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Abstract. We introduce a new perspective on the classical Nirenberg problem of understanding
the possible Gauss curvatures of metrics on S2 conformal to the round metric. A key tool is to
employ the smooth Cheeger-Gromov compactness theorem to obtain general and essentially sharp
a priori estimates for Gauss curvatures K contained in naturally defined stable regions. We prove
that in such stable regions, the map u → Kg, g = e2ug+1 is a proper Fredholm map with well-
defined degree on each component. This leads to a number of new existence and non-existence
results. We also present a new proof and generalization of the Moser theorem on Gauss curvatures
of even conformal metrics on S2.

In contrast to previous work, the work here does not use any of the Sobolev-type inequalities of
Trudinger-Moser-Aubin-Onofri.

1. Introduction

In this work, we study the well-known Nirenberg problem: which smooth functions K on S2 are
realized as the Gauss curvature of a metric g on S2 pointwise conformal to the standard round
metric g+1 of radius 1 on S2 ⊂ R3? For g = e2ug+1, the equation for the Gauss curvature K of g is

(1.1) e2uK = 1−∆u.

so that the Nirenberg problem asks to characterize for which K is the nonlinear PDE (1.1) solvable.
It is also of interest to understand the uniqueness or multiplicity of solutions.

Prior work on the Nirenberg problem is based on its variational formulation initiated by Moser
[36]. For any given K consider the functional

(1.2) JK(u) =

∫
S2

(|du|2 + 2u)dv0 − log(

∫
S2

Ke2udv0),

where dv0 is the usual round area form on S2, normalized to unit area. Critical points u of J are
given by solutions of (1.1), (up to constants), i.e. (1.1) is the Euler-Lagrange equation of JK . Moser
in [37] began the analysis of JK based on fundamental Sobolev inequalities due to Trudinger [46]
and Moser [36], leading then to a solution of the existence problem for even functions K on S2.

The functional JK does not satisfy the Palais-Smale Condition C and except in case K = const,
the infimum of JK is never realized, [27]. Most all general existence results after [36] have been
obtained by identifying conditions on K that prevent the a priori possible blow-up or bubble
behavior of suitable approximate solutions of (1.1). These approximate solutions are sequences
approaching a minimax (mountain pass) critical point of the functional JK . Further Sobolev
inequalities of Onofri [40] and Aubin [4] play an important role in this analysis.

Fundamental progress on the Nirenberg problem was made by Kazdan-Warner [32], [33], Aubin
[4], Chang-Yang [9]- [11], Chang-Gursky-Yang [12], Chen-Ding [16] with further important progress
made by Han [25], Chang-Liu [13] and many others. The full literature on this problem is vast and
we mention here only further work in [27], [29], [45]; see also [30] for a recent survey and further
references. The problem is still far from a complete resolution, even in the case of positive Gauss
curvature.
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In this paper, we give new proofs of almost all of the results above from a different perspective,
and derive as well new existence and non-existence results. In particular, the proofs of these
results do not rely on any of the sharp Sobolev inequalities or (with one exception) any variational
formulation of the problem.

To introduce the point of view taken here, we recast the problem (1.1) as follows. Let Cm,α,
m ≥ 4, α ∈ (0, 1) be the Banach space of Cm,α functions u : S2 → R. This is considered as the
space of conformal factors for metrics g = e2ug+1. Consider the map

π : Cm,α → Cm−2,α
+ ,

(1.3) π(u) = Kg,

where Kg is the Gauss curvature of g and Cm−2,α
+ is the space of Cm−2,α functions K such that

K(x) > 0 for some x ∈ S2. By integrating (1.1), one easily sees that π maps into Cm−2,α
+ . The

Nirenberg problem then asks to describe the image Imπ of π. It is well-known that (1.3) is not

solvable for all K ∈ Cm−2,α
+ . There is a fundamental obstruction due to Kazdan-Warner [32]: if K

is the Gauss curvature of the conformal metric g, then

(1.4)

∫
S2

X(K)dvg = 0,

for all linear vector fields X on S2; X = ∇` where ` is the restriction of a linear function on R3 to
S2. For example, the functions K = 1 + ` are not realizable as the Gauss curvature of a conformal
metric g = e2ug+1.

From (1.1) and standard elliptic theory, π is a smooth (nonlinear) Fredholm map, of Fredholm
index 0. A broad understanding of the global properties of the map π, for instance its image, requires
understanding when the Fredholm map π is proper; recall that a map is proper if the inverse image
of any compact set in the target is compact in the domain. Loosely speaking, π : U → V proper
on a domain V is equivalent to the statement that control of K = π(u) ∈ V implies control of any
solution u of (1.1); this equivalent to the existence of a priori estimates for solutions of (1.1) with
K ∈ V.

Now a general principle in Riemannian geometry is that control of the curvature K implies
control of the metric g, at least given suitable bounds on global quantities such as volume and
diameter. This principle, which has origins in early work in global differential geometry, is expressed
concretely in two fundamental results in geometry, namely the Cheeger finiteness theorem [14] and
the (smooth) Gromov convergence theorem [24], [22], [41], now generally referred to as the Cheeger-
Gromov convergence theorem; this is discussed in detail in Section 2. The control on the metric
given by the control on the curvature comes however only modulo diffeomorphisms; the action of
diffeomorphisms is crucial and cannot be avoided.

Applied to the case of S2, it follows that control of K implies control of g = e2ug+1 modulo
diffeomorphisms of S2, given suitable control on the area and diameter of (S2, g). Now the Nirenberg
problem per se is of course not diffeomorphism invariant. However, on S2 there is a unique conformal
class, and so all metrics may be pulled back by diffeomorphisms to the fixed conformal class [g+1].
This pull-back is unique modulo the conformal group Conf(S2).

This highlights the central role played by the non-compact conformal group Conf(S2) of S2.
The importance of the action of Conf(S2) is certainly well-known from all previous analyses of the
Nirenberg problem from the purely PDE point of view. However, the emphasis is quite different
here, taking the Riemannian geometry of the metrics much more closely into consideration.

To describe the first main result, we consider first the behavior of K near its zero level set. Thus,
suppose q ∈ S2 satisfies K(q) = 0 and that in a small neighborhood of q, K has the form

(1.5) K = χr2a,
2



where r(x) = distS2(1)(x, q), a ≥ 1 and χ is at least continuous near q. Thus we are considering
points on {K = 0} which are either non-degenerate local maxima or minima of K (when a = 1 and
χ(q) 6= 0) or arbitrary degenerate critical points (when a > 1 or χ(q) = 0). Let

(1.6) C = {K ∈ Cm−2,α
+ : if (1.5) holds at q, then ∆K(q) > 0}.

In particular, if K ∈ C and K(q) = 0, then q is not a local maximum point of K. We note that if q
is a non-degenerate saddle point of K, then (1.5) does not hold near q; such K are thus in C. We
also note that it is straightforward to see that C is invariant under the action of the diffeomorphism
group Diffm−2,α on Cm−2,α

+ . Next let

(1.7) N = {K ∈ Cm,α+ : |∇K|(p) + |∆K|(p) > 0, ∀p s.t. K(p) > 0}.

Thus K ∈ N if at any critical point q of K with K(q) > 0, ∆K(q) 6= 0. When K > 0 everywhere,
N is exactly the space of non-degenerate functions as defined by Chang-Yang in [11], [12].

In contrast to C, the space N is not invariant under the action of the diffeomorphism group
Diffm−2,α. It is easy to see that both N and C are open and dense in Cm−2,α

+ and are invariant

under the action of Conf(S2). Let

U = π−1(C ∩ N ),

and, setting

K = C ∩ N ,
let

(1.8) π0 = π|U : U → K, π0(u) = Ku,

be the restriction of π to U . The first main result is the following:

Theorem 1.1. On the domain U , the curvature map

π0 : U → K

in (1.8) is a proper Fredholm map of index 0.

In particular, for any K ∈ K, the space of solutions π−1(K) of (1.1) is compact and is finite
for generic K ∈ K. Theorem 1.1 is also essentially sharp in that π does not extend to a proper
map on any larger open domain V containing U , cf. Remark 5.11. Namely, we show that bubble
solutions of unbounded area may form as K ∈ K approaches ∂C. This follows from the basic work
of Ding-Liu in [18] and later by Borer-Galimberti-Struwe in [8], cf. Remark 2.7. Similarly, we show
that solutions in U degenerate due to the non-compactness of the conformal group Conf(S2) as
K ∈ K approaches ∂N . This in turn follows from the basic work of Chang-Yang [9]- [11].

Theorem 1.1 gives a priori estimates for solutions u of (1.1) for all K = π(u) ∈ K, cf. Remark
2.10. Such estimates have been previously obtained by Chang-Gursky-Yang [12] for K ∈ K in case
K > 0 and extended by Chen-Li in [13] to a larger, but still strictly proper, subset of K ∈ K with
K of variable sign. Theorem 1.1 gives the first such estimates in the full region K. Moreover, the
proof of Theorem 1.1 is quite different than previous work on this topic. As noted above, it does
not rely on any delicate analysis related to sharp Sobolev inequalities of Trudinger-Moser-Aubin
type or on any blow-up analysis or proof by contradiction. The proof is arguably much simpler
than previous proofs.

We prove in Section 2 that the complement ∂K = Cm−2,α
+ \ K is a closed, rectifiable set of codi-

mension one in Cm−2,α
+ . Generically ∂K is a collection of smooth, codimension one hypersurfaces.

It is well-known that proper Fredholm maps F : X → Y of index zero between Banach spaces
X,Y , (or orientable Banach manifolds with Y connected) have a well-defined Z-valued degree given
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by

deg F =
∑

x∈F−1(y)

sign(DFx) ∈ Z

wbere y is any regular value of F and the sign of DFx is ±1 according to whether DF (x) preserves
or reverses orientation at x.

Thus let Ki denote the collection of path components of K ⊂ Cm−2,α
+ and let U i = (π0)−1(Ki)

be the inverse image in Cm,α. Note that a priori U i may not be connected. The restriction of π0

to U i gives a proper Fredholm map

(1.9) πi : U i → Ki,
with a well-defined degree. To calculate the degree, let K be any regular value of πi in Ki and
without loss of generality, assume K is a Morse function on S2. Let

(1.10) Zi(K) = {q : ∇K(q) = 0,∆K(q) < 0 and K(q) > 0},
so that Zi(K) is a finite set of points in S2. Let ind q be the index of the non-degenerate critical
point q of K; (ind q is even for q a local minimum or maximum, while ind q is odd if q is a saddle
point). The degree of πi on the domain of positive curvature functions K > 0 in Ki was calculated
by Chang-Gursky-Yang [12] and we prove that the same formula extends to the full domains Ki.

Theorem 1.2. One has

(1.11) deg πi =
∑

q∈Zi(K)

(−1)ind q − 1,

for any Zi(K) as in (1.10). Equivalently, if M is the number of positive local maxima K and s−

is the number of saddle points of K where K > 0 and ∆K < 0, then

deg πi = M − s− − 1.

It is not difficult to see that deg πi may assume any value in Z, i.e. for each n ∈ Z, there exists
i such that deg πi = n, cf. Lemma 4.1. It is not clear (and is perhaps unlikely) whether the
components Ki of K are uniquely determined by their degree, cf. Remark 4.2 for further discussion.

Combining the variational formulation (1.2) of equation (1.1) with Theorem 1.1 leads to a second
formula for the degree.

Theorem 1.3. The degree of πi is also given (up to a fixed sign determined by orientation) by

(1.12) deg πi =
∑

uj∈(πi)−1(K)

(−1)ind(uj),

where K is any regular value of πi.

Here the index ind(uj) is the dimension of the negative eigenspace of the Hessian D2JK at uj ,
for JK as in (1.2).

Theorems 1.2 or 1.3 prove existence of solutions of (1.1), together with a signed count on the

number of generic solutions, for all K ∈ Cm−2,α
+ except K in the degree zero components and K

on the boundary K ∈ ∂K. We prove in Remark 4.2 that the degree 0 component is connected and
so call this component K0. Of course all K satisfying (1.4) are necessarily in K0 or ∂K.

To obtain further information in these regions, we analyse the structure of the regular and
singular points of the Fredholm map π. The Sard-Smale theorem [44] implies that the regular

values of π are open and dense in the target space Cm−2,α
+ . Of course, a priori, on the degree zero

component

(1.13) π0 : U0 → K0,
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there may be no corresponding regular points of π; a generic value in the target space K0 may have
empty inverse image. (For instance, the image may be of high codimension or even empty).

Theorem 1.4. The set Σ of singular points of π in (1.3) is a stratified space with strata of codi-
mension s ≥ 1 in Cm,α. In particular, the regular points and regular values of π are open and dense
in the domain and range of π.

We refer to Section 5 for the definition of a stratified space. This result gives a sharpening of
the Perturbation Theorem in [33]. The image of π0 in (1.13),

E = Imπ0 ⊂ K0 ⊂ Cm−2,α
+

is a non-empty closed subset of K0. This is a consequence of the fact that π0 is proper, cf. Propo-
sition 5.7 below. The Kazdan-Warner obstruction (1.4) implies that π0 is not surjective, so the
complement of the image D = (Imπ0)c ⊂ K0 is a non-empty open set in K0 (and hence open in

Cm−2,α
+ ). We show in Proposition 4.4 that for any given K, if ` is any linear function with |`|

sufficiently large (depending on K), then (1.1) is not solvable for K + `, i.e. K + ` /∈ Imπ.
In the region E , solutions to the Nirenberg problem typically come in pairs, with JK-index of

opposite parity. We prove in Proposition 5.8 that the boundary B ⊂ ∂E separating the existence
region E from the non-existence region D in Cm−2,α

+ is generically a smooth bifurcation locus for
the creation or annihilation of pairs of solutions of the Nirenberg problem, cf. also Remark 5.9.

Next, the boundary ∂K decomposes as a union

∂K = ∂C ∪ ∂N .

The first region corresponds to a wall-crossing of a local maximum of K passing through the value
0 while the second region corresponds to a wall-crossing where the value of ∆K changes sign at a
critical point q of K with K(q) > 0. As noted above, degenerations given by bubbles of infinite area
may form on approach to ∂C while the non-compactness of the conformal group Conf(S2) causes
degeneration on approach to ∂N .

Regarding ∂C, we have the following result:

Theorem 1.5. For any two distinct components Km, Kn of degree m and n respectively with
m 6= 0 and m < n, all Morse functions K ∈M in ∂Cnm = ∂C ∩ ∂Km ∩ ∂Kn are realizable as Gauss
curvatures of conformal metrics, i.e.

∂Cnm ∩M ⊂ Imπ.

This is proved in Proposition 4.7 below. A result of this generality is not known for ∂N . We
prove a partial result holds near the point K = 1, cf. the discussion preceding Remark 5.11. Also
large families of explicit solutions in ∂N are constructed in Proposition 4.5 and Remark 4.6; we
show that if u is any eigenfunction of the Laplacian on S2(1) then π(u) = Ku ∈ ∂N .

We conclude the paper with an existence result for functions K which have a symmetry which
breaks the action of the conformal group Conf(S2) on Cm−2,α

+ , as in Moser’s theorem [37] on
the existence of solutions of (1.1) with K even. Thus, let Γ be a finite subgroup of O(3) =
Isom(S2(1)). The action of Γ is said to break the (non-compact) action of the conformal group if
the Γ-action and Conf(S2)/O(3)-action on S2 do not commute. Thus for any conformal dilation
ϕ ∈ Conf(S2)/O(3) ' R3, with ϕ 6= Id, there exists γ ∈ Γ such that

γ ◦ ϕ 6= ϕ ◦ γ.

For instance, it is easy to see that the Z2-action generated by the antipodal map breaks the non-
compact action of Conf(S2).

5



Theorem 1.6. Let Γ ⊂ O(3) be a finite subgroup breaking the action of Conf(S2). Then any

Γ-invariant Cm−2,α
+ function K : S2 → R is the Gauss curvature of a Γ-invariant conformal metric

g on S2.

