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Introduction.

Fix a closed n-dimensional manifold M, and let M be the space of Rie-
mannian metrics on M. Similar to the reasoning leading to the Einstein
equations in general relativity, there is basically a unique simple and nat-
ural vector field on the space M. Namely, the tangent space T,M consists
of symmetric bilinear forms; besides multiples of the metric itself, the Ricci
curvature Ricy of g is the only symmetric form depending on at most the
2nd derivatives of the metric, and invariant under coordinate changes, i.e.
a (0,2) tensor formed from the metric. Thus, consider

Xy = pRicg + Mg,

where p, A\ are scalars. Setting y = —2, the corresponding equation for the
flow of X is
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The Ricci flow, introduced by R. Hamilton [5], is obtained by setting A = 0:
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Rescaling the metric and time variable ¢ transforms (2) into (1), with A =
A(t). For example, rescaling the Ricci flow (2) so that the volume of (M, g(t))
is preserved leads to the flow equation (1) with A = 2 § R, twice the mean
value of the scalar curvature R

The Ricci flow (2) bears some relation with the metric part of the beta
function or renormalization group flow equation

2 9(t) = Bl (1)

for the 2-dimensional sigma model of maps %2 — M. The beta function is a
vector field on M, invariant under diffeomorphisms, which has an expansion
of the form

(t) = —2Ricyy) + Ag(2)-

(t) = —2Ric,-

—pB(g) = Ricg + eRiem? + ...,
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where Riem? is quadratic in the Riemann curvature tensor. The Ricci flow
corresponds to the one loop term or semi-classical limit in the RG flow, cf.
(3], [4]-

Recently, G. Perelman [9]-[11] has developed new insights into the geom-
etry of the Ricci flow which has led to a solution of long-standing mathe-
matical conjectures on the structure of 3-manifolds, namely the Thurston
Geometrization Conjecture [12], and hence the Poincaré Conjecture.

Basic Properties of the Ricci Flow.
In charts where the coordinate functions are locally defined harmonic
functions in the metric g(t), (2) takes the form

%gz’j = Agij + Qij(g, 99),

where A is the Laplace operator on functions with respect to the metric
g = ¢(t) and @ is a lower order term quadratic in g and its first order
partial derivatives. This is a nonlinear heat-type equation for g;; and leads
to the existence and uniqueness of solutions to the Ricci flow on some time
interval starting at any smooth initial metric. This is the reason for the
minus sign in (2); a plus sign gives a backwards heat-type equation, which
has no solutions in general.

The flow (2) gives a natural method to try to construct canonical metrics
on the manifold M. Stationary points of the flow (2) are Ricci-flat metrics,
while stationary points of the flow (1) are (Riemannian) Einstein metrics,
where Ricy, = %g, with R the scalar curvature of g. One of Hamilton’s mo-
tivations for studying the Ricci flow were results on an analogous question
for nonlinear sigma models. Consider maps f between Riemannian mani-
folds M, N with Lagrangian given by the Dirichlet energy. Eells-Sampson
studied the heat equation for this action and proved that when the target
N has non-positive curvature, the flow exists for all time and converges to a
stationary point of the action, i.e. a harmonic map fo : M — N. The idea
is to see if an analogous program can be developed on the space of metrics
M.

There are a number of well-known obstructions to the existence of Einstein
metrics on manifolds, in particular in dimensions 3 and 4. Thus, the Ricci
flow will not exist for all time on a general manifold. Hence, it must develop
singularities. A fundamental issue is to try to relate the structure of the
singularities of the flow with the topology of the underlying manifold M.

A few simple qualitative features of the Ricci flow (2) are as follows: if
Ric(z,t) > 0, then the flow contracts the metric g(¢) near z, to the future,
while if Ric(z,t) < 0, then the flow expands ¢(¢) near z. At a general
point, there will be directions of positive and negative Ricci curvature, along
which the metric locally contracts or expands. The flow preserves product
structures of metrics, and preserves the isometry group of the initial metric.
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The form of (2) shows that the Ricci flow continues as long as Ricci
curvature remains bounded. On a bounded time interval where Ricy is
bounded, the metrics g(t) are quasi-isometric, i.e. have bounded distortion
compared with the initial metric g(0). Thus, one needs to consider evolution
equations for the curvature, induced by the flow for the metric. The simplest
of these is the evolution equation for the scalar curvature R:

d
(3) GR=ARS 2| Ric|?.
Evaluating (3) at a point realizing the minimum R,,;, of R on M shows that
Ryin is monotone non-decreasing along the flow. In particular, the Ricci

flow preserves positive scalar curvature. Moreover, if R,,;,(0) > 0, then

n
4 1< ——.
( ) - 2Rmm(0)
Thus, the Ricci flow exists only up to a maximal time 7" < n/2R;(0)
when R,,;,(0) > 0. In contrast, in regions where the Ricci curvature stays
negative definite, the flow exists for infinite time.

