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Introduction
The classification of closed surfaces is a milestone
in the development of topology, so much so that
it is now taught to most mathematics undergrad-
uates as an introduction to topology. Since the so-
lution of the uniformization problem for surfaces
by Poincaré and Koebe, this topological classifica-
tion is now best understood in terms of the
geometrization of 2-manifolds: every closed surface
Σ admits a metric of constant Gauss curvature +1,
0, or −1 and so is uniformized by one of the stan-
dard space-form geometries S2, R2, H2. Hence any
surface Σ is a quotient of either the 2-sphere, the
Euclidean plane, or the hyperbolic disc by a discrete
group Γ acting freely and isometrically.

The classification of higher-dimensional mani-
folds is of course much more difficult. In fact, due
to the complexity of the fundamental group, a
complete classification as in the case of surfaces
is not possible in dimensions ≥ 4. In dimension 3
this argument does not apply, and the full classi-
fication of 3-manifolds has long been a dream of
topologists. As a very special case, this problem in-
cludes the Poincaré Conjecture.

In this article we report on remarkable recent
work of Grisha Perelman [15]-[17], which may well
have solved the classification problem for 3-mani-
folds (in a natural sense). Perelman’s work is cur-
rently under intense investigation and scrutiny by
many groups around the world. At this time, much
of his work has been validated by experts in the area.
Although at the moment it is still too soon to declare
a definitive solution to the problem, Perelman’s ideas
are highly original and of deep insight. Morever, his

results are already being used by others in research
on related topics. These circumstances serve to jus-
tify the writing of an article at this time, which oth-
erwise might be considered premature.

The work of Perelman builds on prior work of
Thurston and Hamilton. In the next two sections
we discuss the Thurston picture of 3-manifolds and
the Ricci flow introduced and analyzed by Hamil-
ton. For additional background, in particular on the
Poincaré Conjecture, see Milnor’s Notices survey [14]
and references therein. For much more detailed
commentary and discussion on Perelman’s work,
see [13].

The Geometrization Conjecture
While the Poincaré Conjecture has existed for about
one hundred years, the remarkable insights of
Thurston in the late 1970s led to the realistic pos-
sibility of understanding and classifying all closed 
3-manifolds in a manner similar to the classifica-
tion of surfaces via the uniformization theorem.

To explain this, we first need to consider what
are the corresponding geometries in 3-dimensions.
In terms of Riemannian geometry, a geometric
structure on a manifold M is a complete, locally ho-
mogeneous Riemannian metric g. Thus, M may be
described as the quotient Γ \G/H, where G is the
isometry group of the universal cover (M̃, g) and
Γ, H are discrete and compact subgroups of the Lie
group G respectively. Thurston showed that there
are eight such simply connected geometries G/H
in dimension 3 which admit compact quotients.1

As in two dimensions, the most important geome-
tries are those of constant curvature: hyperbolic
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geometry H3 of curvature −1, Euclidean geometry
R3 of curvature 0, and spherical geometry S3 of cur-
vature +1. The remaining five geometries are prod-
ucts or twisted products with the 2-dimensional
geometries. Trivial S1 bundles over a surface of
genus g > 1 have H2 ×R geometry, while nontriv-
ial bundles have �SL(2,R) geometry; nontrivial S1

bundles over T 2 have Nil geometry,  while nontrivial
T 2 bundles over S1 have Sol geometry (or Nil or
R3 geometry); finally, S1 bundles over S2 have
S2 ×R (or S3) geometry. For example, any Seifert
fibered 3-manifold, a 3-manifold admitting a locally
free S1 action, has such a geometric structure.

Geometric 3-manifolds, that is 3-manifolds ad-
mitting a geometric structure, are the building
blocks of more complicated 3-manifolds. For sim-
plicity, we assume throughout the article that all
manifolds M are orientable. The building blocks are
then assembled along 2-spheres S2, via connected
sum, and along tori T 2. As a simple example of such
an assembly, let {Mi} be a finite collection of Seifert
fibered 3-manifolds over surfaces Σi with non-
empty boundary, so that ∂Mi consists of tori. These
tori may then be glued together pairwise by dif-
feomorphisms to obtain a closed 3-manifold or a
3-manifold with toral boundary. A 3-manifold as-
sembled in this way is called a graph manifold. (One
assigns a vertex to each Seifert fibered space and
an edge to each torus connecting two such Seifert
spaces). A torus bundle over S1 is a graph mani-
fold, since it is the union of two Seifert fibered
spaces over S1 × I. Graph manifolds were intro-
duced, and their structure completely analyzed, by
Waldhausen.

Conversely, let M be an arbitrary closed 
3-manifold, as above always orientable. One then
decomposes or splits it into pieces according to 
the structure of the simplest surfaces embedded
in M , namely spheres and tori. Topologically, this
is accomplished by the following classical results
in 3-manifold topology.
Sphere (or Prime) Decomposition (Kneser,
Milnor)
Let M be a closed 3-manifold. Then M admits a 
finite connected sum decomposition

(1) M = (K1#...#Kp)#(L1#...#Lq)#(#r1S2 × S1).