The contents of the paper are briefly as follows. In Section 2, we prove Theorem 1.1 using the
geometric convergence theory of Cheeger-Gromov, combined with a basic estimate of Astala [3]
on regularity of quasi-conformal mappings and the basic work of Chang-Yang [11]. We also relate
the decomposition (1.9) into path components of K to the more well-known decomposition of the

space of Morse functions in Cm−2,α
+ into Morse chambers. Theorems 1.2 and 1.3 are proved in

Section 3, building on the basic degree formula of Chang-Gursky-Yang [12] for Theorem 1.2 and
on general degree theoretic properties for proper Fredholm maps for Theorem 1.3. Section 4 is
a bridge between the earlier and later sections and discusses several existence and non-existence
results, including Theorem 1.5, in the regions K0, ∂C and ∂N . In Section 5, we analyse the structure
of singular and regular points of π and prove Theorem 1.4. Finally, Section 6 is devoted to the
proof of Theorem 1.6. Further results on the topics above are given in the individual sections.

I am most grateful to Alice Chang, and also to Paul Yang and Matt Gursky, for discussions
which greatly helped clarify their previous work on this topic to me and which led to significant
corrections of an earlier version of this paper. I am also very grateful to the referee for the very
detailed comments and careful work on the paper.

2. Properness of π.

The basic issue in studying the global properties of the Fredholm map π in (1.3) is whether π
is proper. Thus, given any sequence gi = e2uig+1 of metrics in the standard round conformal class
with Gauss curvature Ki = Kgi such that

(2.1) Ki → K in Cm−2,α
+ ,

the issue is when does a subsequence of {ui} converge to a limit in Cm,α. It is well-known that this
is not true in general, due to the non-compactness of the conformal group Conf(S2) ' PGL(2,C)
of fractional linear transformations of (S2(1), g+1). The maximal compact subgroup of PGL(2,C)
is O(3), the isometry group of S2(1), and the quotient satisfies

(2.2) PGL(2,C)/O(3) ' H3 ' R3.

Elements in the quotient R3 are identified with the conformal dilations as follows. Given a point
p ∈ S2, in the chart given by stereographic projection from the pole p,

ϕp,t(x) = tx,

represents the conformal dilation by t with source −p and sink p. One has ϕp,1 = Id, which serves
as the origin 0 ∈ R3. Also (ϕp,t)

−1 = ϕp,t−1 = ϕ−p,t. Similarly the map ϕp,q,t = t(x−x0) represents
the conformal dilation by t with source q and sink p, where q maps to x0 under stereographic
projection. (This corresponds to a conjugation of ϕp,t by a rotation).

The action (or skew-action) of Conf(S2) on the target space Cm−2,α
+ of curvature functions is by

pre-composition,

(K,ϕ)→ K ◦ ϕ.
This action is clearly not proper, since the constant functions K = const are fixed points of the
action. On the other hand, it is easy to see that the action of Conf(S2) is proper on Cm−2,α

+ away
from the constant functions.

To describe the action of Conf(S2) on the domain space Cm,α of conformal factors, let ϕ ∈
Conf(S2) be an orientation preserving conformal diffeomorphism, so that ϕ∗g+1 = χ2

ϕg+1, where
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χ2
ϕ = detDϕ > 0. For u ∈ Cm,α with g = e2ug+1, one has ϕ∗g = e2u◦ϕϕ∗g+1 = e2u◦ϕχ2

ϕg+1. Thus

Conf(S2) acts on Cm,α as

(2.3) (ϕ, u)→ ϕ∗u = uϕ = (u ◦ ϕ) + logχϕ.

For conformal dilations ϕp,t, the volume distortion χ2
p,t tends to the Dirac measure supported at p

as t→∞. Note that since ϕ−p,s ◦ ϕp,t = ϕp, t
s
, ϕ∗−p,s(ϕ

∗
p,t(0)) = logχp, t

s
so that

(2.4) ϕ∗−p,s(logχp,t) = logχp,t ◦ ϕ−p,s + logχ−p,s = logχp, t
s
.

For later purposes (e.g. Lemma 2.5), observe that the level set {logχp,t = 0} converges to the
point p as t→∞ while the level set {ϕ∗−p,s logχp,t = 0} remains bounded away from p and −p as

t, s→∞ but t
s remains bounded.

In contrast to the action of Conf(S2) on the target space Cm−2,α
+ of curvature functions, the

action of Conf(S2) on the domain Cm,α is smooth and proper; all orbits are properly embedded.
The map π is equivariant with respect to these actions of Conf(S2), i.e.

(2.5) π(ϕ∗u) = ϕ∗π(u).

In particular, π maps Conf(S2) orbits in the domain Cm,α to Conf(S2) orbits in the target Cm−2,α
+

and so π is not proper onto a neighborhood of the constant functions K = const.
Following [4], let S be the space of conformal factors e2u with zero center of mass,

(2.6) S = {u ∈ Cm,α : ∀i,
∫
S2

e2uxidv+1 = 0},

where xi are the restrictions of the standard linear coordinate functions on R3 to S2(1). The space
S is a smooth codimension 3 hypersurface in Cm,α. It is proved in [13] that S is a smooth global
slice for the non-compact action of Conf(S2) on Cm,α, in that there is a smooth diffeomorphism

(2.7) Cm,α ' S × (Conf(S2)/O(3)) ' S × R3.

In particular, for any u ∈ Cm,α there is a unique conformal dilation ϕp,t, (p, t) ∈ R3, such that
(ϕp,t)

∗u ∈ S. The dilation ϕp,t depends smoothly on u.

Given this background, we study the properness issue in general by first recalling the Cheeger-
Gromov convergence theorem, expressed here in the very special case of S2. Let W k,p denote the
Sobolev space of functions on S2 with k weak derivatives in Lp; convergence in the weak topology

in W k,p is denoted by W k,p
∗ .

Proposition 2.1. (Cheeger-Gromov). Let gi be a sequence of C2 metrics on S2 with uniformly
bounded Gauss curvature Ki = Kgi,

(2.8) |Ki| ≤ K0 <∞.

Suppose there are constants v0 > 0 and D0 <∞ such that

(2.9) areagiS
2 ≥ v0 and diamgiS

2 ≤ D0.

There there is a sequence of diffeomorphisms ψi ∈ Diff2,α ∩W 3,p such that

(2.10) g̃i = ψ∗i gi

is uniformly bounded in C1,α ∩W 2,p, for any α < 1, p <∞. In particular, a subsequence converges

(2.11) g̃i → g̃ in C1,α,

and weakly in W 2,p (i.e. in W 2,p
∗ ) for any p <∞ to a limit C1,α ∩W 2,p metric g̃ on S2.
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Proof: This is a standard result that holds in all dimensions and detailed proofs are given
in [22], [41], [42] for instance. For later purposes, we sketch some of the main ideas of the proof. A
key idea is to locally represent any metric g by well-controlled harmonic coordinate charts, i.e. local
diffeomorphisms

F : B(r0) ⊂ R2 → S2,

with F−1 = (x1, x2) given by a pair of harmonic functions xi with respect to g (or equivalently
with respect to g+1 when g is conformal to g+1). The local charts F are constructed so that the
metric ḡ = F ∗g is bounded in the C1,α ∩W 2,p norm by the L∞ norm of K̄ = K ◦ F , given the
global bounds (2.9). The key to this control is the well-known expression for the components ḡαβ
of a metric in local harmonic coordinates given by

(2.12) ∆ḡ ḡαβ +Qαβ(ḡ, ∂ḡ) = −2(Ricḡ)αβ = −2K̄ḡαβ,

where Q is a lower order term, quadratic in ḡ and its first derivatives. Here ∆ḡ is the Laplacian of
ḡ, given in the harmonic coordinate chart as

∆ḡ = ḡab∂a∂b.

The system (2.12) is an elliptic system for ḡαβ and the C1,α ∩W 2,p bounds on ḡαβ follow from
standard elliptic estimates, given L∞ control on K̄.

The diffeomorphisms ψi in (2.10) are constructed by assembling the overlap maps of such local
charts by a geometric gluing, such as a center of mass averaging. Elliptic regularity again shows
that each ψi is C2,α ∩W 3,p smooth. The uniform C1,α ∩W 2,p local control on the metrics F ∗i gi
then easily leads to the convergence (2.11) by the Arzela-Ascoli theorem.

We may apply Proposition 2.1 to a sequence gi = e2uig+1 of conformal metrics on S2 satisfying
(2.8)-(2.9). The uniformization theorem on S2 implies that any C1,α ∩W 2,p metric g̃ is of the form
g̃ = ψ∗(e2ug+1) for some ψ ∈ Diff2,α ∩W 3,p and u ∈ C1,α ∩W 2,p. Thus, in a subsequence,

(2.13) g̃i = ψ∗i (gi)→ g̃ = ψ∗(e2ug+1),

in C1,α ∩W 2,p
∗ . Replacing ψi by ψ̃i = ψi ◦ ψ−1 and dropping the tilde from the notation, (2.13)

then becomes

(2.14) ψ∗i (e
2uig+1)→ e2ug+1,

in C1,α∩W 2,p
∗ . The equation (2.14) means that the diffeomorphisms ψi are (1+εi)-quasi-conformal

with εi → 0 as i → ∞. By a standard result (cf. [35]) any sequence of (1 + εi)-quasi-conformal
diffeomorphisms has a subsequence converging to a limit, modulo the action of the conformal
group. (This is the normal family principle for quasi-conformal mappings). Any such limit is
clearly a conformal map of S2. Thus, there exist conformal maps ϕi ∈ Conf(S2) such that

(2.15) ηi := ϕ−1
i ◦ ψi → Id.

The diffeomorphisms ηi are (1 + εi) quasi-conformal with εi → 0 as i→∞. The equations (2.14)-
(2.15) will be a main focus of attention after Remark 2.7 below. First however we must address
the situation when one of the hypotheses in (2.9) fails.

Remark 2.2. We first note that Proposition 2.1 is essentially local; suitable versions of the result
hold for bounded domains or complete, non-compact manifolds, when one works with respect to
given base points, cf. [42] for further discussion of the general situation.

In the case at hand, consider a pointed sequence (S2, gi, yi), gi = e2uig+1 satisfying (2.8), where
yi is any sequence of base points yi ∈ S2. Suppose the following local non-collapse assumption
(analogous to (2.9)) holds:

(2.16) areagiByi(1) ≥ v0 > 0.
8



Here v0 is an arbitrary positive constant and Byi(1) denotes the gi-geodesic ball of radius 1 about yi.

Then the Cheeger-Gromov theory implies that a subsequence converges in the pointed C1,α ∩W 2,p
∗

topology modulo diffeomorphisms to a complete Riemannian surface (Ω, g̃, ỹ). In general Ω is an
open surface; if Ω is closed (and hence compact), then necessarily Ω = S2. If Ω is open, then
diamgiS

2 → ∞. The convergence modulo diffeomorphisms means that there is an exhaustion Ωk

of Ω, with Ωk ⊂ Ωk+1, ∪Ωk = Ω, ỹ ∈ Ωk for all k, and embeddings ψk : Ωk → S2, ψk(ỹ) =
yk, such that g̃i = ψ∗k(e

2uig+1) → g̃|Ωk . In addition, by the uniformization theorem, there is a
conformal embedding F : Ω → S2 of the abstract space (Ω, g̃) so that g̃ = F ∗(e2ug+1) for some
function u defined on Im(F ). The mappings ψk and F are not unique; one may compose them with
diffeomorphisms for instance.

Passing to a diagonal subsequence of {i, k} and relabeling, it follows from the above that

(2.17) (F−1)∗ψ∗i (e
2uig+1)→ e2ug+1,

in C1,α ∩W 2,p
∗ uniformly on compact subsets of F (Ω), analogous to (2.14). As above, the maps

ψi ◦ F−1 form a sequence of quasi-conformal diffeomorphisms with dilatation 1 + εi → 1 and as in
(2.15), there exists a sequence of conformal transformations ϕi such that

(2.18) ϕi ◦ ψi ◦ F−1 → Id,

on Im(F ).
This shows that an analog of the discussion following Proposition 2.1 holds when the hypothesis

(2.9) is replaced by the weaker non-collapse assumption (2.16).
Finally, we note that if one assumes gi ∈ Cm+2 and a stronger bound on the covariant derivatives

of the Gauss curvatures,

(2.19) |∇jKi|gi ≤ Km,

1 ≤ j ≤ m, then the convergence in (2.11) or (2.17) above can be improved to convergence in

Cm+1,α ∩Wm+2,p
∗ . Note the bound (2.19) is invariant under diffeomorphism. On the other hand,

the convergence Ki → K in Cm−2,α as in (2.1) is not invariant under diffeomorphism. Such

convergence does not imply convergence of Ki ◦ψi to a limit K̃ in, say, Cα, if the diffeomorphisms
ψi tend to infinity.

The Gauss-Bonnet theorem gives

4π =

∫
S2

Kgdvg ≤ max |Kg|areagS2,

so that the lower area bound in (2.9) (but not necessarily (2.16)) holds automatically under uniform
curvature bounds. If one has a uniform positive lower bound

(2.20) Kg ≥ K0 > 0

on the Gauss curvature, then the diameter bound in (2.9) is also automatic by the well-known
Bonnet-Myers theorem. In general, when (2.20) does not hold for some K0 > 0, there may be
sequences for which diamgiS

2 →∞.

We show next that the diameter must remain uniformly bounded when the metrics g are in a
fixed conformal class with curvature K in a compact subset of C, for C defined as in (1.6). Let [g]
denote the pointwise conformal class of a metric g.

Theorem 2.3. Let gi be a sequence of Cm,α metrics on S2 with m ≥ 4. If [gi] = [g+1] and Ki ∈ C
with

(2.21) Ki → K ∈ C ⊂ Cm−2,α
+ ,
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then there is a constant D0 such that

(2.22) diamgiS
2 ≤ D0 <∞,

and hence areagiS
2 ≤ A0, for some A0 <∞.

The proof of this result is rather long and broken into the following lemmas and propositions.
The first proposition does not require the limit curvature K ∈ C.

Proposition 2.4. Suppose [gi] = [g+1] with Ki → K in Cm−2,α and suppose in addition there is a
constant A0 <∞ such that

(2.23) areagiS
2 ≤ A0.

Then (2.22) holds.

Proof: The proof is by contradiction and so we assume there is a sequence gi as above satisfying
(2.23) but for which

(2.24) diamgiS
2 →∞.

For any ε > 0 and any metric g on S2 one has a thick-thin decomposition of (S2, g),

(2.25) S2 = U ε ∪ Uε,
where U ε is the set of points x where the injectivity radius injg(x) ≥ ε while Uε is the complement.
We first claim that if (2.23) and (2.24) hold, then both sets U ε and Uε are non-empty, for any given
ε > 0 sufficiently small, provided i is sufficiently large.

To see this, we recall the collapse theory of Cheeger-Fukaya-Gromov [15] which states that if a
manifold (M, g) satisfies |Rm| ≤ Λ and injgM ≤ ε0, then M has an F-structure determined by the
collection of short geodesic loops based at any point p ∈M . Here ε0 is a fixed constant, depending
only on Λ and the dimension n of M while Rm is the Riemann curvature of (M, g). In two
dimensions, F-structures are particularly simple; for any p ∈ M , there is a unique short geodesic
loop based at p, of length equal to 2injg(p), (assuming injg(p) is sufficiently small compared with
Λ−1). Such loops may be smoothed at the base points to give a foliation of M by circles. In
particular any surface with an F-structure has Euler characteristic χ(M) = 0; (the same holds in
all dimensions by [15]). Since χ(S2) 6= 0, it follows that

U ε 6= ∅,
for all ε ≤ ε0, where ε0 depends only on max |K|. On the other hand, if Uε = ∅, then every point
of (S2, gi) has injectivity radius at least ε. Since the curvature K is uniformly bounded, standard
comparison geometry, cf. [42] for example, shows that areagi(Bp(1)) ≥ a0, where a0 depends only
on ε and max |K|. The area bound (2.23) then implies a uniform upper bound on the number of
disjoint geodesic 1-balls Bpj (1) which can be contained in (S2, gi). Taking a maximal collection of

such balls, the balls Bpj (2) of radius 2 then cover the manifold (S2, gi) which implies that diamgiS
2

is uniformly bounded above. This contradicts (2.24). This proves the claim above.