The evolution of the Ricci curvature has the same general form as (3):

(5) %sz = AR;j + Qij.
The expression for @ is much more complicated than the Ricci curvature
term in (3) but involves only quadratic expressions in the curvature. How-
ever, @ involves the full Riemann curvature tensor Riem of g, and not just
the Ricci curvature, (as (3) involves Ricci and not just scalar curvature). An
important feature of dimension 3 is that the full Riemann curvature Riem
is determined algebraically by the Ricci curvature. So the Ricci flow has a
much better chance of “working” in dimension 3. For example, an analysis
of @ shows that the Ricci flow preserves positive Ricci curvature in dimen-
sion 3; if Ricgy > 0, then Ricyy) > 0, for ¢ > 0. This is not the case in
higher dimensions. On the other hand, in any dimension > 2, the Ricci flow
does not preserve negative Ricci curvature, or even a general lower bound
Ric > —), for A > 0. For the remainder of the article, we usually assume
then that dimM = 3.

The first basic result on the Ricci flow is the following, due to Hamilton
[5].

e Space-form Theorem. If g(0) is a metric of positive Ricci curvature on
a 3-manifold M, then the volume normalized Ricci flow exists for all time,
and converges to the round metric on $3/T', where T is a finite subgroup of
SO(4), acting freely on S3.

Thus the Ricci flow “geometrizes” 3-manifolds of positive Ricci curvature.

There are two further important structural results on the Ricci flow.
e Curvature pinching estimate, [7], [8]. For g(t) a solution to the Ricci flow
on a closed 3-manifold M, there is a non-increasing function ¢ : (—o0, 00) —



4

R, tending to 0 at oo, and a constant C, depending only on g(0), such that,
(6) Riem(z,t) > —C — ¢(R(z,1)) - |R(z,1)].

This estimate does not imply a lower bound on Riem(z,t) uniform in time.
However, when combined with the fact that the scalar curvature R(z,t)
is uniformly bounded below, (cf. (3)), it implies that |Riem|(z,t) >> 1
only where R(z,t) >> 1. To control the size of |Riem/|, it thus suffices
to obtain just an upper bound on R. This is remarkable, since the scalar
curvature is a much weaker invariant of the metric than the full curvature.
Moreover, at points where the curvature is sufficiently large, (6) shows that
Riem(z,t)/R(x,t) > —6, for 6 small. Thus, if one scales the metric to make
R(z,t) = 1, then Riem(z,t) > —6. In such a scale, the metric then has
almost non-negative curvature near (z,t).

e Harnack estimate, [6]. Let (N, g(t)) be a solution to the Ricci flow
with bounded and non-negative curvature Riem > 0, and suppose ¢(t) is a
complete Riemannian metric on N. Then for 0 < ¢; < 9,

(_ dgl (',L‘la IQ)
2(to — t1)
where d;, is the distance function on (M, g, ). This allows one to control

the geometry of the solution at different space-time points, given control at
an initial point.

t
(7) R(za,t2) > -~ exp

) R(z1,t1),
to

Singularity Formation.

The deeper analysis of the Ricci flow is concerned with the singularities
that arise in finite time. Equation (3) shows that the Ricci flow will not exist
for arbitrarily long time in general. In the case of initial metrics with positive
Ricci curvature, this is resolved by rescaling the Ricci flow to constant vol-
ume. However, the general situation is necessarily much more complicated.
For example, any manifold which is a connected sum of $3/T" or $? x §*
factors has metrics of positive scalar curvature. For obvious topological rea-
sons, the volume normalized Ricci flow then cannot converge nicely to a
round metric; even the renormalized flow must develop singularities.

The usual method to understand the structure of singularities, partic-
ularly in geometric PDE’s, is to rescale or renormalize the solution on a
sequence converging to the singularity to make the solution bounded, and
try to pass to a limit of the renormalization. Such a limit solution models
the singularity formation, and one hopes (or expects), that the singularity
models have special features making them much simpler than an arbitrary
solution of the flow.

A singularity forms for the Ricci flow only where the curvature becomes
unbounded. Suppose then that A\? = |Riem|(z;,t;) — oo, on a sequence of
points z; € M, and times t; — T < co. Consider the rescaled or blow-up
metrics and times

(8) gi(ti) = N¢ig(t), =Nt —t:),
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where ¢; are diffeomorphisms giving local dilations of the manifold near z;
by the factor A;.

