 4.2. For each T > 0, the set {uf(T): f € L*(T x (0,T))} is a dense
subspace of L>(M (T, T)).

Meanwhile, the following formula (due to Blagovestchenskii) gives the Fourier

coefficients ui(t) of a wave uf(-,t) in terms of the boundary spectral data,

(4.4) / / f(z Sm‘/_( sinV(t =) (z) dS, dt'.

k

This, together with Proposition 4.2, implies the following.

Corollary 4.3. Given I' C OM and t > 0, the boundary spectral data determine
the subspace

(4.5) L(T,t) = FL*(M(T, t)) C £*.
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Now let h € C(OM). We can ask if h is the boundary distance function for some
x € M. In fact, use of Corollary 4.3 allows one to answer this question. It follows
that the boundary spectral data determine the image in L>°(0M) of the boundary
distance representation R. Here, R : M — C(OM) is defined by

(4.6) R(z) =71,(-), ry(2)=dist(z,2), z€IM.

(Compare [KKL] and [Kul]). Clearly, the map R is Lipschitz continuous. Moreover,
under the assumptions of Theorem 4.1 it is injective. This follows from Osgood’s
theorem applied to geodesics normal to OM.

Since M is compact, injectivity and continuity imply that R is a homeomorphism,
i.e., R(M) with the distance inherited from L>(8M) and (M, g) are homeomorphic,
and thus R(M) can be identified with M as a topological manifold. We hence have
the following.

Proposition 4.4. Assume (M1,g:) and (M1, g2) satisfy the hypotheses of Theorem
4.1. If they have identical boundary spectral data, including OM, = OM, = X, as
C? manifolds, then there is a natural correspondence of R(M1) and R(M,) C C(X),
producing o uniquely defined homeomorphism

(47) X : Ml — M2.

We refer to [AK2LT] for a demonstration that x in (4.7) is a C?-diffeomorphism,
preserving the metric tensors, which proves the uniqueness result of Theorem 4.1.

We next consider stabilization of inverse problems using geometric convergence
results and apply them to the Gel’fand problem. The basic thrust of our argument
provides an illustration of a general “stabilization principle for inverse problems.”

Let us set up some notation. Denote by M x (C?) the set of compact, connected
manifolds M with nonempty boundary X, endowed with a metric tensor in C2(M).
Given (M, g) € Mx(C?), set

the right side denoting the boundary spectral data of (M, g). We have
(4.9) D:Mx(CZ)—>Bx,

where Bx denotes the set of sequences {p;,1; : j > 1}, with p; € R, p; 7 400,
and ¢; € L*(X), modulo an equivalence relation, which can be described as follows.

We say {u;,0;} ~ {u;,0;} if ¥;(x) = a;4;(z) for some a; € C,|a;| = 1. More
generally, if ug, = --- = ux,, we allow

k1
(4.10) V() = Z ajphr(x), §=ko,e+ ki,

k=kq
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for a unitary ! x [ matrix (o), | = k1 — ko + 1. The content of Theorem 4.1 is that
the map (4.9) is one-to-one.

There are natural topologies one can put on the sets in (4.9). Furthermore, it fol-
lows from standard techniques of perturbation theory (cf. [K]) that D is continuous
in (4.9).

Now the map (4.9) is by no means invertible, giving rise to the phenomenon of
ill-posedness. One wants to “stabilize” the inverse problem, showing that certain
a priori hypotheses on the domain (M, g) put it in a subset K C Mx(C?) with
D! acting continuously on the image of K. The results of §3 provide a tool to
accomplish this.

Recall the class M (R, %0, So, dg) defined in §3. Given a boundary X, let M x (Ro,
10,90, dp) denote the set of such manifolds with boundary X. It follows from The-
orem 3.1 that M x (R, %0, S0,do) is compact in the C™ topology, for any r € (1,2),
and is contained in Mx(C?). We hence give M x(Ro, 90, So,do) the C” topology,
and we see this is independent of r, for r € (1,2).

Combined with Theorem 4.1, these observations yield the following conditional
stability of the Gel’fand inverse problem.

Theorem 4.5. Given Ry, i, So,do € (0,00),

D : Mx(Ro,io,So,dg) — BX

is a homeomorphism of Mx (Ry,i0,S0,do) onto its range, Bx(Ro, %0, S0,do); hence

D' : Bx(Ro, 0, 50,do) — Mx(Ro,i0, S0, do)

1S continuous.
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