Let Ũ ε be the unit tubular neighborhood of U ε, Ũ ε = {x ∈ (S2, g) : dist(x, U ε) ≤ 1}. Again,

standard comparison geometry, cf. [24] or [42], implies that Ũ ε ⊂ Uλε, for a (small) constant λ

depending only on a bound for max |K|. As above, since each connected component of Ũ ε has a

uniform lower bound on its area, it follows that Ũ ε has a bounded number of components (inde-

pendent of i). By passing to a subsequence, we may assume Ũ ε has a fixed number of components
(for any given choice of ε ≤ ε0). Further, the same covering argument as above shows there is a

uniform upper bound on the diameter of each component of Ũ ε;

diamgiŨ
ε ≤ D,
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where D depends only on ε and max |Ki|.
Let Ũε = S2 \ Ũ ε, so that Ũε ⊂ Uε. In the following, we assume ε is chosen so that ε ≤ ε0,

so that each component of Ũε has an F-structure; more precisely each component of Ũε has a

small thickening Ũ ′ε ⊃ Ũε which has an F-structure so that Ũ ′ε has a foliation by disjoint short

circles. We relabel Ũ ′ε to Ũε and similarly relabel Ũ ε to S2 \ Ũε. Thus each component of Ũε is
topologically an annulus I × S1 whose boundary components (diffeomorphic to circles) are also

boundary components of ∂Ũ ε. In particular, since Ũ ε has a bounded number of components, so

does Ũε. By (2.24), there must be some components Aj of Ũε with diamgiA
j → ∞ as i → ∞.

On those components Aj
′

with uniformly bounded diameter, the injectivity radius is uniformly
bounded below (again by standard comparison geometry, cf. [42]). Thus, by choosing ε smaller,

we may assume the decomposition (2.25) satisfies: Ũ ε consists of a fixed number of components of

uniformly bounded diameter, Ũε consists of a fixed number of annuli Aj with

(2.26) diamgiA
j →∞ as i→∞,

and so with injgi(yi) → 0 at some points yi ∈ Aj between the boundary components. These thin
regions, also frequently called cusp regions, join the thick components together to form S2.

Next we claim that for any j, infAj Ki → 0 as i → ∞. In fact let AL ⊂ Aj be any subannulus
for which the gi-distance to its two boundary components ∂AL is at least L; then

(2.27) inf
AL

Ki ≤ πL−1.

The estimate (2.27) is an immediate consequence of the standard Myers’ theorem in comparison
geometry (cf. [42]).

The extremal length `ext(A) of an annulus A, cf. [1], [31] for instance, is defined to be the
supremum of the ratio `2(σ)/area(A), where `(σ) is the minimal length of curves σ joining distinct
boundary components of A and the supremum is over all conformally equivalent metrics on A. By
construction, the extremal length is a conformal invariant of A and is increasing under inclusion.
By the uniformization theorem, any annulus A is conformally equivalent to a standard annulus
A(r1, r2) of inner and outer radii r1, r2 in the Euclidean plane R2. One has

(2.28) `ext(A(r1, r2)) =
1

2π
log(

r2

r1
),

cf. again [1], [31]. A similar formula holds for annuli in spherical geometry. By construction, the
thin annuli (Aj , gi) above satisfy

`ext(A
j , gi)→∞,

as i → ∞. Since areagiA
j is bounded above by (2.23), it follows that there are curves γj ⊂

Aj , homologous to a boundary component of Aj , such that `gi(γ
j) → 0 as i → ∞. Since then

injgi(qj) → 0 for any point qj ∈ γj , one has distgi(γ
j , ∂Aj) → ∞ as i → ∞. For convenience, we

choose γj to be a shortest closed geodesic homotopic to S1 in Aj ' I × S1.
Let Bj be one component of Aj \ γj , so Bj is a subannulus of Aj , still with `ext(B

j)→∞. The

thick boundary component of Bj is in Ũ ε while the inner or thin boundary γj has `gi(γ
j) → 0.

In addition, we choose an annulus AL ⊂ Bj as in (2.27) with γj equal to the inner boundary
component of ∂AL.

Up to this point, the annuli (Aj , gi) and half-annuli (Bj , gi) have been considered as abstract
Riemannian manifolds. However, since gi is pointwise conformal to g+1, the annuli (Bj , gi) are
domains in the standard round sphere S2(1). In spherical geometry, as in (2.28) the extremal
length of an annulus can become unbounded only if at least one boundary component converges to
a point, so that we may assume `g+1(γj) → 0. In particular one may choose a point pj ∈ Bj such

that γj converges to pj , in that dist+1(γj , pj)→ 0.
11



Next, the short curve γj bounds a disc (on each side) in S2 and at least one such disc D2
j is

small, i.e. contained in a spherical disc of (arbitrarily) small radius. Choose the component Bj so
that Bj ⊂ D2

j with ∂D2
j = γj . Applying the Gauss-Bonnet theorem to such discs we obtain

(2.29)

∫
D2
j

Kidvgi = 2π −
∫
∂D2

j

κi,

where κi is the geodesic curvature of the boundary (∂D2
j , gi). Since the boundary of D2

j is the

geodesic γj , this gives ∫
D2
j

Kidvgi = 2π.

The area bound (2.23) then implies there exists κ0, depending only on A0 in (2.23) (and ε) such
that

(2.30) K(x) ≥ κ0,

for some x ∈ D2
j . (Simple examples, e.g. a sequence of round spheres with radius diverging to

infinity, show that upper area bound is necessary for (2.30)).
We now obtain a contradiction as follows. The discs D2

j (which depend on i) are contained in

g+1-geodesic discs Dpj (δi) with δi → 0 as i→∞. Such discs thus contain points where both (2.30)

and (2.27) hold with L−1 arbitrarily small. Since the sequence {Ki} is uniformly bounded in Cα,
this gives a contradiction.

Next we turn to the existence of an apriori area bound. Of course if minKi ≥ κ0 for some κ0 > 0,
then the area bound is automatic; the arguments below through and including Proposition 2.6 are
only needed when lim inf Ki ≤ 0. We first collect several general facts about the behavior of {ui}.

Lemma 2.5. Let gi = e2uig+1 and suppose Ki → K ∈ Cm−2,α. Then the following results hold.
(i). For any ε > 0 there is a constant A1 = A1(ε) <∞ such that

(2.31) areagi{Ki < −ε} ≤ A1.

(ii). There is a constant M = M(ε) <∞ such that

(2.32) ui(x) ≤M,

for all x ∈ {Ki ≤ −ε}.
(iii). If areagiS

2 →∞, then

(2.33) areagi{−ε < Ki < ε} → ∞.

(iv). If lim inf Ki ≤ 0 and K ∈ Cm−2,α
+ , then there exists a constant m0 <∞ such that on S2,

(2.34) ui ≥ −m0.

Proof: The computations and estimates to follow in the proof apply to each ui, but we will
generally drop the index i from the notation; thus u = ui and K = Ki in the following. The
estimates obtained will all be uniform, i.e. independent of i large, using in particular the convergence
Ki → K ∈ Cm−2,α.

To begin, one has

areag{K < −ε} =

∫
{K<−ε}

e2udvg+1 .

The estimate (2.31) is obvious in the region where u ≤ 0, so we concentrate in the region where
u ≥ 0. Without loss of generality, choose ε such that all points in the interval [−ε,−ε/2] are regular
values of K. Let η = η(K) be a smooth cutoff function of K with η ∈ [0, 1], η = 1 on {K ≤ −ε}
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and η = 0 on {K ≥ 0}. Let U0 = {u ≥ 0} and L0 = ∂U0 = {u = 0}. (In the following, one should
replace 0 by a regular value δ of u arbitrarily close to 0, but this will make no difference in the
argument below). From (1.1), one has

−ε
∫
U0

η4e2u ≥
∫
U0

η4Ke2u ≥ −
∫
U0

η4∆u,

where the integration is with respect to dvg+1 . Applying the divergence theorem to the last term

gives −
∫
η4∆u = −

∫
u∆η4 +

∫
L0
u∂Nη

4 −
∫
L0
η4∂Nu. The first boundary integral vanishes since

u = 0 on L0 while the second is non-negative since N points out of U0. Hence

−ε
∫
U0

η4e2u ≥ −
∫
U0

u∆η4.

Since ∆η4 = 4η3∆η + 12η2|dη|2, it follows that∫
U0

η4e2u ≤ C
∫
U0

η2u,

where C depends only on ε and the C2 norm of K (and the fixed choice of η(K)). By the Cauchy-

Schwarz inequality, one has
∫
U0
η2u ≤

√
4π(
∫
U0
η4u2)1/2. Moreover, e2u ≥ u2 on U0 and e2u >> u

for u large, so that the integrand on the left side of the inequality above dominates the right side
integrand where u is large. It follows that

∫
U0 ηe

2u ≤ C ′ so that

areag({K ≤ −ε} ∩ U0) ≤
∫
U0

η4e2u ≤ C ′.

This proves (2.31).
To prove (ii), the area bound (2.31) gives a uniform L1 bound on e2u, u = ui, and hence a uniform

L2 bound on u on {K ≤ −ε}. Since on this set ∆u ≥ 1 by (1.1), the upper bound (2.32) is an
immediate consequence of the well-known DeGiorgi-Nash-Moser interior estimate for subsolutions
of elliptic equations, cf. [21]. Of course here we use the estimate on the domains V ′ = {K ≤ −ε} ⊂
V = {K ≤ −ε/2} for regular values ε/2, ε as well as the convergence Ki → K ∈ Cm−2,α.

For the third claim, by the Gauss-Bonnet theorem, one has

(2.35)

∫
{K≤−ε}

Ke2u +

∫
{K∈[−ε,ε]}

Ke2u +

∫
{K≥ε}

Ke2u = 4π,

Now (2.31) implies the first integral in (2.35) is bounded below. If areagi{−ε < Ki < ε} is bounded,
then the second integral in (2.35) is bounded above and hence so is the third integral. That in
turn implies areagi{Ki ≥ ε} is uniformly bounded, which implies areagiS

2 is uniformly bounded.
Hence if areagiS

2 →∞, then (2.33) must hold.
To prove (iv), a simple computation using (1.1) gives

(2.36) (∆ + 2)e−2u = 2K + 4e−2u|du|2.

Now the first eigenvalue λ1 of the Laplacian on (S2, g+1) is λ1 = 2, with eigenfunctions given by
restrictions of the linear functions ` on R3 to S2(1). Any proper smooth domain U ⊂⊂ S2 thus
has lowest eigenvalue λ1 for the Laplacian with Dirichlet boundary values on ∂U satisfying λ1 > 2.
The operator ∆ + 2 thus has no kernel on smooth functions on U vanishing at ∂U . Observe that
(2.36) implies (∆ + 2)e−2u ≥ −C, where C is a lower bound for 2K. Let U be any smooth domain
for which there is a spherical disc Dp(ε) ⊂ S2 \ U . It then follows from the well-known maximum
principle for subsolutions of ∆ + 2, cf. [21], that

(2.37) sup
U
e−2u ≤ C ′(ε) + sup

∂U
e−2u,
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where C ′(ε) depends only on ε. Thus if e−2u (i.e. the sequence e−2ui) is uniformly bounded above
on ∂U , then e−2u is bounded, i.e. u is uniformly bounded below, on U , provided the complement
U c contains a small disc Dp(ε) of fixed radius. This implies that if ui → −∞ anywhere on S2, then
ui → −∞ at least on a dense set in S2. Note that exactly this behavior occurs for the family of
conformal dilations in (2.3), ui = logχp,ti with ti →∞.

Choose a point pi realizing maxui so that ui(pi)→∞. Next choose a point qi with Ki(qi) = 0.
Without loss of generality, we may assume ui(qi)→ −∞; (otherwise, one may replace qi by qj with
Ki(qj)→ 0 as i, j →∞ and ui(qj)→ −∞ as j →∞ and take a diagonal subsequence). As in the
process described in (2.4), apply a sequence of conformal dilations ϕi = ϕqi,pi,ti to ui with source
qi → q and sink pi → p, so that ũi = ϕ∗iui satisfies

(2.38)

∫
Dq(

1
2

)
e2ũidv+1 = 1.

Note here that for any fixed u, the integral
∫
Dq(

1
2

) e
2ϕ∗udv+1 is a continuous function of ϕ ∈ Conf(S2)

and varies between (amin e2u, amax e2u), a = areaDq(
1
2). Since ui(qi) → −∞ and ui(pi) → +∞,

the conformal dilations ϕi above exist and ti → +∞. (The choice of the constants 1
2 and 1 here can

be replaced by other fixed constants). If infDq( 1
10

) ũi → −∞, then one may dilate or rescale further

so that ûi = ϕ∗pi,qi,si ũi is bounded below in Dq(
1
2) and the area with respect to ûi in (2.38) is at

most 1. Relabeling then ûi to ũi if necessary, the estimate (2.37) then implies that ũi is bounded
below globally on S2.

Now apply Remark 2.2 to the sequence (S2, g̃i, qi), g̃i = e2ũig+1. Since ũi is uniformly bounded

below, g̃i ≥ cg+1 for some uniform constant c > 0 and hence the geodesic ball Bg̃i
qi (δ0) ⊂ Dq(

1
2) for

a uniform δ0 > 0. We first note that the sequence g̃i cannot collapse at qi, i.e. (2.16) holds. For if
collapse did occur, then very short g̃i-geodesic loops form near q. Such loops bound a spherical disc
Di ⊂ Dq(

1
2) near q, whose gi-area is uniformly bounded by (2.38). This gives the same contradiction

as at end of the proof of Proposition 2.4.
It then follows by Remark 2.2 that the pointed sequence (S2, g̃i, qi), converges in a subsequence in

the based C1,α topology modulo diffeomorphisms to a limit (Ω, g̃, q), i.e. (2.17) holds for some limit
function ũ. The dilations ϕi in (2.18) are bounded, since otherwise one would neccessarily have
ũi → −∞ almost everywhere, i.e. the conformal rescaling above removes the possible divergence in
the conformal group. It follows from (2.17)-(2.18) that {ũi} subconverges to a solution ũ of

∆ũ = 1,

on a domain Ω ⊂ S2. Now the metric g = e2ũg+1 is complete and flat and hence is either the
Euclidean metric gEucl on R2 = S2\{p} or a complete flat metric on a cylinder R×S1 ' S2\{p∪p′}.
However, the metric gEucl is not pointwise conformal to g+1, giving a contradiction in that case.
(Note that the pullback of gEucl to S2 \ {p} by stereographic projection is not pointwise conformal
to g+1, although it is of course conformally equivalent to g+1). If g is a complete flat metric on
a cylinder, then there are annuli Ai ⊂ (S2, gi) which are almost flat, i.e. Ki → 0 on Ai and with

length `(Ai)→∞. Since Ki → K ∈ Cm−2,α
+ , this gives the same contradiction as at the end of the

proof of Proposition 2.4, again using the area bound (2.38).

Proposition 2.6. Under the assumptions of Theorem 2.3, there is a constant A0 < ∞ such that
(2.23) holds, i.e.

(2.39) areagiS
2 ≤ A0.
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Proof: The proof is again by contradiction. Thus assume

(2.40) areagiS
2 =

∫
S2

e2uidv+1 →∞.

Consider the behavior of the (signed) measures

dµi = −∆uidv+1 = (Kie
2ui − 1)dv+1.

We first analyze the situation where these measures have uniformly bounded total variation (or
mass), so that there is a constant M <∞ such that∫

S2

|∆ui|dv+1 ≤M.

This bound is equivalent to

(2.41)

∫
S2

|Ki|dvgi =

∫
S2

|Ki|e2uidv+1 ≤M,

so there is a uniform L1 bound on the total absolute curvature of (S2, gi).
Let yi ∈ S2 be a sequence of base points; in the following it is convenient (but not necessary) to

choose yi to be points realizing maxKi with yi → y ∈ S2. Recall that since Ki → K ∈ C, there
is a constant κ0 > 0 such that Ki(yi) ≥ κ0 for all i. Hence there is an ε0 > 0 and spherical disc
Dyi(ε0) about yi of g+1-radius ε0 such that Ki(xi) ≥ κ0/2, for xi ∈ Dyi(ε0). By (2.34), there is
a gi-geodesic disc Bi = Byi(δ0) of gi-radius δ0 about yi such that Byi(δ0) ⊂ Dyi(ε0). Now it is
well-known that geodesic discs of fixed radius cannot collapse, so injgi(yi) ≥ i0 > 0. This follows
for instance from the Gauss-Bonnet theorem:∫

Bi

Ki = 2πχ(Bi)−
∫
∂Bi

κi.