The flow g; is also a solution of the Ricci flow, and has bounded curvature
at (x;,0). For suitable choices of z; and t;, the curvature will be bounded
near z;, and for nearby times to the past, ¢; < 0; for example one might
choose points (z;,t;) where the curvature is maximal on (M, g(t)), t < t;.

The rescaling (8) expands all distances by the factor A;, and time by the
factor A\2. Thus, in effect one is studying very small regions, of spatial size
on the order of r; = /\;1 about (z;,t;), and “using a microscope” to examine
the small-scale features in this region on a scale of size about 1.

A limit solution of the Ricci flow, defined at least locally in space and
time, will exist provided that the local volumes of the rescalings are bounded
below, (Gromov compactness). In terms of the original unscaled flow, this
requires that the metric g(¢) should not be locally collapsed on the scale of
its curvature, i.e.

(9) vol By, (ri, t;) > vry,

for some fixed but arbitrary v > 0. A maximal connected limit (N, (%), )
containing the base point z = limz;, is then called a singularity model.
Observe that the topology of the limit N may well be distinct from the
original manifold M, most of which may have been blown off to infinity in
the rescaling.

To see the potential usefulness of this process, suppose one does have local
noncollapse on the scale of the curvature, and that base points of maximal
curvature in space and time ¢ < ¢; have been chosen. At least in a subse-
quence, one then obtains a limit solution to the Ricci flow (N, g(t), z), based
at z, defined at least for times (—oo,0], with g(¢) a complete Riemannian
metric on N. Such solutions are called ancient solutions of the Ricci flow.
The estimate (6) shows that the limit has non-negative curvature in dimen-
sion 3, and so (7) holds on N. Thus the limit is indeed quite special. The
topology of complete manifolds N of non-negative curvature is completely
understood in dimension 3. If N is non-compact, then N is diffeomorphic
to R?, S? x R or a quotient of these spaces. If N is compact, then a slightly
stronger form of the space-form theorem implies N is diffeomorphic to S3/T,
S% x St or 8% xz, St

The study of the formation of singularities in the Ricci flow was initiated
by Hamilton in [7]. Recently, Perelman has obtained an essentially com-
plete understanding of the singularity behavior of the Ricci flow, at least in
dimension 3.

Perelman’s Work.
I. Non-Collapse. Consider the Einstein-Hilbert action

(10) R(g) = /M R(g)dV,,
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as a functional on Ml Critical points of R are Ricci-flat metrics. It is natural

and tempting to try to relate the Ricci flow with the gradient flow of R, (with

respect to a natural L? metric on the space M). However, it has long been

recognized that this cannot be done directly. In fact, the gradient flow of R

does not even exist, since it implies a backwards heat-type equation for the

scalar curvature R, (similar to (3) but with a minus sign before A).
Consider however the following functional extending R,

(11) Flg,f) = /M<R VP av,

as a functional on the larger space M x C*°(M,R), or equivalently a family
of functionals on M, parametrized by C*°(M,R). The functional (11) also
arises in string theory as the low energy effective action; the scalar field f
is called the dilaton. Fix any smooth measure dm on M and define the
Perelman coupling by requiring that (g, f) satisfy

(12) e~1dv, = dm.

The resulting functional

(13) Fg, f) = /M<R+ IV f[?)dm,

becomes a functional on M. (This coupling does not appear to have been
considered in string theory). The L? gradient flow of F™ is given simply by
dg

(14) dt

—2(Ricz + D*f),

where D2 is the Hessian of f with respect to §. The evolution equation (14)
for g is just the Ricci flow (2) modified by an infinitesimal diffeomorphism:
D%f = (d/dt)(¢}g), where (d/dt)¢: = Vf. Thus, the gradient flow of F™ is
the Ricci flow, up to diffeomorphisms. The evolution equation for the scalar
field f,

(15) fi=—-Af-R

is a backward heat equation, (balancing the forward evolution of the volume
form of g(¢)). Thus, this flow will not exist for general f, going forward in
t. However, one of the basic points of view is to let the (pure) Ricci flow
(2) flow for a time ty > 0. At tg, one may then take an arbitrary f = f(to)
and flow this f backward in time (7 = ty — ¢) to obtain an initial value
f(0) for f. The choice of f(ty) determines, together with the choice of
volume form of g(0)), (or g(tp)), the measure dm and so the choice of F™.
The process of passing from F to F™ corresponds to a reduction of the
symmetry group of all diffeomorphisms D of F to the group Dy of volume
preserving diffeomorphisms; the quotient space D/Dy has been decoupled
into a space C°°(M,R) of parameters.
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The functionals F™ are not scale-invariant. To achieve scale-invariance,
Perelman includes an explicit insertion of the scale parameter, related to
time, by setting