The K and L factors here are closed irreducible
3-manifolds; i.e. every embedded 2-sphere S2

bounds a 3-ball. The K factors have infinite fun-
damental group and are aspherical 3-manifolds
(K(π,1)’s), while the L factors have finite funda-
mental group and have universal cover a homotopy
3-sphere. Since M#S3 =M , we assume no L factor
is S3 unless M = L = S3. The factors in (1) are then
unique up to permutation and are obtained from
M by performing surgery on a collection of essen-
tial, i.e. topologically nontrivial, 2-spheres in M

(replacing regions S2 × I by two copies of B3); see
Figure 1 for a schematic representation.

The K factors in (1) may also contain topologi-
cally essential tori. A torus T 2 embedded in M is
called incompressible if the inclusion map induces
an injection on π1. A 3-manifold N is called torus-
irreducible if every embedded incompressible torus
may be deformed to a torus in ∂N. Hence, if
∂N = ∅ , then N has no incompressible tori.
Torus Decomposition (Jaco-Shalen, Johannsen)

Let M be a closed, irreducible 3-manifold. Then
there is a finite collection, possibly empty, of dis-
joint incompressible tori in M that separate M into
a finite collection of compact 3-manifolds (with
toral boundary), each of which is torus-irreducible
or Seifert fibered. 

A coarser, but essentially equivalent, decompo-
sition is given by tori separating M into torus-ir-
reducible and graph manifold components; see
Figure 2.

With the simple exceptions of S2 × S1 and its ori-
ented Z2 quotient S2 ×Z2 S1 � RP3#RP3, essential
2-spheres are obstructions to the existence of a geo-
metric structure on a 3-manifold. The same is true
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Figure 1. Sphere decomposition.

Figure 2. Torus decomposition, (Si Siefert fibered, Hj torus-
irreducible).
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for essential tori, unless M happens to be a Seifert
fibered or a Sol 3-manifold. Thus, the sphere and
torus decompositions divide M topologically into
pieces where these known obstructions are re-
moved.

Geometrization Conjecture (Thurston). Let M be
a closed, oriented 3-manifold. Then each component
of the sphere and torus decomposition admits a
geometric structure.

The geometrization conjecture gives a complete
and effective classification of all closed 3-manifolds,
closely resembling in many respects the classifi-
cation of surfaces. More precisely, it reduces the
classification to that of geometric 3-manifolds.
The classification of geometric 3-manifolds is rather
simple and completely understood, except for the
case of hyperbolic 3-manifolds, which remains an
active area of research.

As an illustration of the power of the Thurston
Conjecture, let us see how it implies the Poincaré
Conjecture. If M is a simply connected 3-manifold,
then the sphere decomposition (1) implies that M
must be an L factor. The geometrization conjecture
implies that L is geometric, and so L = S3/Γ. Hence,
M = L = S3.

Thurston’s formulation and work on the
geometrization conjecture revolutionized the field
of 3-manifold topology; see [18], [19] and further
references therein. He recognized that in the class
of all (irreducible) 3-manifolds, hyperbolic 3-man-
ifolds are overwhelmingly the most prevalent, as
is the case with surfaces, and developed a vast
array of new ideas and methods to understand the
structure of 3-manifolds. Thurston and a number
of other researchers proved the geometrization
conjecture in several important cases, the most
celebrated being the Haken manifold theorem: if M
is an irreducible Haken 3-manifold, i.e. M contains
an incompressible surface of genus ≥ 1, then the
geometrization conjecture is true for M .

An important ingredient in the Thurston ap-
proach is the deformation and degeneration of 
hyperbolic structures on noncompact manifolds (or
the deformation of singular hyperbolic structures
on compact manifolds). The eight geometric struc-
tures are rigid in that there are no geometries
which interpolate continuously between them.
Hence, on a composite 3-manifold M , the geomet-
ric structure on each piece must degenerate in
passing from one piece to the next; there is no sin-
gle structure or metric giving the geometrization
of all of M . For example, in Figure 2 the H pieces
may be hyperbolic 3-manifolds separated by tori
from Seifert fibered pieces S . Although this split-
ting is topologically well defined, the geometries
do not match in the glueing region, and metrically
there is no natural region in which to perform the
glueing.

Independently and around the same time as
Thurston, Gromov [6], [7] also studied the defor-
mation and degeneration of more general Rie-
mannian metrics with merely bounded curvature
in place of constant curvature. The idea is that 
one can control the behavior of a metric, or of a
family of metrics, given a uniform bound on the
Riemann curvature tensor Riem of the metric.2

This leads to the important Gromov compactness
theorem, the structure theory of almost flat man-
ifolds, and the theory of collapsing Riemannian
manifolds, worked out in detail with Cheeger and
Fukaya.