If Bi collapses, then topologically Bi is an annulus so χ(Bi) = 0. Standard comparison geometry
for the exponential map in local spaces with 0 ≤ K ≤ K0 shows that the geodesic curvature κi > 0,
which gives a contradiction.

Remark 2.2 then implies that the sequence (S2, gi, yi) converges (in a subsequence) in the pointed
C1,α topology modulo diffeomorphisms, to a complete Riemannian surface (Ω, g̃, ỹ). The lower
bound (2.34) and the fact that Ki → K in Cm−2,α implies that |∇Ki|gi is uniformly bounded,
so the convergence is actually in the C2,α topology, again by Remark 2.2. The surface (Ω, g) is
necessarily open; if Ω is closed, then Ω = S2 and areagiS

2 is uniformly bounded, contradicting
(2.40).

By (2.41), (Ω, g̃) has finite total absolute curvature. A well-known theorem of Huber [28] then
implies that (Ω, g̃) is conformally equivalent to S2 punctured at a finite number of points qj , i.e. each
end Ej of Ω is parabolic in the sense of potential theory, cf. [1]. We note also that for any end E
of Ω, there exists a divergent sequence of points xi →∞ such that

(2.42) lim
i→∞

K(xi) ≤ 0.

(For if (2.42) were not the case, then K ≥ κ > 0 on E, for some constant κ > 0, which implies that
E is of bounded diameter by the Myers theorem in comparison geometry, [41]; this is of course a
contradiction).

Referring again to Remark 2.2, without loss of generality, we may assume ψ−1
i (yi) = ỹi → ỹ with

F (ỹ) = y. Since Ki(yi) > 0 is bounded away from 0, it follows from (2.42) and the Cα convergence
Ki → K, that the image of the embeddings ψi must contain a small spherical disc of fixed size,
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i.e. Dyi(δ) ⊂ ψi(Ωi) for some δ > 0. The embedding F : Ω→ S2 has image F (Ω) = S2 with a finite
number of points {qj} removed. As in (2.17) one has

(2.43) (F−1)∗ψ∗i (e
2uig+1)→ e2ug+1,

on F (Ω) and there exists a sequence of conformal transformations ϕi such that

ϕi ◦ ψi ◦ F−1 → Id,

on S2. Now we claim that the sequence ϕi cannot diverge to ∞ in Conf(S2). Namely, since the
images ψi(Ωi) contain a spherical disc of fixed size about y, ϕi can only diverge if it is within a
bounded distance in Conf(S2) to a sequence of conformal dilations ϕ̄i = ϕy,ti sourced at y with

ti →∞. Setting ũi = ϕ̄∗iui, it follows from (2.43) that ũi subconverges in Cα ∩W 1,2
∗ to a solution

ũ of ∆ũ = 1 − K(y)e2ũ. By elliptic regularity, ũ is smooth. This is the equation for a metric of
constant curvature K(y) which implies that Ω is compact, i.e. Ω = S2, giving a contradiction since
Ω is open.

Thus F−1 ◦ ψi converges to a limit quasi-conformal diffeomorphism with dilatation 1, i.e. to a
conformal diffeomorphism. Altering the embedding F by this fixed conformal map, we may assume
F is the inclusion of a subset Ω ⊂ S2 and

Ω = S2 \ ∪{qj}.

By (2.17), the functions ui converge to the limit function u on Ω. Elliptic regularity associated
with the equation (1.1) implies the convergence is in Cm,α. Since K = limKi, by (2.42) one must
have K(qj) ≤ 0. In fact, one must have

K(qj) = 0.

Namely if K(qj) < 0, then the end Ej of Ω is a hyperbolic cusp and so of finite area. The end Ej
must be capped off by a small spherical disc Dj about qj in S2. Applying the Gauss-Bonnet theorem
to (Dj , gi) for i large shows that there exist points q′j ∈ Dj such that Ki(q

′
j) ≥ 0. For i sufficiently

large, this gives the same contradiction as before, namely to the Cα convergence Ki → K.
Now the measures dµi converge (in a subsequence) to a limit signed measure dµ on S2. Let dµr

and dµs denote the absolutely continuous and singular measures of dµ with respect to Lebesque
measure:

(2.44) dµ = dµr + dµs.

As above, the functions ui converge (in a subsequence) uniformly on compact subsets of Ω in Cm,α,
to a limit function u. The regular part of dµ is thus given by

dµr = (Ke2u − 1)dv+1 on Ω,

where K = limKi. Since areagiS
2 → ∞, ui blows up, ui → ∞, at each qj . Similarly, since g is

complete, u→∞ at each qj . As noted above, the support of the singular measure dµs is given by

Z = ∪qj ⊂ {K = 0}.

Any measure supported at a point is a multiple of the Dirac delta measure, so that there exist
aj ∈ R such that

(2.45) dµs = 2π
∑

ajδqj .

One has ∫
Ω
dµr =

∫
Ω
Kdvg − 4π ≤ 2πχ(Ω)− 4π,
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where the last inequality follows from another well-known result of Huber [28]. Since the total mass
of dµ is 0 (by the weak convergence of the measures dµi → dµ), it follows that∫

dµs = 2π
∑

aj ≥ 4π − 2πχ(Ω),

so that
∑
aj ≥ 2− χ(Ω). Note that the Euler characteristic χ(Ω) is given by χ(Ω) = 2−#{∪qj}.

Let G = Gq be the Green’s function for the operator 1−∆ on S2(1) with pole at q (and −q), so
that

∆G = 1− 2π(δq + δ−q).

Thus Gq corresponds to the Dirac measure δq with a = 1 (and measure δ−q). The behavior of
the Green’s function at the antipodal point −q will play no role in the discussion below. A simple
computation shows that G is given explicitly by

(2.46) G(x, q) = log
1

sin r(x, q)

where r(x, q) = dist+1(x, q). In particular for x near q, Gq has the well-known logarithmic behavior
G(x, q) = − log r(x, q) + α, where α is smooth.

Now we first note that (2.46) implies that in (2.45)

aj ≥ 1.

This follows from the completeness of (Ω, g). Namely, the g-length of a curve γ ending at some qj
is given by

(2.47) `g(γ) =

∫
γ
eudr,

where r is the g+1-arclength parameter for γ. Since g is complete, the integral in (2.47) must
diverge; hence on approach to qj , u ≥ log r−1+δ, for any fixed δ > 0 (on some sequence of points
pk with r(pk)→ 0). By (2.46), this implies aj ≥ 1.

The leading order behavior of the limit function u near the point q ∈ {qj} is governed by the
behavior of the Green’s function G = Gq. By Green’s representation formula, the decomposition
(2.44) gives the expression

(2.48) u = aG+ β,

near q where β is (at least) continuous in a neighborhood of q ∈ {qj}. This gives

g = e2ug+1 = e2(aG+β)g+1 = e2βga,

where ga = e2aGg+1. One has

Kae
2aG = 1−∆aG = (1− a) + 2πa(δq + δ−q),

so that away from the pole q (and −q),

(2.49) Ka = (1− a)e−2aG = (1− a)(sin r)2a ≤ 0.

For Ku we obtain

(2.50) Ku = (1− a−∆β)(sin r)2ae2β = χr2a,

on Ω near q; the last equality defines χ. Now Ku = limKi = K, so that (2.50) holds also at q.
Clearly then K(q) = 0 and q is a critical point of K ∈ C. Since (1.5) thus holds at q, one must
have ∆K(q) > 0. This implies that

(2.51) a = 1,

and also χ(q) > 0.
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Now the geometry of ga for a = 1 is that of a complete flat metric on the cylinder R×S1; Ka = 0
when a = 1. The pole q occurs at +∞ while the pole −q occurs at −∞. As above, we ignore the
behavior at −q. It follows that the geometry of (Ω, g) on approach to any q ∈ {qj} is that of a flat
cylindrical end.

On the sequence (S2, gi), these cylindrical ends are filled in or capped by very small discs Dj =
Dj(δi) in (S2, g+1) about qj , δi → 0. Thus topologically, S2 = Ω ∪ {∪Dj}. The metrics gi are
blowing up such very small discs either to discs of approximately unit area or to very large discs.
The former case corresponds to capping of the cylindrical end R+×S1 by a hemisphere. In this case,
the Gauss curvature is necessarily bounded away from 0 at some point in the disc, (by the Gauss-
Bonnet theorem for instance), which contradicts the Cα convergence Ki → K. Hence the capping
discs must become very large and of very small curvature Ki ∼ 0 corresponding to a spherical
bubble with area tending to infinity. Intuitively, this requires a band of negative curvature to open
up the cylinder, capped off by a region of positive curvature to cap off the end.

To analyse this latter case in detail, fix any i sufficiently large; for r very small, by (2.50) the
curvature Ki of gi on the sphere Sq(r) is small but uniformly positive, Ki ≥ κ0 > 0. Consider
the exponential map of gi-geodesics normal to Sq(r) into the disc Dq(r). If the curvature Ki of
gi satisfies Ki ≥ 0 in Dq(r), then standard comparison geometry implies these geodesics have
conjugate points at a gi-bounded distance to Sq(r). This implies (Dq(r), gi) has uniformly bounded
diameter, which contradicts the assumption here that areagiDq(r) → ∞. Thus, minDq(r)Ki < 0
on some sequence i → ∞. Let L0 = L0(i) ⊂ {Ki = 0} ⊂ Dq(r), be the collection of curves
homologous to Sq(r) such that Ki ≥ 0 in the region bounded by Sq(r) ∪ L0. Now on the one
hand, standard comparison geometry for non-negative curvature implies the gi-length `gi of L0 is
uniformly bounded. Each component L′0 of L0 bounds a small disc D′i ⊂ Dq(r) in S2. On the
other hand, standard comparison geometry for non-positive curvature shows that if Ki ≤ 0 on
D′i, then areagiD

′
i → ∞ implies `gi(L

′
0) → ∞; this is a standard isoperimetric-type inequality for

non-positive curvature. Since areagiDq(r) → ∞, it follows that for some D′i, maxD′i Ki > 0 for i

large. However, this contradicts the assumption that Ki → K ∈ C. Namely, since {Ki} is uniformly
within C, there are no local maxima of Ki with |Ki| sufficiently small.

It is worth noting, and is discussed in detail in Remark 2.7 below, that when K /∈ C, such bubble
behavior with unbounded area may occur.

Next suppose the total mass or variation of dµi satisfies

m(|dµi|)→∞.

In this case, we will see that the blow-up behavior of {ui} creates even larger a in (2.50), leading
to the same contradiction.

To begin, as above choose base points yi realizing maxKi. By Proposition 2.1 and Remark 2.2 as
above, the sequence (S2, gi, yi) subconverges to a complete conformally flat limit surface (Ω, g, y);
the convergence is uniform in C2,α (at least) on compact subsets of Ω. As in Remark 2.2, the
abstract domain (Ω, g) may be conformally embedded as a planar domain, i.e. a domain in S2 with
complete metric g = e2ug+1. As before we let Z = S2 \ Ω be the singular set of g. By (2.40),
there is a sequence of nested neighborhoods Nm ⊃ Nm+1 of Z in S2 with ∩Nm = Z such that
areagiNm →∞ for each fixed m. By completeness u→∞ at ∂Ω = ∂Z, and hence by (2.32),

(2.52) ∂Z ⊂ {K ≥ 0},

where K = limKi. (It will follow from later arguments below that Z has empty interior, so that
∂Z = Z).

The complete surface (Ω, g) may have a finite or infinite number of ends. Suppose first the
number of ends is finite and choose any fixed end E. Then E is an annulus in S2, with either
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finite or infinite extremal length. This dichotomy corresponds to a hyperbolic or parabolic end
respectively, in the sense of potential theory, cf. [1].

We claim that the end must be parabolic. This is proved by contradiction, so suppose E is
hyperbolic. Let σj be a divergent sequence of smooth closed curves in the annular end E discon-
necting E. The annulus E is embedded in S2 and so {σj} is a sequence of Jordan curves in S2

bounding a nested sequence of domains Dj+1 ⊂ Dj ⊂ S2 with σk ⊂ Dj for k > j. The limit
D∞ = limDj = ∩Dj is a subset of Z in (2.52). Since the end is hyperbolic, D∞ cannot be a point
(since E is parabolic if D∞ is a point), and hence ∂D∞ contains a non-trivial arc, i.e. the C0 image
of an interval.

Let r be the g-geodesic distance from a fixed point p0 ∈ E. By a theorem of Doyle-Grigorian,
cf. [19], [23], there is a divergent sequence of points pj ∈ E, r(pj) → ∞, such that K(pj) ≤
−(1/r2 log r)(pj). Passing to a subsequence, we may assume pj → q, for some q ∈ ∂Z. If K(q) < 0,
then one has a contradiction to (2.52), so that K(q) = 0. If K ≤ 0 in a neighborhood of q, then 0
is a local maximum of K, contradicting K ∈ C. Hence there exist points arbitrarily near q where
K > 0 and so the level set K = 0 containing q locally disconnects S2 into regions where K > 0 and
K < 0. The closed curves σj then contain arcs α±j ⊂ σj with α+

j ⊂ {K > 0} while α−j ⊂ {K < 0}
with α±j converging to arcs α± ⊂ {K = 0}. However, there are then long triangles ∆j with vertices

{p0, ∂(α+
j )} with K > 0 in the region in ∆j where r is sufficiently large. Such triangles have

extremal length diverging to ∞ (positive curvature gives parabolic ends) and hence α+ is a single
point q, giving again a contradiction.

Thus the end E is parabolic, and hence conformally equivalent to a punctured disc D2 \ q.
As above, we work with the positive measures |dµi| = |∆ui|dv+1 restricted to the end E, i.e. a
punctured neighborhood of q. Without loss of generality, assume mi = m(|dµi|) → ∞. Consider
the rescaled measures dµ̃i = m−1

i dµi, so the total mass of dµ̃i is 1. It follows that the measures |dµ̃i|
subconverge to a positive measure supported at the point q, i.e. to the Dirac measure δq. Hence,
to leading order, dµi = miδq + dνi where ni = m(|dνi|) << mi. If ni → ∞, one may repeat this
process with dµi −miδq in place of dµi and conclude that

dµi = (1−∆ui)dv+1 = m′iδq + dνi

with ni = m(|dνi|) ≤ N , for some N <∞. As in (2.48), this implies that on E,

(2.53) ui = m′i log r−1 + βi

where βi is bounded near q. Since Ki is thus of the form (2.50) with a = m′i > 1, this contradicts
the fact that Ki → K ∈ C.

We note that the same argument applies if there is at least one end of Ω of finite topological
type.

Suppose finally all ends are of infinite topological type; in the following we work with just one
end E. Such planar ends E have the topological form of an infinite union of pairs of pants Pk; Pk
is diffeomorphic to S2 with three discs removed. Each leg of Pk is glued to the waist of one of the
two successors Pk+1 or P ′k+1 of Pk. Such ends have singular set Z equal to a Cantor set in S2,
cf. [43] for a detailed discussion.

Choose a base point p0 ∈ E and let σ be any geodesic ray from p0 diverging to infinity in E.
Let {P ′k} ⊂ E be the collection of pairs of pants intersecting σ. This forms a (connected) sub-end
E′ ⊂ E with limit given by a single point q ∈ Z. Next we cap off all boundary components,

i.e. circles, of {P ′k} not intersecting σ by discs Dk′ , giving then an annular end Ẽ ' σ×R+ ending
at q. For any fixed disc Dk′ , the functions ui are unbounded on Dk′ , (since distgi(Dk′ , Z) → ∞),
but are uniformly bounded on the boundaries ∂Dk′ ' S1. For i sufficiently large, (depending on k′),
we then replace ui|Dk′ by the harmonic extension ũi of the boundary values of ui on ∂Dk′ , i.e. the
solution of the Dirichlet problem ∆ũi = 0 on Dk′ with boundary data ui on ∂Dk′ . In particular, the
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maximum and minimum values of ũi on Dk′ are bounded by the maximum and minimum values of
ũi on ∂Dk′ .