16) W fir) = / (VA2 + R) + f — n)(dnr) 5 elav,

with coupling so that dm = (47r7')_%e_f dV is fixed. The entropy functional
W is invariant under simultaneous rescaling of 7 and g, and 7 = —1. Again
the gradient flow of W is the Ricci flow modulo diffeomorphisms and rescal-
ings and the stationary points of the gradient flow are the gradient Ricci
solitons,

1
Ricy + D*f — 5-9=0,
T
for which the metrics evolve by diffeomorphisms and rescalings. Gradient
solitons arise naturally as singularity models, due to the rescalings and dif-

feomorphisms in the blow-up procedure (8). An important example is the
cigar soliton on R? x R, (or R? x S!),

(17) g=1+7r?)"gpuq + ds>.

Perelman then uses the scalar field f to probe the geometry of g(t). For
instance, the collapse or noncollapse of the metric g(¢) near a point z €
M can be detected from the size of W(g(t)) by choosing e~/ to be an
approximation to a delta function centered at (x,¢). The more collapsed
g(t) is near z, the more negative the value of W(g(t)). The collapse of the
metric g(¢) on any scale in finite time is then ruled out by combining this
with the fact that the entropy functional W is increasing along the Ricci
flow.

Much more detailed information can be obtained by studying the path
integral associated to the evolution equation (15) for f, given by

L) = / VA + R(y(r))ldr,
i

where R and |¥(7)| are computed with respect to the evolving metrics g(7).
In particular, the study of the geodesics and the associated variational theory
of the length functional £ are important in understanding the geometry of
the Ricci flow near the singularities.

II. Singularity Models.

A major accomplishment of [9] is essentially a classification of all complete
singularity models (IV, g(t)) that arise in finite time. In the simple case where
N is compact, then as noted above, N is diffeomorphic to S3/T", §% x S! or
52 XZo S L

In the much more important case where N is complete and non-compact,
Perelman proves that the geometry of NV near infinity is that of a union of
e-necks. Thus, at time 0, and at points z with r(z) = dist(z,z) >> 1,
for a fixed base point g, a region of radius e~! about z, in the scale where
R(z) = 1, is e-close to such a region in the standard round product metric
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on S? x R; € may be made arbitrarily small by choosing r(z) sufficiently
large. For example, this shows that the cigar soliton (17) cannot arise as a
singularity model. Moreover, this structure also holds on a time interval on
the order of €' to the past, so that on such regions the solution is close to
the (backwards) evolving Ricci flow on 5% x R.

Perelman shows that this structural result for the singularity models
themselves also holds for the solution g(t) very near any singularity time
T. Thus, at any base point (z,t) where the curvature is sufficiently large,
the rescaling as in (8) of the space-time by the curvature is smoothly close,
on large compact domains, to corresponding large domains in a complete
singularity model. The “ideal” complete singularity models do actually de-
scribe the geometry and topology near any singularity. Consequently, one
has a detailed understanding of the small scale geometry and topology in a
neighborhood of every point where the curvature is large on (M, g(t)), for ¢
near T

The main consequence of this analysis is the existence of canonical, al-
most round 2-spheres $? in any region of (M, g(t)) where the curvature is
sufficiently large; the radius of the $?’s is on the order of the curvature ra-
dius. One then disconnects the manifold M into pieces, by cutting M along
a judicious choice of such 2-spheres, and glueing in round 3-balls in a natural
way. This surgery process allows one to excise out the regions of (M, g(t))
where the Ricci flow is almost singular, and thus leads to a naturally defined
Ricci flow with surgery, valid for all times ¢ € [0, c0).

The surgery process disconnects the original connected 3-manifold M into
a collection of disjoint (connected) 3-manifolds M;, with the Ricci flow run-
ning on each. However, topologically, there is a canonical relation between
M and the components M;; M is the connected sum of {M;}. An analysis
of the long-time behavior of the volume normalized Ricci flow confirms the
expectation that the flow approaches a fixed point, i.e. an Einstein metric,
or collapses along 3-manifolds admitting an S' fibration. This then leads
to the proof of Thurston’s Geometrization Conjecture for 3-manifolds and
consequently the proof of the Poincaré Conjecture. It gives a full classifica-
tion of all closed 3-manifolds, much like the classification of surfaces given
by the classical uniformization theorem.
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