One version of these results is especially rele-
vant for our purposes. Let (M,g) be a closed 
Riemannian manifold, normalized to unit volume,
and suppose

(2) |Riem| ≤ Λ,
for some arbitrary constant Λ <∞. The metric g
provides a natural decomposition of M into thick
and thin parts, M =Mν ∪Mν , where

Mν = {x ∈M : volBx(1) ≥ ν},(3)

Mν = {x ∈M : volBx(1) < ν};
here Bx(1) is the geodesic ball about x of radius 1 and
ν > 0 is an arbitrary but fixed small number. Now
consider the class of all Riemannian n-manifolds of
unit volume satisfying (2), and consider the corre-
sponding decompositions (3). Then the geometry 
and topology of Mν is a priori controlled. For any given
ν > 0, there are only a finite number, (depending on
Λ and ν), of possible topological types for Mν.  More-
over, the space of metrics on Mν is compact in a nat-
ural sense; any sequence has a subsequence con-
verging in the C1,α topology, α < 1 (modulo
diffeomorphisms). For ν sufficiently small, the com-
plementary thin part Mν admits an F-structure in the
sense of Cheeger-Gromov; in dimension 3 this just
means that Mν is a graph manifold with toral (or empty)
boundary. In particular, the topology of Mν is strongly
restricted. A metric on Mν is highly collapsed in the
sense that the circles in the Seifert fibered pieces of
Mν and the tori glueing these pieces together have
very small diameter, depending on ν; see Figure 3 for
a schematic picture. Moreover, for any fixed ν > 0,
the distance between Mνand the arbitrarily thin part
Mν′ becomes arbitrarily large as ν′/ν → 0.

We point out that similar results hold locally and
for complete noncompact manifolds; thus the unit
volume normalization above is not essential.

2The curvature tensor is a complicated (3,1) tensor 
expressed in terms of the second derivatives of the 
metric; in a local geodesic normal coordinate system 
at a given point, the components of Riem are given by
Rlijk = − 1

2 (∂i∂kgjl + ∂j∂lgik − ∂j∂kgil − ∂i∂lgjk).
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The Thurston approach to geometrization has
made a great deal of progress on the “hyperbolic
part” of the conjecture. In comparison with this, 
relatively little progress has been made on the
“positive curvature part” of the conjecture, for 
example the Poincaré Conjecture. It is worth 
pointing out that among the eight geometries, the
constant curvature geometries H3 and S3 are by far
the most important to understand (in terms of
characterizing which manifolds are geometric); 
the other (mixed) geometries are much simpler in
comparison.

From the point of view of Riemannian geome-
try, the Thurston conjecture essentially asserts the
existence of a “best possible” metric on an arbitrary
closed 3-manifold. In the case that M is not itself
geometric, one must allow the optimal metric to
have degenerate regions. The discussion and fig-
ures above suggest that the degeneration should
be via the pinching off of 2-spheres (sphere de-
composition) and collapse of graph manifolds along
circles and tori (torus decomposition).

The Ricci Flow
One method to find a best metric on a manifold is
to find a natural evolution equation, described by
a vector field on the space of metrics, and try to
prove that the flow lines exist for all time and con-
verge to a geometric limit. In case a flow line does
not converge, the corresponding metrics degener-
ate, and one then needs to relate the degeneration
with the topology of M .

There is essentially only one simple and natural
vector field (or more precisely family of vector
fields) on the space of metrics. It is given by

(4)
d
dt
g(t) = −2Ricg(t) + λ(t) · g(t).

Here Ric is the Ricci curvature, given in local co-
ordinates by Rij = (Ric)ij =

∑
k Rkikj , so that Ric is

a trace of the Riemann curvature. The constant 2
is just for convenience and could be changed by
rescaling the time parameter; λ(t) is a constant de-
pending on time t . The Ricci flow, introduced by
Hamilton [11], is obtained by setting λ = 0, i.e.

(5)
d
dt
g(t) = −2Ricg(t).

The reason (4) is the only natural flow equation is
essentially the same as that leading to the Einstein
field equations in general relativity. The Ricci 
curvature is a symmetric bilinear form, as is the
metric. Besides multiples of the metric itself, it is
the only such form depending on at most the 
second derivatives of the metric, and invariant
under coordinate changes, i.e. a (2,0) tensor 
formed from the metric. By rescaling the metric and
time variable t , one may transform (5) into (4). For

example, rescaling the Ricci flow (5) so that the 
volume of (M,g(t)) is preserved leads to the flow
equation (4) with λ = 2

∫
� R, twice the mean value

of the scalar curvature R.
In a suitable local coordinate system, equation

(5) has a very natural form. Thus, at time t , choose
local harmonic coordinates so that the coordinate
functions are locally defined harmonic functions
in the metric g(t). Then (5) takes the form

(6)
d
dt
gij = ∆gij +Qij (g, ∂g),

where ∆ is the Laplace-Beltrami operator on func-
tions with respect to the metric g = g(t) and Q is
a lower-order term quadratic in g and its first-
order partial derivatives. This is a nonlinear 
heat-type equation for gij. From the analysis of
such PDE, one obtains existence and uniqueness of
solutions to the Ricci flow on some time interval,
starting at any smooth initial metric. This is the 
reason for the minus sign in (5); a plus sign leads
to a backwards heat-type equation, which has no
solutions in general.