This construction gives a parabolic annular end (Ẽ, g̃i), g̃i = e2ũig+1 limiting at a singular point
q ∈ Z. Suppose first the mass m̃i of |dµ̃i| remains uniformly bounded. Then the same analysis as
that leading to (2.50) gives

K̃ = (1− a−∆β)(sin r)2ae2β.

Of course K̃ 6= K, but K̃ = K in a neighborhood of the geodesic ray σ, i.e. in the neighborhood
∪P ′k of q. Since σ may be chosen to be any geodesic ray and since K ∈ Cm−2,α, it follows that
K(q) = 0 and K is of the form (1.5) near q. This brings one exactly to the situation above where
(2.50)-(2.51) holds and the same arguments as before lead to the same contradiction. Finally,
the same argument as above concerning (2.53) also gives the contradiction when m̃i → ∞. This
completes the proof of Proposition 2.6.

Propositions 2.4 and 2.6 together complete the proof of Theorem 2.3.

Remark 2.7. It is important to observe that the condition (2.21) that K ∈ C is necessary in
Theorem 2.3. This follows from the construction of large spherical “bubbles” in a fixed conformal
class by Ding-Liu in [18] and later by Borer-Galimberti-Struwe in [8]. In particular, the construction
in [8] shows that there is a sequence δi → 0 and conformal metrics gi = e2uig+1 on small spherical
discs Dp(δi) ⊂ S2(1) with arbitrarily large area, with arbitrarily small but positive Gauss curvature
Ki > 0, and for which ui is smoothly bounded near the boundary of the fixed disc ∂Dp(δ). In
particular ui →∞ in Dp(δi). The construction has the property that the Gauss curvature Ki has
a local maximum at p with 0 < Ki(p) = εi → 0 but Ki < 0 and small near ∂Dp(δ) for δ > 0 small.
Further the functions ui are smoothly bounded near ∂Dp(δ). The functions ui and the associated
metrics gi may then be extended past ∂Dp(δ) to smoothly bounded conformal metrics on all of S2.

This construction shows that Ki → K in Cm−2,α
+ on S2 does not imply that conformal metrics

gi are uniformly bounded modulo diffeomorphisms, i.e. the condition K ∈ C is necessary. Clearly
such bubble formation could occur at any assigned finite number of points in S2 for instance.

Theorem 2.3 implies that the hypotheses (2.9) of Proposition 2.1 hold, for gi = e2uig+1 ∈
[g+1] with Ki → K ∈ C. Proposition 2.1 then shows that convergence of the curvatures implies

convergence of the metrics gi in C1,α ∩W 2,p
∗ , modulo diffeomorphism. Next we turn to the role of

the diffeomorphisms.

As discussed following the proof of Proposition 2.1, there are diffeomorphisms ψi of S2 such that,
(in a subsequence)

(2.54) ψ∗i (e
2uig+1)→ e2ug+1,

in C1,α ∩W 2,p
∗ . Further, as in (2.15), there are ϕi ∈ Conf(S2) such that

(2.55) ηi := ϕ−1
i ◦ ψi → Id.

The diffeomorphisms ψi, ηi (and their inverses) are (1 + εi) quasi-conformal with εi → 0 as i→∞.
The next main step is the following:

Proposition 2.8. For gi = e2uig+1 as above with Ki → K ∈ C ⊂ Cm−2,α
+ , the functions ϕ∗iui are

uniformly bounded in C1,α ∩W 2,p for any α < 1, p < ∞. Thus {ui} is bounded in C1,α ∩W 2,p

modulo the action of the conformal group on Cm,α.

Proof: By the uniform Hölder regularity of locally bounded quasi-conformal maps, cf. [35], [21],

the convergence in (2.55) is in W 1,2
∗ and Cα for any fixed α < 1. More significantly, an important
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theorem of Astala [3] on the W 1,p boundedness of K-quasi-conformal mappings shows that ηi in
(2.55) are bounded in W 1,p for any p <∞, so that

ηi → Id,

in W 1,p
∗ , i.e. weakly in W 1,p. The same statements hold of course for η−1

i .
Write then ψ∗i = η∗i ϕ

∗
i and insert in (2.54) to obtain

(2.56) η∗i (e
2ϕ∗i uig+1)→ e2ug+1,

in C1,α, bounded in W 2,p. By Astala’s theorem [3], η∗i and (η−1
i )∗ are uniformly bounded in Lp,

for any p <∞, and hence e2ϕ∗i ui is uniformly bounded in Lp.
Now from the defining equation (1.1), we have

(2.57) ∆ϕ∗iui = 1− (Ki ◦ ϕi)e2ϕ∗i ui .

The term Ki ◦ ϕi is bounded in L∞ while, as noted above, the term e2ϕ∗i ui is bounded in Lp.
Standard elliptic regularity applied to (2.57) shows that ϕ∗iui bounded in C1,α ∩ W 2,p modulo
constants, i.e. the mean value of ϕ∗iui. Since e2ϕ∗i ui is bounded in Lp, so is the mean value of ϕ∗iui.
This proves the result.

Given these results, we now restate and prove Theorem 1.1. As in the Introduction, let

(2.58) N = {K ∈ Cm−2,α
+ : |∇K|(p) + |∆K|(p) > 0,∀p s.t. K(p) > 0}.

It is easy to see that N is open and dense in Cm−2,α
+ and is invariant under the action of Conf(S2).

Let
U = π−1(N ∩ C),

and let

(2.59) π0 = π|U : U → N ∩ C,
be the restriction of π to U .

Theorem 2.9. On the domain U , the curvature map

π0 : U → N ∩ C
in (2.59) is a proper Fredholm map of index 0.

Proof: As noted in the Introduction, π is a Fredholm map of index 0 so the issue is to prove π0

is proper. Suppose ui is a sequence in U with Ki = Ke2uig+1
= π0(ui) satisfying

(2.60) Ki → K in N ∩ C ⊂ Cm−2,α
+ .

Then by Proposition 2.8, there are ϕi ∈ Conf(S2) such that the sequence vi := ϕ∗iui converges (in
a subsequence) to a limit in C1,α and weakly in W 2,p for any p <∞. Let v0 = lim vi ∈ C1,α∩W 2,p.
These functions vi satisfy

(2.61) ∆vi = 1− (Ki ◦ ϕi)e2vi .

By means of a further (uniformly bounded) sequence of conformal transformations if necessary, we
may assume without loss of generality, that vi ∈ S for all i, and v0 ∈ S, for S as in (2.6).

If the sequence of conformal transformations ϕi are bounded in Conf(S2), then they converge

(smoothly) in a subsequence to a limit and hence {ui} converges in C1,α ∩ W 2,p
∗ to a limit u

satisfying (1.1) weakly. Standard elliptic regularity theory then implies u ∈ Cm,α and, by (2.60),
the convergence ui → u is Cm,α. This proves the result in this case.

Assume then ϕi → ∞ in Conf(S2). This occurs only if the corresponding conformal dilations
[ϕi]→∞ in Conf(S2)/O(3) = R3, cf. (2.2). Without loss of generality, we may then assume that,
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in a subsequence, ϕi = ϕq(ti) is a sequence of conformal dilations with pole at q and ti → ∞.
Taking the limit of (2.61), it follows that

(2.62) ∆v0 = 1−K(q)e2v0 .

Namely e2vi → e2v0 in C1,α while K ◦ϕi → K(q) strongly in Lp. It follows that v0 in W 2,p is a weak
solution of (2.62). As above, elliptic regularity theory implies v0 is smooth. The equation (2.62)
means that the metric g0 = e2v0g+1 is of constant curvature K ≡ K(q) on S2. As is well-known,
this means that v0 = ϕ∗(const) and since v0 ∈ S, it follows (cf.(2.7)) that v0 = const and

(2.63) K(q)e2v0 = 1.

In particular, note that ϕi →∞ in Conf(S2) is only possible at points q where K(q) > 0.
Returning to (2.61), write (2.61) as

(2.64) ∆vi = 1− (Ki ◦ ϕi)e2vi = 1−K(q)e2vi + (K(q)−Ki ◦ ϕi)e2vi .

In the following, it will simplify the argument to rescale the sequence Ki slightly, Ki → K(q)
Ki(q)

Ki so

that

(2.65) Ki(q) = K(q),

for i sufficiently large. This is equivalent to shifting vi by small constants vi → vi + δi with δi → 0
as i→∞. We assume this has been done, without changing the notation.

Using (2.63), (2.64) may be rewritten as

(2.66) ∆(vi − v0) = 1− e2(vi−v0) + (Ei + Fi)e
2vi ,

where

(2.67) Ei = (K(q)−K ◦ ϕi)e2vi and Fi = [(K −Ki) ◦ ϕi]e2vi .

By a careful but straightforward analysis of the asymptotic behavior of K ◦ ϕt as t → ∞, Chang-
Yang show in [11] that

(2.68) |K(q)−K ◦ ϕt)|2L2 ≤ χq(t) :=

{
c log t
t2

if ∇K(q) 6= 0,
c
t2

if ∇K(q) = 0.

Using (2.65), and replacing K above by K −Ki, the same argument shows that

(2.69) |(K −Ki)(q)− (K −Ki) ◦ ϕi|2L2 ≤ χq(ti).

Since vi is uniformly bounded in C1,α, it follows that

(2.70) |Ei|2L2 + |Fi|2L2 ≤ χq(ti).

Next for the second term on the right in (2.66), since vi → v0 in C1,α, e2(vi−v0) = 1+2(vi−v0)+σi,
where σi = O((vi − v0)2). Then (2.66) gives

∆(vi − v0) + 2(vi − v0) = Ei + Fi − σi.
The kernel E2 of the operator ∆ + 2 consists of 1st eigenfunctions of the Laplacian on S2, i.e. the
restrictions of linear functions ` to S2(1). The tangent space T0S to S at v0 = const is the
orthogonal complement of E2. Since vi, v0 ∈ S, and since σi is lower order, it follows that vi − v0

satisfies the elliptic estimate

(2.71) |vi − v0|2L2,2 ≤ χq(ti).

On other hand, pairing (2.61) with xe−2(vi−v0) where x is any linear function on S2(1) gives

xe−2(vi−v0)∆vi = xe−2(vi−v0) − xKi ◦ ϕi
K(q)

.
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Since e−2(vi−v0)∆(vi − v0) = −1
2∆e−2(vi−v0) + 2|dvi|2e−2(vi−v0), we obtain

−1
2

∫
x∆e−2(vi−v0) + 2

∫
x|dvi|2e−2(vi−v0) =

∫
xe−2(vi−v0) − 1

K(q)

∫
xKi ◦ ϕi.

(Here and below, all integrals are with respect to the standard volume form of g+1). Using the
self-adjointness of the Laplacian ∆ and the fact that x is a first eigenfunction, one sees that the
first and third terms above cancel, leaving

2

∫
x|dvi|2e−2(vi−v0) = − 1

K(q)

∫
xKi ◦ ϕi.

Since |x| ≤ 1, v0 = const and vi − v0 → 0 in C0 it follows from (2.71) that

|
∫
x|dvi|2e−2(vi−v0)| << χq(ti),

and so, for any x,

(2.72) |
∫
xKi ◦ ϕi| << χq(ti).

Now the analysis by Chang-Yang in [11] again shows that for K ∈ N , i.e. K non-degenerate in
the sense of [11], and for a suitable choice of x, one has

(2.73) |
∫
xK ◦ ϕi| ≥ ψq(ti),

where

(2.74) ψq(t) =

{ c
t if ∇K(q) 6= 0,

c log t
t2

if ∇K(q) = 0, ∆K(q) 6= 0.

As above, writing Ki ◦ ϕi = (Ki −K) ◦ ϕi + K ◦ ϕi, the same analysis by Chang-Yang in [11] as
above shows that, for any x,

|
∫
x(K −Ki) ◦ ϕi| << ψq(ti),

so that

(2.75) |
∫
xKi ◦ ϕi| ≥ ψq(ti),

Comparing the behavior of χ(t) and ψ(t) in (2.68) and (2.74), the estimates (2.72) and (2.75)
give a contradiction for ti sufficiently large, i.e. ϕi sufficiently large in Conf(S2). It follows that
{ϕi} is bounded in Conf(S2), and the proof is then completed above.

Remark 2.10. The properness of the map π0 corresponds to (and is in fact equivalent to) general
a priori estimates for solutions of (1.1). Thus, as noted in the Introduction, the properness of
π0 implies that for any K ∈ N ∩ C with distCm−2,α(K, ∂(N ∩ C)) ≥ ε > 0, there is a constant
C = C(|K|Cm−2,α , ε, α′) such that, if u is any solution of (1.1), (i.e. π0(u) = K), then

(2.76) |u|Cm,α′ ≤ C,
for any α′ < α.

Remark 2.11. We note that the use of Astala’s theorem in [3] is crucial in the argument above.
If ηi are merely bounded in W 1,2, one only obtains an L1 bound on e2vi from (2.56) and this is not
enough to obtain control on vi from (2.61). In fact obtaining suitable control in this case relates to
the exponential Sobolev embedding theorems of Trudinger-Moser-Aubin. On the other hand, one
only really needs a bound on ηi in W 1,p for some p > 2, not any p <∞.
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The structure of the domain K = N ∩ C plays an important role in the further analysis of the
curvature map π. Let {Ki} denote the collection of path components of K, so that

(2.77) K =
⋃
i

Ki.

As in (1.9), let U i = π−1(Ki). The map π (or π0) restricted to U i gives then a proper Fredholm
map

(2.78) πi : U i → Ki,

into a connected target space. It is not easy to determine the number of components of K; we will
see in the next section that K has in fact infinitely many components.

Since both N and C are open and dense in Cm−2,α
+ , the closure K = Cm−2,α

+ . The point-set
theoretic boundary

(2.79) ∂K = Cm−2,α
+ \ K = ∂N ∪ ∂C

consists of two main parts; ∂N consists of functions K such that ∆K(q) = 0 for some critical point
q of K with K(q) > 0, while ∂C consists of functions K for which there exist p ∈ {K = 0} such
that (1.5) holds at p and ∆K(p) ≤ 0. Note that if p is a non-degenerate critical point of K ∈ ∂C,
then p is necessarily a local maximum. Both of these boundaries will play an important role in the
analysis to follow.

Remark 2.12. As noted above, while N and ∂N are invariant under the action of Conf(S2), they
are not invariant under the natural action (ψ,K)→ K ◦ ψ of Diffm−2,α on Cm−2,α. (On the other
hand, C and ∂C are Diffm−2,α invariant). It is easy to see that the sign of ∆K at a saddle point q
may be changed arbitrarily under the action of local diffeomorphisms acting only in a neighborhood
of q.

Also, the number of critical points of K (even Morse non-degenerate critical points) may change
in a given path component N i of N . For instance, in a neighborhood of a local maximum of K,
one may locally perturb K by “pushing down”, creating two local maxima and a saddle point
(mountain pass), while keeping ∆K < 0 throughout the process.

It is worthwhile to compare the space K with the space M of Morse functions in Cm−2,α
+ . The

space M is also open and dense in Cm−2,α
+ and is Diffm−2,α invariant. As in (2.79), one has

∂M = Cm−2,α
+ \M and there is a decomposition into Diffm−2,α invariant path components

(2.80) M =
⋃
j

Mj .

Now it is clear that there are infinitely many path componentsMj , since for instance the number of
non-degenerate critical points, which can be arbitrarily large, is constant on each component Mj .
The boundary or wall ∂M, consisting of functions with at least one degenerate critical point, serves
as a birth (or death) region for the creation of non-degenerate critical points. Under perturbation,
a degenerate critical point in ∂N can resolve for instance into either two critical points or zero
critical points. For a detailed discussion of the decomposition (2.80), we refer to [2], [38].

We have the following structure of generic points in ∂K.

Proposition 2.13. The intersectionM∩∂K is open and dense in ∂K. Near a generic K ∈M∩∂K,
the boundary ∂K is a smooth, codimension 1 hypersurface of Cm−2,α

+ , locally separating Cm−2,α
+ into

two components. In a neighborhood of any K ∈M∩∂K, ∂K is a region formed from the transverse
intersection of a finite number of codimension 1 hypersurfaces.
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Proof: It is obvious that M∩ ∂K is open in ∂K. To prove the intersection is dense, we work
first with ∂N . Let K ∈ ∂N and let Ki be a sequence of Morse functions with Ki → K ∈ Cm−2,α

+ .
If in a subsequence Ki ∈ ∂N , there is nothing more to prove, so suppose i is large and Ki /∈ ∂N .
For each i large, the function Ki has a finite set Qi of non-degenerate critical points which are
Hausdorff close to the critical locus Z = {q : |∇K|(q) + |∆K|(q) = 0} of K. By means of small
local perturbations by diffeomorphisms as discussed in Remark 2.12, one may perturb Ki slightly,
keeping Ki Morse, and such that |∇Ki| + |∆Ki| = 0 on the saddle points of Qi while |∆Ki| ≤ εi
on any local maxima and minima in Qi; here εi → 0 as i → ∞ . Letting i → ∞ then proves that
M∩ ∂N is dense in ∂N . The proof that M∩ ∂C is dense in ∂C is similar and straightforward.

Next, define

F : Cm−2,α
+ × S2 → R3

F (K, p) = (∇K(p),∆K(p)).

Thus K ∈ ∂N if there exists p such that (K, p) ∈ F−1(0). The map F is smooth and the derivative
in the first factor is DFp(β) = d

dtF (K+ tβ)(p) = (∇β(p),∆β(p)), which is clearly surjective since β

is arbitrary. Thus, by the implicit function theorem in Banach spaces, Σ = F−1(0) is a codimension

3 smooth hypersurface of Cm−2,α
+ × S2. Of course F−1(0) may not be connected.

Now consider the projection p : Cm−2,α
+ × S2 → Cm−2,α

+ of Σ. Clearly

(2.81) p(Σ) = ∂N .
We claim that for K ∈M, Σ is transverse to the vertical S2 factors, in that

(2.82) TΣ ∩ TS2 = 0.

To see this, one has TΣ = KerDF and for v ∈ T(K,p)S
2, F∗(v) = d

dt(∇K(p + tv),∆K(p + tv)) =

(D2K(v), v(∆K)). Thus v ∈ TΣ ∩ TS2 if and only if v ∈ KerD2K and v ⊥ ∇∆K at p. Since p is
a critical point of K and K is a Morse function, it follows that v = 0, which proves the claim.

Given any K ∈ M ∩ ∂N , consider ∆K as a function on the set of critical points p of K.
Generically, a point K ∈ M ∩ ∂N has exactly one critical point p where ∆K = 0, with ∆K 6= 0
at all other critical points. In this case, the transversality (2.82) implies that ∂N is a codimension
one hypersurface near K. Such local hypersurfaces may have a finite number of intersections,
corresponding to the vanishing of ∆K at multiple critical points. Since the critical points are
isolated, it is clear that the intersection of j such hypersurfaces is a submanifold of codimension j.

Similarly, a function K ∈M has a finite number of local maxima and by considering the behavior
of K on such local maxima, it is easy to see that M∩ ∂C is the intersection of a finite number
(generically one) of smooth hypersurfaces.

The proof of Proposition 2.10 shows that in general ∂K has the structure of a rectifiable set of
codimension one in Cm−2,α

+ . Namely, by definition, a set Y ⊂ Cm−2,α
+ is rectifiable of codimension

s if Y is contained in a countable union of sets of the form p(G), where p : Cm−2,α
+ × Rk →

Cm−2,α
+ is projection on the first factor and G is a codimension s + k submanifold (a graph) in

Cm−2,α
+ × Rk, cf. [47], [5] for further details. Rectifiable sets of codimension s are preserved under

smooth Fredholm maps of index 0 (cf. [5]). The characterization of ∂N in (2.81) then shows that
∂N is rectifiable of codimension one and similarly for ∂C.

Although Proposition 2.13 shows that ∂K locally separates Cm−2,α
+ , it is not easy to see to what

extent ∂K globally separates K into distinct components. This will be discussed further in Sections
3 and 4.

Regarding C, it is clear that the space of positive curvature functions

(2.83) P = {K ∈ Cm−2,α : K(x) > 0, ∀x ∈ S2},
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is path connected and of course contained in C.

Proposition 2.14. The space C ⊂ Cm−2,α
+ is path connected.

Proof: Let K(r), r ∈ [−1, 1] be a smooth path of functions in Cm−2,α
+ connecting points K(−1)

and K(+1) in C. Without loss of generality, assume K(r) has only isolated critical points and
assume K(r) intersects ∂C in the single point K(0). Let K± = K(±ε) with ε sufficiently small and
assume K± are Morse functions.

We will use the following simple construction from Morse theory. Let K be a Morse function.
Then all pairs of local maxima of K are connected by descending gradient flow lines to the collection
of saddle points of K. Consider the collection C of local maxima in the region U0 = {K < 0} ⊂ S2.
Each local maximum in C is connected via a saddle point in U0 to another local maximum in C or
to a local maximum (perhaps the absolute maximum) in the region K > 0. Here without loss of
generality assume that 0 is a regular value of K so that the level set L0 = {K = 0} consists of a
finite collection of embedded simple curves, bounding the planar domain U0 ⊂ S2.

Then by standard Morse theory there is a smooth curve of functions Kt, leaving K unchanged
in the region K ≥ 0, deforming K = K0 to K1 and for which K1 has no local maxima in the region
K1 < 0. Namely by pushing down along gradient flow lines, one may inductively cancel off any
local maximum with a saddle point in U0. (Of course this path passes from one Morse chamber to
another, but this is irrelevant here). It follows that K1 has only local minima and saddle points in
the region K1 < 0. The path Kt is contained in C, i.e. it does not intersect ∂C. One may visualize
this construction concretely by viewing K as the height function z of an embedding or immersion
of S2 into R3; this is always possible by the main result in [34].

Now apply the construction above to the two points K = K±. This gives a pair of paths joining
K± to points K ′± remaining within C. Next, combine these paths with the paths K ′±(s) = K ′±+ sc
for s ∈ [0, 1] and c > max(|minK ′+|, |minK ′−|). The resulting paths join K ′± to points K ′±(1) in P
again remaining within C. The endpoints of these curves may then be connected within P.

Observe that any component N i of N intersects P; namely as above, for any K ∈ N i, choosing
c > |minK|, the path K(s) = K + sc, s ∈ [0, 1] connects K within N i to a point in P.

Proposition 2.15. Any path component Ki of K = N ∩ C intersects P. Moreover, Ki ∩ P is path
connected so that a path component Ki of K is uniquely determined by the path component Ki ∩P.

Proof: The proof is a refinement of the proof of Proposition 2.14. Choose any Morse function
K ∈ M ∩ K. First note that if K has no negative local maxima, i.e. no local maxima p with
K(p) < 0, then adding a curve of positive constants to K as above connects K to P within K,
i.e. within a path component of K.

Next suppose p is a negative local maximum of K which is connected via a gradient flow line to
a negative saddle point q, in the sense that ∆K(q) < 0; necessarily K(q) < 0. Then as in the proof
of Proposition 2.14, one can deform K = K0 ∈ K to K1 ∈ K along a curve by pushing down along
gradient flow lines to cancel p and q, while maintaining ∆K < 0 at the curve of saddle points. As
above this requires crossing a wall between Morse chambers so that a saddle point becomes Morse
degenerate, i.e. detD2K(qt) = 0. However, one may maintain ∆K(qt) < 0 on the curve qt of saddle
points. Such curves thus remain in K. One may iterate this process inductively to cancel off all
such pairs. This connects K to a point K ′ to which one may apply the argument above.

Thus suppose K has a negative local maximum p without negative (i.e. ∆K < 0) saddle points
in U0 connected to p. In this case, we first create a new pair of positive local maxima with a
new negative saddle point starting from K. Namely the given function K has a positive absolute
maximum say at p0. By locally pushing down near p0 as in Remark 2.12, one may create within K
a new function K ′ with two positive maxima and a saddle q′ connecting them, with ∆K ′(q′) < 0
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with K = K ′ on U0, were U0 = S2 \ V0 and V0 is a small neighborhood of p0. The value K ′(q′) of
the saddle q′ may then be pushed down further so that K ′(q′) < K(q), for any saddle q of K in the
region U0, again remaining in K. Replacing K by K ′, one may then apply the construction in the
previous paragraph to cancel a negative local maximum of K ′ = K with the negative saddle point
q′. Again, this construction may be iterated inductively to cancel all negative local maxima of while

remaining within K. In other words, K is connected by a curve in K to another Morse function K̂

without negative local maxima. One may then connect K̂ to P by pushing up by positive constants
as above.

The second statement follows from the stability or continuity of the construction above. Thus,
suppose K1 and K2 are two points in Ki ∩ P connected by a smooth path K(s) in Ki ⊂ N ∩ C.
The process above applied at K1 may be applied continuously along K(s) to deform the path K(s)
into Ki ∩ P.

3. degree computations

The purpose of this section is to prove Theorems 1.2 and 1.3.

The map π0 in (1.8) or (2.59) is a proper Fredholm map of index 0 between open subsets of
Banach spaces. Proper Fredholm maps F : X → Y of index 0 between oriented Banach spaces or
oriented Banach manifolds X, Y with Y path connected have a Z-valued degree defined as

deg F =
∑

x∈F−1(y)

sign(DxF ) ∈ Z,

wbere y is any regular value of F and the sign of DF (x) is ±1 according to whether DF (x) preserves
or reverses orientation at x, cf. [20] or more recently, [6], [7] for example. A point y ∈ Y is a regular
value of F if DxF is an isomorphism, for all x ∈ F−1(y). Note that the mod 2 reduction of degZF
is the (unoriented) Smale degree [44]. The domain U of π0 is an open subset of a Banach space,

and so is clearly orientable, as is the target space N ∩ C ⊂ Cm−2,α
+ .

Proof of Theorem 1.2.

To calculate the degree of

πi : U i → Ki,
as in (2.78), recall that Proposition 2.15 shows that each component Ki of K intersects P and Ki
itself is path connected. The degree of πi is then the same as the degree of the restricted map

π̃i : U iP → Ki ∩ P,

where P is the space of positive curvature functions as in (2.83) and U iP = (πi)−1(Ki ∩ P).
The degree of π̃i is calculated by Chang-Gursky-Yang in [12], by an elegant argument based on

the Poincaré -Hopf theorem and is given by the formula (1.11). Hence (1.11) holds for πi.

Remark 3.1. Note that the formula for deg πi given by (1.11) changes, generically by one, when
passing through the boundary region ∂C ∩ N , i.e. on a curve K(t) on which a local maximum of
K(t) passes through zero. Similarly it changes generically by one on curves K(t) passing through
the boundary region ∂N ∩ C, so that ∆K(t) changes sign at a saddle point of K(t). Note that the
sign of ∆K can be changed or altered just by means of local diffeomorphisms of S2 supported near
the saddle points, as in Remark 2.12.
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We note that the results above in Sections 2 and 3 do not use any variational formulation of the
curvature equation (1.1). We now turn to the proof of Theorem 1.3 which gives another calculation
of deg πi using the functional J from (1.2).

Thus consider

(3.1) J : Cm,α × Cm−2,α
+ → R,

J(u,K) =

∫
S2

(|du|2 + 2u)dv0 − log(

∫
S2

Ke2udv0).

Note that J is invariant under the translations u→ u+ c. The variation D1J of J at (u,K) with
respect to the first variable is given by

(3.2) 1
2D1J = −∆u+ 1− κKe2u,

where κ = (
∫
Ke2udv0)−1. Hence, critical points of J with respect to variations of u, subject to

the constraint κ = 1, are exactly the solutions of (1.1). It is worth noting that the structure, for
example the topology, of the constraint manifold

CK = {u ∈ Cm,α :

∫
S2

Ke2udv0 = 1},

depends on K ∈ Cm−2,α
+ . Of course there are no critical points with respect to variation in the

second or K-variable. By Theorem 1.1, the set of critical points of JK (satisfying the constraint
κ = 1) is compact for any fixed K ∈ K. If K is a regular value of π0, there are only finitely many
critical points of JK and all are non-degenerate, (cf. Proposition 5.3 below).

Given a critical point u of JK , the index indu of JK at u is the maximal dimension on which the
second variation D2JK with respect to u is negative definite. It is easy to see that indu is finite,
for any fixed u. We note that it is well-known [27] the infimum of JK is never achieved unless
K = const.

Proof of Theorem 1.3.

This result is by now an essentially standard result for variational problems satisfying compact-
ness conditions as in Theorem 1.1. In the following, we adapt an elegant approach of White [47], [48]
to this setting.

The right-hand side of (1.12) is defined for each regular value K and the main issue is to prove
the expression is well-defined, i.e. independent of the choice of K ∈ Ki. Thus let K(0) and K(1)
be any two regular values of πi and let K(t), t ∈ [0, 1], be an oriented smooth curve in Ki joining
them. Let u(t) = (π0)−1(K(t)). As shown in Theorem 5.5 below (which is independent of the
considerations here), the set of singular points Σ ⊂ U i is a stratified space of codimension at least
one. Hence, if necessary, K(t) may be perturbed slightly so that K(t) is transverse to πi and thus
u(t) is a collection of smooth disjoint curves in U i connecting regular points over K(0) and K(1),
cf. also [44]. Define an orientation on u(t) by defining π0 to be orientation preserving near any
regular point u(t) if the index indu(t) is even, orientation reversing if the index is odd. Given this
orientation on curves, the mapping degree of

π0 : u(t)→ K(t),

between these 1-dimensional manifolds is then given exactly by (1.12). It suffices then to show
that this definition of orientation is well-defined, i.e. consistent, in that when u(t) passes through
a critical point of π0, the local orientation of π0 changes according to the change of the index. In
the following, we assume without loss of generality that u(t) is a connected curve.

Suppose u(t0), t0 ∈ (0, 1) is a critical point of π0, so that the Hessian D2JK at u(t0) has a
non-trivial null-space N , i.e. the nullity dimN of JK at u(t0) is non-zero, cf. also Proposition 5.3
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below. Without loss of generality, assume dimN = 1; the arguments below apply to each line in
N . The following computations take place for t near t0.

It is trivial to see that the map F : Cm,α × Cm−2,α
+ → Cm−2,α given by F (u,K) = 1

2D1J =

1−∆u− κKe2u is a submersion. Hence F−1(0) is a closed submanifold; clearly F−1(0) = graphπ.
The submanifold F−1(N) is a 1-dimensional thickening of F−1(0) and one may thicken the curve
(u(t),K(t)) to a 2-parameter family

σ(t, s) = (u(t, s),K(t, s)) ∈ F−1(N) with K(t, s) = K(t).

By construction, one has

(3.3)
d

ds
J(σ(t, s)) =

∫
S2

〈F (σ(t, s)),
du

ds
〉dv+1.

Clearly d
dsJ(σ(t, s))|s=0 = 0. By construction F (σ(t, s)) ∈ N and du

ds ∈ N are non-zero for s 6= 0.
In the (t, s) plane P , the locus where ∂J(t, s)/∂s = 0 (with J(t, s) := J(σ(t, s))) is given locally
by the graph s = u(t) of the curve u(t). In particular, (t, u(t)) is locally the boundary of the open
domain U = {∂J/∂s > 0} in P :

u(t) = ∂U.

If indut is even for t near t0, t 6= t0, u(t) is given the boundary orientation induced by U while if
indu(t) is odd near t0, give u(t) the opposite orientation. It is now simple to see that this choice
agrees with the definition above. Namely, the point t0 is a critical point for the map π2 ◦u : I → R,
where π2 is projection onto the s-factor. If this critical point is a folding singularity for π2 ◦u, then
the index of u(t) changes by 1 in passing through u(t0) and reverses the orientation of π2(u(t)),
(exactly as in the case of the standard folding singularity x→ x2). If on the other hand π2 ◦u does
not fold with respect to π2 (so that one has an inflection point) then the index of u(t) does not
change through t0 and π2 maps u(t) to π2 ◦ u(t) in an orientation preserving way.

This shows that the degree (1.12) is well-defined. The fact that it equals the degree in (1.12) up
to an overall sign follows from the basic uniqueness properties of such Z-valued mappings, cf. [6].
This completes the proof.