Here are a few simple examples of explicit so-
lutions to the Ricci flow. If the initial metric g(0) is
of constant Ricci curvature, Ric = a · g, then the
evolution g(t) is just a rescaling of g(0):
g(t) = (1− 2at)g(0) . Note that if a > 0, then the
flow contracts the metric, while if a < 0, the flow
expands the metric, uniformly in all directions.
Hence, if one rescales g(t) to have constant volume,
the resulting curve is constant. The stationary
points of the volume-normalized Ricci flow are ex-
actly the class of Einstein metrics, i.e. metrics of
constant Ricci curvature. In dimension 3, Einstein
metrics are of constant curvature and so give the
H3, R3 and S3 geometries.

More generally, if Ric(x, t) > 0, then the flow
contracts the metric g(t) near x , to the future,
while if Ric(x, t) < 0, then the flow expands g(t)
near x. At a general point, there will be directions
of positive and negative Ricci curvature along which
the metric will locally contract or expand.

Suppose g(0) is a product metric on S1 × Σ ,
where Σ is a surface with constant curvature met-
ric. Then g(t) remains a product metric, where the
length of the S1 factor stays constant while the sur-
face factor expands or contracts according to the
sign of its curvature.

M ν

Mν

Mν

M ν

Figure 3. Thick-thin decomposition.
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Finally, the Ricci flow commutes with the action
of the diffeomorphism group and so preserves all
isometries of an initial metric. Thus, geometric 3-
manifolds remain geometric. For the “nonpositive”
mixed geometries H2 ×R , �SL(2, R), Nil , Sol , the
volume-normalized Ricci flow contracts the S1 or
T 2 fibers and expands the base surface factor,
while for the positive mixed geometry S2 ×R , the
volume-normalized flow contracts the S2 and 
expands in the R -factor.

Now consider the Ricci flow equation (5) in gen-
eral. From its form it is clear that the flow g(t) will
continue to exist if and only if the Ricci curvature
remains bounded. This suggests one should con-
sider evolution equations for the curvature, in-
duced by the flow for the metric. The simplest of
these is the evolution equation for the scalar 
curvature R = trgRic = gijRij :

(7)
d
dt
R = ∆R + 2|Ric|2.

Evaluating (7) at a point realizing the minimum Rmin
of R on M gives the important fact that Rmin is 
monotone nondecreasing along the flow. In par-
ticular, the Ricci flow preserves positive scalar cur-
vature (in all dimensions). Moreover, if Rmin(0) > 0,
then the same argument gives ddt Rmin ≥ 2

nR
2
min ,

n = dimM , by the Cauchy-Schwarz inequality
|Ric|2 ≥ 1

nR
2 . A simple integration then implies

(8) t ≤ n
2Rmin(0)

.

Thus, the Ricci flow exists only up to a maximal time
T ≤ n/2Rmin(0) when Rmin(0) > 0. In contrast, in 
regions where the Ricci curvature stays negative 
definite, the flow exists for infinite time.

The evolution of the Ricci curvature has the
same general form as (7):

(9)
d
dt
Rij = ∆Rij + Q̃ij .

The expression for Q̃ is much more complicated
than the Ricci curvature term in (7) but involves only
quadratic expressions in the curvature. However,
Q̃ involves the full Riemann curvature tensor Riem
of g and not just the Ricci curvature (as (7) in-
volves Ricci curvature and not just scalar curvature).
An elementary but important feature of dimen-
sion 3 is that the full Riemann curvature Riem is
determined algebraically by the Ricci curvature.
This implies that, in general, Ricci flow has a much
better chance of “working” in dimension 3. For ex-
ample, an analysis of Q̃ shows that the Ricci flow
preserves positive Ricci curvature in dimension 3:
if Ricg(0) > 0, then Ricg(t) > 0, for t > 0. This is not
the case in higher dimensions. On the other hand,
in any dimension > 2, the Ricci flow does not pre-
serve negative Ricci curvature, nor does it preserve

a general lower bound Ric ≥ −λ, for λ > 0. For the
remainder of the paper, we assume then that
dimM = 3.

In the Gromov compactness result and thick/thin
decomposition (3), the hypothesis of a bound on
|Riem| can now also be replaced by a bound on
|Ric| (since we are in dimension 3). Further, on time
intervals [0, t] where |Ric| is bounded, the metrics
g(t) are all quasi-isometric to each other:
cg(0) ≤ g(t) ≤ Cg(0) as bilinear forms, where c, C
depend on t . Hence, the arbitrarily thin region Mν,
ν << 1, can only arise, under bounds on |Ric|, in
arbitrarily large times.

The discussion above shows that the Ricci flow
is very natural and has many interesting proper-
ties. One can see some relations emerging with the
Thurston picture for 3-manifolds. However, the
first real indication that the flow is an important
new tool in attacking geometric problems is the 
following result of Hamilton:

• Space-form Theorem [8]. If g(0) is a metric of
positive Ricci curvature on a 3-manifold M , then
the volume-normalized Ricci flow exists for all
time and converges to the round metric on S3/Γ,
where Γ is a finite subgroup of SO(4) acting freely
on S3.

Thus the Ricci flow “geometrizes” 3-manifolds
of positive Ricci curvature. Since this ground-
breaking result, it has been an open question
whether it can be generalized to initial metrics
with positive scalar curvature.