4. Discussion on the Image of π.

In this section we summarize some of the main results of the previous sections and prove several
further results on the behavior of π near the boundary ∂K. We also discuss the structure of the
components of K. These issues provide a bridge to issues discussed in the next section.

It follows from the results in Sections 2 and 3 that the boundary ∂K is a closed rectifiable set of
codimension 1, separating Cm−2,α

+ into an infinite collection of components Ki on which the proper
maps

πi : U i → Ki

have a well-defined degree. For any K in a component Ki of non-zero degree, (1.1) is solvable (since
πi is surjective), and there is an effective, signed, count on the number of solutions for generic K.
There are no restrictions on the structure of the set of critical points for K in such components Ki;
for example, critical points of K need not be isolated.

The only possible regions where (1.1) may not have a solution are the components of degree zero
and the boundary region ∂K = ∂N ∪ ∂C.

First we discuss some general structural results for K.
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Lemma 4.1. The degree of π0 may take on any value in Z, i.e. for all n ∈ Z, there exists a
component Ki of K such that

deg πi = n.

Proof: Let K be a Morse function in K. Let M and m denote the number of local maxima and
minima respectively, and let s+, s− denote the number of saddle points with ∆K > 0 and ∆K < 0
respectively. Then the Morse Lemma gives M − (s+ + s−) + m = χ(S2) = 2, while the degree
formula (1.11) gives deg π0 = M − s− − 1.

If all saddles have ∆K > 0, so s− = 0, then deg π0 = M − 1, while if all saddles have ∆K < 0,
then deg π0 = M − (s+ + s−) − 1 = 1 −m. It is clear that for any M there is a Morse function
with M local maxima and similarly for any m, there is a Morse function with m local minima.

Finally, as in Remark 3.1, at any given saddle point q, by using local diffeomorphisms supported
near q, one may change the sign of ∆K arbitrarily. It follows that deg π0 takes on all values in Z.

Remark 4.2. It is unknown whether the set of components Ki of a fixed degree is connected,
(although this seems unlikely). In view of Proposition 2.15, consider the collection of components
Ki ∩ P, i varying, of a fixed degree, say n = M − s− − 1 and let Ki = K be a Morse function in
Ki ∩ P. Each such K has a finite number of critical points and the flow lines of ∇K flow between
these critical points. Any pair of local maximum points p1, p2 of K connected to a saddle point q
of K with ∆K(q) < 0 can be canceled by a path K(t), t ∈ [0, 1], of Morse functions staying in the
given component Ki∩P, leaving a single maximum point. Thus both M and s− can be reduced by
one along such paths in Ki ∩ P. In the same way, any pair of local minima of K can be canceled
within Ki∩P with a saddle point with ∆K > 0 leaving a single minimum point. Thus, within each
component Ki ∩ P, one may find Morse functions K ′i ∈ Ki ∩ P with the minimal numbers Mmin,
mmin of local maxima and minima respectively - among Morse functions in Ki ∩ P. The numbers
Mmin and mmin, and so also the minimal number of saddle points smin, are thus the same for the
collection of components Ki ∩ P. Note also that the space of Morse functions with a fixed number
of local maxima and minima is path-connected in M, cf. [34] for example. However it is not clear
that there must exist paths connecting such points in Ki ∩ P, i.e. paths on which the sign of ∆K
at the saddle points remains fixed.

On the other hand, note that the argument above proves that there is only one component K0

of degree zero, since Mmin = mmin = 1, smin = 0 on K0.

Next we show that there are solutions of (1.1) in each of the regions K0 (the degree zero com-
ponent) and ∂K mentioned above.

Proposition 4.3. The domain K0 is non-empty, i.e. there exist u with Ku = π(u) ∈ K0.

Proof: It is well-known, cf. [33], that given any function K ∈ C∞+ there is a smooth metric g on
S2 such that Kg = K. By the uniformization theorem g = ψ∗(e2ug+1), for some diffeomorphism ψ
and function u. The metric g̃ = e2ug+1 is conformal to g+1 with Gauss curvature Kg̃ = K ◦ ψ−1.

Now choose K to be any Morse function in K0 with exactly two critical points, necessarily
a maximum and a minimum. This property is invariant under diffeomorphisms, and necessarily

K̃ = Kg̃ ∈ K0. Then π(u) = K̃.

Although Remark 4.2 shows that K0 is only one component among infinitely many others on
which π0 is onto, the next result shows that, in a certain sense, the degree zero component K0 is
the largest.
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Proposition 4.4. For any given K, the set of linear functions ` such that

(4.1) K + ` ∈ Imπ

is a bounded set in R3. Hence, for any given K, for any ` sufficiently large, K + ` ∈ K0 and K + `
is not solvable for u in (1.1).

Proof: The proof is (naturally) based on the Kazdan-Warner obstruction (1.4). First if K =
const, then K + ` /∈ Imπ for any ` 6= 0 by (1.4). Thus we assume K 6= const. Any given ` may
be written in the form ` = c〈p, ·〉, where p ∈ S2, c > 0 and 〈·, ·〉 is the Euclidean dot product. As
noted following (2.5), K ∈ Imπ if and only if Kϕ = K ◦ ϕ ∈ Imπ for any ϕ ∈ Conf(S2). Given p
as above, choose ϕ such that minKϕ is achieved at −p while maxKϕ is achieved at p; this is always
possible since K 6= const. Now choose the conformal vector field X = ∇`0 and let `ϕ = ` ◦ ϕ.

Then if Kϕ + `ϕ ∈ Imπ, one must have∫
S2

X(Kϕ + `ϕ)dvg =

∫
S2

[X(Kϕ) + cX(`0 ◦ ϕ))]dvg = 0,

for some volume form dvg. Note that X(`0 ◦ ϕ) = 〈Dϕ(∇`0), X〉 with respect to g+1. Since ϕ is
conformal, X(`0 ◦ ϕ)x = χ(x)X(`0)ϕ(x) where χ =

√
detDϕ > 0. One has X(`0) = ξ = sin2 r ≥ 0.

This gives ∫
S2

X(Kϕ + `ϕ)dvg =

∫
S2

[X(Kϕ)(x) + cχ(x)ξ(ϕ(x))]dvg = 0.

Using the change of variables formula, this may be rewritten as

(4.2)

∫
S2

X(Kϕ + `ϕ)dvg =

∫
S2

[X(Kϕ)(x) + cχ̃(x)ξ(x)]dvg = 0.

where χ̃ = χ ◦ ϕ−1detD(ϕ−1)is a positive functions on S2. One has 0 ≤ ξ ≤ 1, with ξ vanishing
only at the poles ±p. If c is sufficiently large, then X(Kϕ) + cχ̃ξ > 0 away from the poles ±p, since
the term X(Kϕ) is fixed. On the other hand, at and sufficiently near the poles, X(Kϕ) ≥ 0 by
construction and so again X(Kϕ) + cχ̃ξ ≥ 0. This contradicts (4.2) (for any area form dvg) if c is
sufficiently large.

Next, even though π0 is not necessarily proper near ∂K, we show there are solutions in both
parts of ∂K.

Proposition 4.5. The domain ∂1U := π−1(∂N ) is non-empty, i.e. there exist u with Ku = π(u) ∈
∂N ⊂ ∂K.

Proof: There may be many proofs of this result, but we work here with a particular and simple,
natural construction of a large class of functions K ∈ Imπ ∩ ∂N .

Namely, consider the behavior of K on the space of u which are eigenfunctions of the Laplacian,
so that ∆u = −λu, λ > 0. These are the spherical harmonics, or equivalently, restrictions of
harmonic polynomials in x, y, z on R3 to S2. From (1.1), for such u one has

(4.3) K = e−2u(1 + λu).

Hence

(4.4) ∇K = e−2u((λ− 2)− 2λu)∇u,

so that the locus of critical points of K is the critical locus of u, together with the level set
u = (λ− 2)/2λ. At the critical locus, one has

(4.5) ∆K = −e−2u((λ− 2)− 2λu)λu.
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For any harmonic homogeneous polynomial u of degree at least 2, it is easy to see that 0 is always
a critical value of u. Hence, for K generated from arbitrary eigenfunctions of the Laplacian, one
always has

K ∈ ∂N .
Thus if Eλ denotes the λ-eigenspace of the Laplacian on S2(1), then for any λ,

π(Eλ) ⊂ ∂N .
Note that (4.3) and (4.5) imply that

π(Eλ) ⊂ C.

Remark 4.6. If λ > 2, one may restrict u to the open ball in the eigenspace Eλ where maxu <
(λ− 2)/2λ. For such u, the critical points of K are exactly the critical points of u.

It is worth discussing a simple, specific example in more detail. Thus let u = 1
4(x2− y2). This is

an eigenfunction with λ = 6; note that 1
4 <

1
3 = λ−2

2λ . The critical points of u, equal to the critical
points of K, come in three pairs.

The first pair is x = ±1, y = z = 0, giving u = 1
4 and ∆K < 0. This gives a pair of maxima of u

and K. The second pair is given by y = ±1, x = z = 0, giving u = −1
4 and a pair of minima of u

and K with ∆K > 0. The third pair z = ±1, x = y = 0 has u = 0 and gives a pair of saddle points
of u and K with ∆K = 0. A simple computation shows that D2K is non-degenerate at z = ±1,
while D2K is degenerate at the other critical points.

Now consider perturbations of u inducing perturbations of K into N . Let v = ηw where η is
a cutoff function supported near z = ±1 with η ≡ 1 in a small neighborhood U of the poles, and
w is another eigenfunction of ∆ with eigenvalue λ = 6, say w = z2 − y2. The computation of K
remains the same for u+εv in U and the poles z = ±1 are still critical points. By choosing ε > 0 or
ε < 0, the poles resolve independently into non-degenerate saddles with ∆K 6= 0; one may arrange
∆K > 0 or ∆K < 0 at a given pole by choosing ε > 0 or ε < 0 suitably. Outside of U , the εv
perturbation does not change the structure of the other critical points of K.

This shows that for suitable perturbations of u, the curvature K ∈ ∂N may be perturbed into
a degree 0 component of π0, (choosing one perturbation of the saddle to ∆K < 0 and the other to
∆K > 0), or into a degree 1 component, (choosing both saddle perturbations to ∆K > 0), or into
a degree −1 component, (choosing both saddle perturbations to ∆K < 0).

Although K here is not a Morse function, consider instead the eigenfunctions u = x2−(1+ε)y2 +
εz2. The same considerations apply as above and now K = K(u) is a Morse function for ε ∈ (0, 1),
so K ∈M∩ ∂N . In connection with Proposition 2.13, such K lie in the intersection of two regular
local hypersurfaces of ∂N and the structure of N near K is described by the wall-crossing above.

A similar structure holds for general eigenfunctions of the Laplacian, for any λ.

A stronger existence result holds in the region ∂C ⊂ ∂K. The following result corresponds to
Theorem 1.5. Write

∂C = ∪n,m∂Cnm,
where ∂Cnm = ∂C ∩ K̄m ∩ K̄n with m < n and Km, Kn are components of degree m, n respectively.
Thus a curve K(t) passing from Km ∩N to Kn ∩N passes through ∂Cnm, increasing the degree by
n−m.

Proposition 4.7. The map π is onto ∂Cnm ∩M for any (m,n) with m 6= 0, m < n.

Proof: As discussed in Remark 2.7, the map π is not proper at ∂C, due to the formation of
(unbounded) bubble solutions as a local maximum of K passes from small positive values to small
negative values. This corresponds to a decrease in the degree of π0 by one.
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However, such bubbles do not form when passing in the reverse direction, from small negative to
small positive values where the degree increases by one, at least within the space of Morse functions
K ∈ M. To prove this, suppose K ∈ ∂C ∩M so that there exists x with K(x) = 0 and x is a
local maximum of K. Thus there exists δ > 0 such that K(y) ≤ K(x) = 0 for all y ∈ Dx(δ)
where D = Dx(δ) is the disc of radius δ in (S2(1), g+1). Without loss of generality, assume there
exists ε0 > 0 such that K ≤ −ε0 < 0 on ∂D. Suppose there is a sequence Ki ∈ C ∩ N with
Ki = π(ui) → K in Cm−2,α

+ such that x is a local maximum of Ki with Ki(x) = −εi → 0 and
Ki(y) ≤ 0 for y ∈ Dx(δ). We claim that areagiD remains bounded as i → ∞. Namely, since
the curvature Ki is non-positive on the simply connected disc D, the geodesic circles (Si(r), gi)
of radius r about x with respect to gi are convex. Letting `i(r) denote the gi-length of Si(r), it
follows that `′′i ≥ 0 where the derivative is with respect to geodesic gi-distance r. If areagiD →∞,
it follows that the distance function ri becomes unbounded on D as i→∞ and hence also

(4.6) `i →∞ on D.

Now by (2.31), the area of gi is uniformly bounded near the boundary ∂D and in particular the
gi-length of S = ∂D is uniformly bounded. This contradicts (4.6), which proves the existence of
a bound on areagiD. It then follows from Theorem 2.3 and the proof of Theorem 2.9 that the
sequence gi is bounded and, in a subsequence, gi → g, ui → u, in Cm,α. This proves the claim
above.

Now if Ki ∈ Km with m 6= 0, then since πm is onto, Ki = π(ui), for some sequence ui ∈ Um.
For K = limKi ∈ ∂C as above, suppose that K ∈ ∂C ∩ K̄n, for n > m, so that K ∈ ∂C ∩ K̄m ∩ K̄n.
This corresponds to an increase of the degree and the argument above proves that K ∈ Imπ.

5. Domain and Range Structure

In this section, we discuss a number of aspects of the structure of the set of regular and singular
points of π. The discussion is independent of the global results discussed in previous sections, until
the analysis beginning with and following Proposition 5.7, which discuss global issues again.

Given a Fredholm map F : X → Y of index 0 between Banach manifolds, recall that x is a regular
point of F if the linearization DxF is an isomorphism. The inverse function theorem implies that
F is a local diffeomorphism in a neighborhood of a regular point. A point y ∈ Y is a regular value
if all points x ∈ F−1(y) are regular points. By definition, any y /∈ ImF is a regular value. A point
x ∈ X is a singular point if it is not a regular point.

Let
Σ ⊂ Cm,α

be the closed set of singular points of π, and O the open set of regular points of π, so that

Cm,α = O ∪ Σ.

If u is a singular point of π, so that KerDuπ 6= 0, then there exists a deformation u′ of u which
preserves the Gauss curvature to first order: K ′ = d

dtK(u + tu′)t=0 = 0. Recall the basic defining
equation (1.1), i.e.

e2uK = 1−∆u.

Differentiating in the direction ut = u + tu′ and setting v = u′, one has e2u(K ′ + 2vK) = −∆v.
This gives:

Lemma 5.1. A point u ∈ Cm,α is a critical point of π if and only if there exists a variation u′ = ω
such that

(5.1) ∆ω + 2Ke2uω = 0.
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It is worth noting that by (2.5), the sets of regular and singular points, as well as regular and
singular values, are invariant under the action of Conf(S2).

Remark 5.2. Since ∆µ2g = µ−2∆g in dimension two, one easily finds

(5.2) Duπ(v) = −∆gv − 2Kv,

for g = e2ug+1. In case K > 0, this can be rewritten as

(5.3) Duπ = −K(∆g̃v + 2v),

where g̃ = Kg. Thus u is a critical point of π if and only if 2 is an eigenvalue of the conformal
Laplacian ∆g̃. By a well-known theorem of Hersch [26], for any metric γ̃ on S2 with area(S2, γ̃) =
4π, one has

λ1 ≤ 2,

with equality if and only if γ̃ is of constant curvature 1. Thus the conformal metrics g̃ in (5.3) have
2 as a 2nd (or higher) eigenvalue of the Laplacian except when g has constant curvature.

Proposition 5.3. The function K is a regular value of π if and only if all critical points of the
functional JK in (1.2) are non-degenerate.

Proof: If u is a critical point of JK giving a solution of (1.1), then (3.2) implies that D2JK(v) =
−∆v−2Ke2uv = e2u(−e−2u∆v−2Kv) = e2uK ′(v). Thus, v ∈ KerD2JK if and only if DK(v) = 0,
which proves the result.