Although the evolution of the curvature along
the Ricci flow is very complicated for general ini-
tial metrics, a detailed analysis of (9) leads to the
following important results:

• Curvature pinching estimate [10], [12]. Let g(t)
be a solution to the Ricci flow on a closed
3-manifold M . Then there is a nonincreasing func-
tion φ : (−∞,∞) → R, tending to 0 at ∞, and a con-
stant C, depending only on g(0), such that

(10) Riem(x, t) ≥ −C −φ(R(x, t)) · |R(x, t)|.
This statement means that all the sectional curva-
tures Rijji of g(t), where ei is any orthonormal
basis at (x, t) , are bounded below by the right side
of (10).

This estimate does not imply a lower bound on
Riem(x, t) uniform in time. However, when com-
bined with the fact that the scalar curvature R(x, t)
is uniformly bounded below, it implies that
|Riem|(x, t) >> 1 only where R(x, t) >> 1. Hence,
to control the size |Riem| of the full curvature, it
suffices to obtain just an upper bound on the scalar
curvature R. This is remarkable, since the scalar 
curvature is a much weaker invariant of the 
metric than the full curvature. Moreover, at points
where the curvature is sufficiently large, (10) shows
that Riem(x, t)/R(x, t) ≥ −δ , for δ small. Thus, 
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if one scales the metric to make R(x, t) = 1, then
Riem(x, t) ≥ −δ . In such a scale, the metric then
has almost nonnegative curvature near (x, t) .

• Harnack estimate [9]. Let (N,g(t)) be a solution
to the Ricci flow with bounded and nonnegative cur-
vature Riem ≥ 0, and suppose g(t) is a complete
Riemannian metric on N. Then for 0 < t1 ≤ t2 ,

(11) R(x2, t2) ≥ t1
t2

exp

(
−d

2
t1 (x1, x2)

2(t2 − t1)

)
R(x1, t1),

where dt1 is the distance function on (M,gt1 ). This
estimate allows one to relate or control the geom-
etry of the solution at different space-time points.

An estimate analogous to (11) in general, i.e.
without the assumption Riem ≥ 0, has been one of
the major obstacles to further progress in the Ricci
flow.

The analysis above shows that the Ricci flow
tends to favor positive curvature. The flow tends
to evolve to make the curvature more positive, and
the strongest results have been proved in the case
of positive curvature, somewhat in contrast to the
Thurston approach.

Singularity Formation
The deeper analysis of the Ricci flow is concerned
with the singularities that arise in finite time. As
(8) already shows, the Ricci flow will not exist for
an arbitrarily long time in general. In the case of
initial metrics with positive Ricci curvature, this is
resolved by rescaling the Ricci flow to constant
volume. Hamilton’s space-form theorem shows
that the volume-normalized flow exists for all 
time and converges smoothly to a round metric.
However, the situation is necessarily much more
complicated outside the class of positive Ricci 
curvature metrics. Consider for instance initial
metrics of positive scalar curvature. Any manifold
which is a connected sum of S3/Γ and S2 × S1

factors has metrics of positive scalar curvature
(compare with the sphere decomposition (1)).
Hence, for obvious topological reasons, the 
volume-normalized Ricci flow could not converge
nicely to a round metric; even the renormalized 
flow must develop singularities.

Singularities occur frequently in numerous
classes of nonlinear PDEs and have been exten-
sively studied for many decades. Especially in geo-
metric contexts, the usual method to understand
the structure of singularities is to rescale or renor-
malize the solution on a sequence converging to
the singularity to make the solution bounded and
try to pass to a limit of the renormalization. Such
a limit solution serves as a model for the singularity,
and one hopes (or expects) that the singularity
models have special features making them much
simpler than an arbitrary solution of the equation.

A singularity can form for the Ricci flow 
only where the curvature becomes unbounded. 
Suppose then that one has λ2

i = |Riem|(xi, ti) →∞,
on a sequence of points xi ∈M ,  and times
ti → T <∞. It is then natural to consider the
rescaled metrics and times

(12) ḡi(t̄i) = λ2
i g(t), t̄i = λ2

i (t − ti).
The metrics ḡi are also solutions of the Ricci flow
and have bounded curvature at (xi,0). For suitable
choices of xi and ti , the curvature will be bounded
near xi, and for nearby times to the past, t̄i ≤ 0; for
example, one might choose points where the 
curvature is maximal on (M,g(t)), 0 ≤ t ≤ ti .

The rescaling (12) expands all distances by the
factor λi and time by the factor λ2

i . Thus, in effect
one is studying very small regions, of spatial size
on the order of ri = λ−1

i about (xi, ti), and “using a
microscope” to examine the small-scale features in
this region on a scale of size about 1. Implicit in
this analysis is a change of coordinates near xi , i.e.
use of local diffeomorphisms in conjunction with
the metric rescaling.

A local version of the Gromov compactness 
theorem will then allow one to pass to a limit 
solution of the Ricci flow, at least locally defined
in space and time, provided that the local volumes
of the rescalings are bounded below; more explic-
itly, one needs xi ∈Mν (ḡi(t̄i)), for some fixed ν > 0;
see (3). In terms of the original unscaled flow, 
this means that the metric g(t) should not be 
locally collapsed, on the scale of its curvature, i.e.

volBxi (ri, ti) ≥ νr3
i .

A maximal connected limit (N, ḡ(t̄), x) containing
the base point x = limxi is then called a singular-
ity model. Observe that the topology of the limit N
may well be distinct from the original manifold M ,
most of which may have been blown off to infin-
ity in the rescaling.

To describe the potential usefulness of this
process, suppose one does have local noncollapse
on the scale of the curvature and that we have cho-
sen points of maximal curvature in space and time
0 ≤ t ≤ ti. One then obtains, at least in a subse-
quence, a limit solution to the Ricci flow (N, ḡ(t̄), x),
based at x, defined at least for times (−∞,0]; more-
over, ḡ(t̄) is a complete Riemannian metric on N.
These are called ancient solutions of the Ricci flow
in Hamilton’s terminology. The estimates in (10) and
(11) can now be used to show that such singular-
ity models do in fact have important features 
making them much simpler than general solutions
of the Ricci flow. As discussed following (10), 
the pinching estimate implies that the limit has 
nonnegative curvature. Moreover, the topology of
complete manifolds N of nonnegative curvature is
completely understood in dimension 3. If N is non-
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compact, then N is diffeomorphic to R3, S2 ×R , or
a quotient of these spaces. If N is compact, then a
slightly stronger form of Hamilton’s theorem above
implies N is diffeomorphic to S3/Γ, S2 × S1 or
S2 ×Z2 S1. Moreover, the Harnack estimate (11)
holds on the limit.

These general features of singularity models
are certainly encouraging. Nevertheless, there are
many problems to overcome to obtain any real
benefit from this picture.

I. One needs to prove noncollapse at the scale
of the curvature to obtain a singularity model.

II. In general, the curvature may blow up at
many different rates or scales, and it is not nearly
sufficient to understand just the structure of the
singularity models at points of (space-time) maxi-
mal curvature. Somewhat analogous phenomena
(usually called bubbling) arise in many other 
geometrical variational problems, for instance 
harmonic maps, Yang-Mills fields, Einstein met-
rics, and others. (In such elliptic contexts, these
problems of multiple scales have been effectively
resolved.)

III. Even if one can solve the two previous issues,
this leaves the main issue. One needs to relate the
structure of the singularities with the topology of
the underlying manifold.

The study of the formation of singularities in the
Ricci flow was initiated by Hamilton in [10]; cf.
also [4] for a recent survey. Although there has been
further technical progress over the last decade,
the essential problems on the existence and struc-
ture of singularity models and their relation with
topology remained unresolved until the appear-
ance of Perelman’s work last year.

Perelman’s Work
Perelman’s recent work [15]-[17] (together with a
less crucial paper still to appear) implies a complete 
solution of the Geometrization Conjecture. This is
accomplished by introducing numerous highly 
original geonetric ideas and techniques to under-
stand the Ricci flow. In particular, Perelman’s work
completely resolves issues I–III above. We proceed
by describing, necessarily very briefly, some of the
highlights.

I. Noncollapse
Consider the Einstein-Hilbert action

(13) R(g) =
∫
M
R(g)dVg

as a functional on the space of Riemannian metrics
M on a manifold M . Critical points of R are Ricci-
flat metrics (Ric = 0). The action may be adjusted,
for instance by adding a cosmological constant −2Λ,
to give an action whose critical points are Einstein

metrics of constant Ricci curvature.3 It is natural to
try to relate the Ricci flow with R; for instance, is
the Ricci flow the gradient flow of R (with respect
to a natural L2 metric on the space M)? However,
while rather close to being true, it has long been rec-
ognized that this is not the case. In fact, the gra-
dient flow of R does not even exist, since it implies
a backwards heat-type equation for the scalar cur-
vature R (similar to (7) but with a minus sign be-
fore ∆).

Consider now the following functional enhanc-
ing R:

(14) F (g, f ) =
∫
M

(R + |∇f |2)e−f dVg.

This is a functional on the larger space
M× C∞(M,R) , or equivalently a family of func-
tionals on M , parametrized by C∞(M,R) .4 Fix any
smooth measure dm on M and define the Perelman
coupling by requiring that (g, f ) satisfy

(15) e−f dVg = dm.
The resulting functional

(16) Fm(g, f ) =
∫
M

(R + |∇f |2)dm

becomes a functional on M . At first sight this may
appear much more complicated than (13); how-
ever, for any g ∈M there exists a large class of
functions f (or measures dm) such that the L2 gra-
dient flow of Fm exists at g and is given simply by

(17)
dg̃
dt

= −2(Ricg̃ +D2f ),

where D2f is the Hessian of f with respect to g̃. The
evolution equation (17) for g̃ is just the Ricci flow
(5) modified by an infinitesimal diffeomorphism:
D2f = (d/dt)(φ∗

t g̃) , where (d/dt)φt = ∇f . Thus,
the gradient flow of Fm is the Ricci flow, up to 
diffeomorphisms. (Different choices of dm
correspond to different choices of diffeomorphism.)
In particular, the functional Fm increases along 
the Ricci flow.

What can one do with this more complicated
functional? It turns out that, given any initial met-
ric g(0) and t > 0, the function f (and hence the
measure dm) can be freely specified at g(t), where
g(t) evolves by the Ricci flow (5). Perelman then uses

3The action (13) leads to the vacuum Einstein field 
equations in general relativity for Lorentz metrics on a 
4-manifold. The term λ(t) in (4) is of course analogous to
the cosmological constant.
4The functional (14) arises in string theory as the low-
energy effective action [5, §6]; the function or scalar field
f is called the dilaton. It is interesting to note in this con-
text that the gravitational field and the dilaton field arise 
simultaneously from the low-energy quantization of the
string world sheet (σ-model) [5, p. 837].
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this freedom to probe the geometry of g(t) with
suitable choices of f. For instance, he shows by a
very simple study of the form of Fm that the col-
lapse or noncollapse of the metric g(t) near a point
x ∈M can be detected from the size of Fm(g(t)) by
choosing e−f to be an approximation to a delta
function centered at x. The more collapsed g(t) is
near x, the more negative the value of Fm(g(t)) . The
collapse of the metric g(t) on any scale in finite 
time is then ruled out by combining this with the
fact that the functional Fm is increasing along the
Ricci flow. In fact, this argument is carried out
with respect to a somewhat more complicated
scale-invariant functional than F; motivated by
certain analogies in statistical physics, Perelman
calls this the entropy functional.

II. Singularity Models
A second highlight of [15] is essentially a classifi-
cation of all complete singularity models (N,g(t))
that arise in finite time. Complete here means the
metric g(0) is a complete Riemannian metric on N;
we also drop the overbar from the notation from
now on. If N is smooth and compact, then it fol-
lows from Hamilton’s space-form theorem that N
is diffeomorphic to S3/Γ, S2 × S1 or S2 ×Z2 S1. In the
more important and difficult case where N is com-
plete and noncompact, Perelman proves that the
geometry of N near infinity is as simple and nat-
ural as possible. At time 0 and at points x with
r (x) = dist(x, x0) � 1, for a fixed base point x0, a
large neighborhood of x in the scale where R(x) = 1
is ε-close to a large neighborhood in the standard
round product metric on S2 ×R . Here ε may be
made arbitrarily small by choosing r (x) sufficiently
large. Such a region is called an ε-neck. Thus the
geometry near infinity in N is that of a union of ε-
necks, where the slowly varying radius of S2 may
either be uniformly bounded or diverge to infinity,
but only at a rate much smaller than r (x) . Moreover,
this structure also holds on a long time interval to
the past of 0, so that on such regions the solution
is close to the (backwards) evolving Ricci flow on
S2 ×R . Topologically, N is diffeomorphic to R3 or
(N,g) is isometric to S2 ×R .

Perelman shows that this structural result for
the singularity models themselves also holds for
the solution g(t) very near any singularity time T.
Thus, at any base point (x, t) where the curvature
is sufficiently large, the rescaling as in (12) of the
space-time by the curvature is smoothly close, on
large compact domains, to corresponding large
domains in a complete singularity model. The
“ideal” complete singularity models do actually
describe the geometry and topology near any sin-
gularity. Consequently, one has a detailed under-
standing of the small-scale geometry and topology
everywhere on (M,g(t)) , for t near T. In particular,

this basically proves a general version of the 
Harnack inequality (11).

These results are of course rather technical, and
the proofs are not simple. However, they are not
exceptionally difficult and mainly rely on new in-
sights and tools to understand the Ricci flow. A key
idea is the use of the noncollapse result above on
all relevant scales.

III. Relation with Topology
The basic point now is the appearance of 2-spheres
S2 near the singularities. Recall from (1) that one
first needs to perform the sphere decomposition
on M before it can be geometrized. There is no
geometry corresponding to the sphere decompo-
sition.5 While the sphere decomposition is the 
simplest operation to carry out topologically, geo-
metrically and analytically it is by far the hardest
to understand. How does one detect 2-spheres in
M on which to perform surgery from the geome-
try of a metric? We now see that such 2-spheres,
embedded in the ε-necks above, arise naturally
near the singularities of the Ricci flow.

The idea then is to surger the 3-manifold M
along the 2-spheres just before the first singular-
ity time T. Figure 4 gives a schematic picture of the
partially singular metric g(T ) on M . The metric
g(T ) is smooth on a maximal domain Ω ⊂M , where
the curvature is locally bounded but is singular, i.e.
ill-defined, on the complement where the curvature
blows up as t → T .

Suppose first that Ω = ∅, so that the curvature
of g(t) blows up everywhere on M as t → T . One
says that the solution to the Ricci flow becomes ex-
tinct at time T. Note that R(x, t) � 1 for all x ∈M
and t near T (by the pinching estimate (10)). Given
the understanding of the singularity models above,

5One might think that the S2 ×R geometry corresponds
to sphere decomposition, but this is not really correct; at
best, this can be made sense of only in an idealized or 
limiting context.

Ω

Ω

Ω

Figure 4. Horns on singular limit.
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it is not difficult to see that M is then diffeomor-
phic to S3/Γ, S2 × S1, or S2 ×Z2 S1. In this situation
we are done, since M is then geometric.

If Ω ≠∅, then the main point is that small neigh-
borhoods of the boundary ∂Ω consist of horns. A
horn is a metric on S2 × [0, δ] where the S2 factor
is approximately round of radius ρ(r ) , with ρ(r )
small and ρ(r )/r → 0 as r → 0. Thus, a horn is a
union of ε-necks assembled on smaller and smaller
scales. The boxed figure in Figure 4 represents a
partially singular metric on the smooth manifold
S2 × I, consisting of a pair of horns joined by a de-
generate metric. At time T there may be infinitely
many components of Ω, of arbitrarily small size,
containing such horns. However, all but finitely
many of these components are doubled horns,
each topologically again of the form S2 × I.

In quantitative terms, there is a small constant
ρ0 > 0 such that if Ω contains no horns with sphere
S2 × {δ} of radius ≥ ρ0 , then, as above when
Ω = ∅, M is diffeomorphic to S3/Γ, S2 × S1, or
S2 ×Z2 S1, and we are done. If there are horns con-
taining a sphere S2 × δ of a definite size ρ0 in Ω,
one then performs a surgery on each such 
horn by truncating it along the S2 of radius ρ0 and
glueing in a smooth 3-ball, giving then a disjoint
collection of 3-manifolds.

Having now disconnected M by surgery on
2-spheres into a finite number of components, one
then continues with the Ricci flow separately on
each component. A conceptually simple, but tech-
nically hard, argument based on the decrease of 
volume associated with each surgery shows that the
surgery times are locally finite: on any finite time
interval there are only many finitely times at which
singularities form.

As a concrete example, suppose the initial met-
ric g(0) on M has positive scalar curvature. Then
the estimate (8) shows that Ricci flow completely
terminates, i.e. becomes extinct, in finite time.
Hence only finitely may surgeries are applied to M
during the Ricci flow and it follows from the work
above that M is diffeomorphic to a finite connected
sum of S3/Γ and S2 × S1 factors. 

The upshot of this procedure is that if one suc-
cessively throws away or ignores such components
which become extinct in finite times (and which have
already been identified topologically), the Ricci
flow with surgery then exists for infinite time [0,∞).
What then does the geometry of the remaining
components {M̂i} of M look like at a sufficiently
large time T0? Here the thick-thin decomposition
of Gromov-Thurston appears. Fix any {M̂} ∈ {M̂i}
and consider the rescaled metric ĝ(t) = t−1g(t) , for
t = T0; it is easy to see from the Ricci flow equation
that vol(M̂, ĝ(t)) is uniformly bounded. For ν suf-
ficiently small, Perelman proves that there is suf-
ficient control on the ν-thick part M̂ν, as defined
in (3), to see that M̂ν is diffeomorphic to a complete

hyperbolic 3-manifold H (with finitely many com-
ponents). The smooth Ricci flow exists on M̂ν for
infinite time, and the rescalings t−1g(t) converge to
the hyperbolic metric of curvature − 1

4 as t →∞.
(Since the Ricci flow exists for all time, it is rea-
sonable to expect that the volume-normalized flow
converges to an Einstein metric, necessarily a hy-
perbolic metric in our situation.) While there is less
control on the ν-thin part M̂ν, there is enough to con-
clude that M̂ν is diffeomorphic to a graph manifold
G (with finitely many components). Although there
may still be infinitely many surgeries required to
continue the Ricci flow for all time, all further surg-
eries take place in M̂ν = G .6

Thus, the original 3-manifold M has been 
decomposed (at large finite time) topologically as

(18) M = (K1#...#Kp)#(#q1S3/Γi)#((#r1S2 × S1).

Perelman has recently shown [17] that the S3/Γ
and S2 × S1 factors necessarily become extinct in
bounded time (with bound depending on the 
initial metric), so that only the K factors exist after
a sufficiently long time. (This result is not needed,
however, for the geometrization conjecture.)

Moreover, each K = Ki decomposes via the
thick/thin decomposition as a union

(19) K = H ∪G,
where H is a complete hyperbolic manifold of fi-
nite volume (possibly disconnected) and G is a
graph manifold (possibly disconnected). The union
of H and G is along a collection of embedded tori.
Perelman uses the proofs in [11] or [1], [2] to con-
clude that each such torus is incompressible in K.

This process gives then both the sphere and
torus decomposition of the manifold M . Although
it is not asserted that the Ricci flow detects the 
further decomposition of G into Seifert fibered
components, this is comparatively elementary from
a topological standpoint. The torus-irreducible
components of K have been identified as hyperbolic
manifolds.

This completes our brief survey of the
geometrization conjecture. Perelman’s work has
created a great deal of excitement in the mathe-
matical research community, as well as in the 
scientifically interested public at large. While at 
the moment further evaluation of the details of 
his work are still being carried out, the beauty and
depth of these new contributions are clear.

I am very grateful to Bruce Kleiner, John Lott,
and Jack Milnor for their many suggestions and
comments, leading to significant improvements in
the paper.

6It is not asserted that the bound (2) holds on M̂ν for all t
large, for some Λ <∞.
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