At a critical point u of π, let N denote the solution space of (5.1) and let d = du = dimN . The
space N = Nu equals the null-space of D2JK at u, and d is the nullity of the critical point u. By
(5.2), ImDuπ consists of functions of the form ∆gv + 2Kv where g and K are fixed and v varies
over Cm,α. In particular

(5.4) N ⊥ ImDuπ,

with respect to the L2(g) inner product, so that N spans the g-normal space to ImDπ.

Let (Cm−2,α
+ )′ ⊂ Cm−2,α

+ denote the subspace of functions χ such that

(5.5)

∫
S2

χdv+1 = 4π.

Of course for K = π(u), χ := Ke2u ∈ (Cm−2,α
+ )′ by the Gauss-Bonnet theorem. Similarly let

(Cm,α)′ = {u ∈ Cm,α :
∫
udv+1 = 0}.

Lemma 5.4. The map

(5.6) C : (Cm,α)′ → (Cm−2,α
+ )′,

C(u) = µ := Ke2u = π(u)e2u,

is a smooth diffeomorphism.

Proof: We first observe that C is surjective, i.e. µ = Ke2u may be arbitrarily specified. One
needs to show that given any µ with

∫
µdv+1 = 4π, there is u such that

∆u− 1 = −µ.
This is an elementary consequence of the Fredholm alternative.

Next we claim that KerDC = 0 everywhere. To see this, suppose µ′ = 0. Then ∆u′ = 0, so that
u′ = const. Since u ∈ (Cm,α)′,

∫
u′dv+1 = 0, and hence u′ = 0. It is easy to see that C is of index

0, and hence it follows that C is a local diffeomorphism onto (Cm−2,α
+ )′. Finally, to see that C is
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one-to-one, suppose µ1 = µ2. Then ∆u1 = ∆u2, which implies u1 = u2 + const, so again u1 = u2.
This proves the result.

We next show that the singular set Σ of π is a stratified space; this is essentially Theorem 1.4.
For the purposes of this paper, a subset X of Cm,α will be called a stratified space if X = ∪Si,
where each Si is a smooth manifold of codimension i in Cm,α such that the point-set theoretic
closure satisfies

S̄k \ Sk ⊂
⋃
i>k

Si.

Theorem 5.5. The singular set Σ ⊂ Cm,α of π is a closed stratified space, with strata Σd consisting
of submanifolds of codimension d = dimN ≥ 1.

In particular, the regular points of π are open and dense in Cm,α.

Proof: Consider the map

(5.7) L : (Cm−2,α
+ )′ × (Cm,α \ {0})→ Cm−2,α,

L(µ, v) = ∆v + 2µv.

Note that by (5.2), L ◦ C = −e−2uDπ, so at a critical point of π,

D2π = −e2uD(L ◦ C).

We claim that 0 is a regular value of L, so that the inverse image S = L−1(0) is a smooth

properly embedded submanifold of (Cm−2,α
+ )′ × (Cm,α \ {0}). To do this, one needs to show the

linearization is surjective and the kernel splits.
The map L is linear in the second component v, and D2L maps onto Im(∆ + 2µ) equal to the

orthogonal complement to the kernel Ker(∆ + 2µ). On the other hand, one has

(5.8) D1L(v) = 2µ′v,

where D1 is the derivative in the first or µ-direction. We claim that the projection of µ′v onto the
kernel Ker(∆ + 2µ) is surjective as µ′ ranges over T (Cm−2,α

+ )′. The component of µ′v in the kernel
is given by

(5.9)

∫
S2

µ′vωdvg+1 ,

for some unit vector ω ∈ Ker(∆ + 2µ), so the claim is that for any v, there exists µ′ such that (5.9)
is non-zero. The only condition on µ′ is the linearization of (5.5) which gives

(5.10)

∫
S2

µ′dvg+1 = 0.

There exists µ′ satisfying (5.10) with (5.9) non-zero provided ωv is not identically one and v is not
identically zero. The latter holds by assumption (see (5.7)), and the former holds since for instance
ω = 0 somewhere. This shows that DL is surjective.

The kernel of DL at (µ, v) is given by pairs (µ′, w) such that

(5.11) ∆w + 2µw = −2µ′v.

This is solvable for w if and only if µ′v ⊥ Ker(∆+2µ) and the solution is unique modulo Ker(∆+
2µ). Thus KerDL is a closed subspace, naturally isomorphic to (Ker(∆ + 2µ)⊥ ⊕Ker(∆ + 2µ).
It has a closed complement, given by µ′v ∈ Ker(∆ + 2µ) with w ∈ Ker(∆ + 2µ)⊥

This shows that the set S = {(µ, ω)} ⊂ domainL such that ∆ω+ 2µω = 0, is a smooth properly
embedded submanifold of the domain of L. The tangent space TS at (µ,w) is given by KerDL,
i.e. pairs (µ′, w) satisfying (5.11). Of course S may have a number of distinct components. The
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reason for excluding {0} in the domain of L in (5.7) is to remove a trivial region (µ, 0) of S,

diffeomorphic to (Cm−2,α
+ )′.

The structure of the singular set Σ is now obtained by studying the projection of S into the base
space (Cm,α)′. Observe that the vertical fiber of S where µ is fixed and ω varies is the linear space
N of dimension d(µ), so that S is ruled by linear spaces, equal to the fibers S ∩ pr−1

1 (pt) of the
projection pr1 onto the first factor in (5.7). The function

(5.12) d : S → Z+, d = dimN(µ)

is upper semi-continuous; it may increase in limits, but not decrease. Let Σ = pr1(S).
Let Sd = {µ ∈ S : d(µ) = d}. One should be aware in the following that any given Sd may be

empty. For instance S0 = ∅, since (µ, v) ∈ S0 implies v = 0, which is not in the domain of L. We
proceed inductively on d and work on a fixed component of S. First, the upper semi-continuity of
d implies that S1 is open in S. Since S1 is ruled by lines, the projection

pr1 : S1 → Σ1 ⊂ (Cm−2,α
+ )′

with Σ1 = pr1(S1) is a vector bundle of rank 1 (a line bundle with the zero-section removed) over the

manifold Σ1. By (5.11), the space Σ1 is of codimension 1 in (Cm−2,α
+ )′. The upper semi-continuity

of d implies that ∂S1 = S̄1 \ S1 ⊂ ∪k≥2Sk.
Next, in the closed complement S \ S1, S2 is an open (possibly empty) subset in the induced

topology, again by the upper semi-continuity of d. The projection

pr1 : S2 → Σ2 ⊂ (Cm−2,α
+ )′,

with Σ2 = pr1(S2) is a vector bundle of rank 2 over the manifold Σ2. Again by (5.11), the manifold

Σ2 is of codimension 2 in (Cm−2,α
+ )′.

Continuing inductively in the same way gives manifolds Σd of codimension d in (Cm−2,α
+ )′ such

that the point-set theoretic boundary of each Σd is contained in ∪d′>dΣd′ . This gives Σ the structure
of a stratified space.

Via the diffeomorphism C from Lemma 5.4, we view Σ = pr1(S) as a subset of U ′. By scaling
(i.e. the addition of constants to u), Σ becomes a stratified subset of U with strata Σd of codimension
d in Cm,α.

Next we turn to discussion of the singular value set Z ⊂ Cm−2,α
+ . By definition,

Z = π(Σ).

The singular set Σ in the domain Cm,α is a stratified space, with strata Σd given by submanifolds
of codimension d in Cm,α with (point-set theoretic) boundary satisfying ∂Σd ⊂ Σd+1. The map π

maps Σ onto the set of singular values Z in Cm−2,α
+ so that Z is a singular “variety” of codimension

at least one in Cm−2,α
+ . More precisely, Z is a rectifiable set in Cm−2,α

+ of codimension at least one,
(cf. the definition following Proposition 2.13).

Let
Zd = π(Σd),

so that, if non-empty, Zd is rectifiable of codimension d in Cm−2,α
+ . It is not known if Z is stratified

as is Σ. The following result gives a sufficient criterion for the strata Zd to be locally given by
submanifolds of codimension d in Cm−2,α

+ .

Lemma 5.6. Suppose u ∈ Σd with K = π(u) ∈ Zd and let N be the d-dimensional kernel of
∆ + 2Ke2u. If for some ω̃ ∈ N , the symmetric bilinear form Sω̃ : N ×N → R,

(5.13) Sω̃(ω1, ω2) =

∫
S2

Kω1ω2ω̃dvg,
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is non-degenerate, then Zd is a submanifold of codimension d near K.

Proof: For u ∈ Σd, consider the straight line ut = u+ tu′, where u′ = ω ∈ N , so ω is normal to
ImDuπ in L2(g). Then σt = π(ut) = K(ut) is a smooth curve in Cm−2,α

+ , with vanishing tangent
vector at t = 0, σ′(0) = Dπ(u′) = 0. Calculating the second derivative from (5.2) gives, since
u′′ = 0,

(5.14) D2π(ω, ω) = 2e−2u∆ω = −4Kω2.

Thus taking the L2(g) pairing with the normal vector ω̃ as in (5.4) gives

〈D2π(ω, ω), ω̃〉 = −4

∫
S2

Kω2ω̃dvg.

The result is then a straightforward consequence of the implicit function theorem, cf. Theorem
3.7.2 of [39] for instance.

Next we consider relations between the singular set Z and the existence of solutions of (1.1).
As discussed in Sections 2 and 4, the boundary ∂K is a closed rectifiable set of codimension 1,
separating Cm−2,α

+ into an infinite collection of domains partially distinguished by the degree of π0.
There are only three possible regions where (1.1) may not have solutions. The first region is the
degree zero component K0, cf. Remark 4.2. By Proposition 4.7, (i.e. Theorem 1.5), a second region
is a portion of the boundary region ∂C ⊂ ∂K, while the third region is the boundary ∂N ⊂ ∂K.
We explore existence and non-existence in these regions in more detail.

We begin first with K0. For π0 : U0 → K0 as in (2.78), let

E = Imπ0 ⊂ K0.

Proposition 5.7. The image E of π0 is a non-empty, closed subset of K0.

Proof: It follows from Proposition 4.3 that E 6= ∅. Since π0 is proper, it has closed range, which
proves the second statement.

Let Eint denote the interior of E , as a set in Cm−2,α
+ ; this is the union of the set of regular values

of π0 with the singular values (if any) contained in the interior, i.e. (Eint ∩ Z). Obviously Eint is
open in E . More significantly, it follows from Theorem 5.5 and the fact that π0 is smooth that Eint
is dense in E ,

(5.15) Ēint = E .

Let B = ∂Eint be the boundary of Eint, so that E = Eint ∪ B. One thus has a decomposition of
the target

(5.16) K0 = Eint ∪ B ∪ D,

where D = K0\E is the non-existence region where there are no solutions to the Nirenberg problem.
The linear functions K = ` are in K0 but are not in Imπ0 by the Kazdan-Warner obstruction (1.4)
so that

D 6= ∅.
Both Eint and D are non-empty open sets, so that the decomposition (5.16) is non-trivial. Of course
the boundary satisfies

B ⊂ Z.
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Proposition 5.8. The wall B separating Eint from D satisfies

(5.17) B ⊂ Z̄1.

In particular, Z1 6= ∅. An open-dense subset B′ of B1 = B ∩ Z1 is a smooth hypersurface in
K0 ⊂ Cm−2,α

+ .

Proof: The singular strata Σk are of codimension k in the domain U0. Hence their images Zk
under the smooth map π are of codimension at least k in Cm−2,α

+ . Closed subsets of codimension

at least two do not locally separate the space Cm−2,α
+ , and since B does locally separate, one must

have Z1 6= ∅ and (5.17) follows.
We use Lemma 5.6 to determine which regions in B1 are codimension 1 submanifolds. First, define

a point K ∈ B1 to be path-accessible if Eint is locally path connected near K. These are points K
such that for any open neighborhood V of K in the target Cm−2,α

+ , there is a neighbhorhood U ⊂ V
of K such that U ∩ Eint is path connected. This fails for instance for points K at which two local
regions of B1 intersect at K, separating Eint into two local components near K. Let B′ denote the
set of path-accessible points in B1.

By construction, B′ is open in B1. We claim that B′ is also dense in B1. Namely for any point
K ∈ B1 and for any neighborhood U of K in Cm−2,α

+ , one has U ∩D 6= ∅. It follows from this that
U ∩ B′ 6= ∅, so that B′ is dense.

Next we prove that the path-accessible points B′ form (locally) a smooth hypersurface in Cm−1,α
+ .

To do this, it suffices to show that the form S in (5.13) is non-degenerate on B′.
Suppose the form S = D2π is degenerate at u with π(u) = K ∈ B′. Then there exists u′ = ω ∈ N

and ω̃ ∈ N such that 〈D2π(ω, ω), ω̃〉 = 0. We then calculate the third derivative D3π(ω, ω, ω) =
d3(Kut )

dt3
. Taking the derivative of (5.14) along ut, using the fact that K ′(ω) = 0 and u′′ = 0 gives

D3π(ω, ω, ω) = −4e−2uω2∆ω = 8Kω3,

so that

(5.18) 〈D3π(ω, ω, ω), ω̃〉 = 8

∫
S2

Kω3ω̃dvg.

When dimN = 1, ω̃ is a multiple of ω. Using (5.2) (with v = ω̃ = ω) gives

〈D3π(ω, ω, ω), ω〉 = −4

∫
S2

ω3∆gωdvg = 12

∫
S2

ω2|dω|2dvg > 0.

Now as in the proof of Lemma 5.6, suppose σ(0) = π(u0) = K ∈ B1, so that u ∈ Σ1. The normal
space to ImDπ at K is 1-dimensional and spanned by ω. The term (5.18) is then strictly positive
and hence the third derivative of σ(t) in the direction of the normal vector ω is non-vanishing.
It follows that the function 〈σ(t), ω〉 behaves as a cubic, and so changes signs. Moreover, by
construction σ(t) ∈ E and since σ′(t) 6= 0 for t 6= 0, it follows that σ(t) ∈ Eint for t 6= 0 with t
small. Now if K is path-accessible, then σ(t) is in a single local path component of Eint, which
contradicts the fact that σ(t) behaves as a cubic. This contradiction shows that the form (5.13) is
non-degenerate on B′, which proves the result.

Remark 5.9. The open, dense set B′ ⊂ B where B is a submanifold of codimension 1 in Cm−2,α
+

is a classical bifurcation locus for the Nirenberg problem, cf. [39] for instance. Namely for K ∈ B′
with (outward) normal vector ω, consider the line K(t) = K + tω in Cm−2,α

+ . For t > 0 sufficiently
small, K(t) /∈ Imπ, i.e. there are no solutions of (1.1) for such K(t). For t < 0 sufficiently small,
there are locally exactly two distinct solutions of (1.1), i.e. the map π is locally 2 − 1 onto K(t),
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t < 0. These two solutions merge at t = 0 to give a local unique solution to the Nirenberg problem.
Thus the map π is locally a 2− 1 fold map onto the curve K(t), t ≤ 0.

A large open set in the non-existence region D is given by the curvature functions from Proposi-
tion 4.4. A further specific example of non-existence of solutions in D ⊂ K0 near the boundary with
the region K1 (a degree one component) is constructed and analysed in detail by Struwe in [45].

Remark 5.10. As an application of the results above, we discuss the behavior of the map π0 near
the special point K = 1 (or K = const). Consider the region P of positive curvature functions in

Cm−2,α
+ , as in (2.83). Then P ⊂ C and as noted in [12], the domains Ki ∩ P are star-shaped about

K = 1, i.e. if K ∈ Ki ∩ P, then the line segment t + (1 − t)K, t ∈ [0, 1) lies in Ki ∩ P. Thus the
structure of ∂K becomes very complicated near K = 1.

In the component K0 where
degπ0 = 0,

any regular value K ∈ Eint near K = 1 has an even number of solutions of (1.1). On the other
hand, it is easy to see that the point u = 0 with π(u) = Ku = 1 is a regular point for the restricted
map π1 = π|S for S as in (2.6), i.e. D0π1 is injective. Points u ∈ S near u = 0 are then also regular
and so in a neighborhood V of 0 in S, the map

(5.19) π1 : V → H,

is a diffeomorphism onto its image H; H is a local smooth hypersurface of codimension 3 in Cm−2,α
+ .

Consider then a regular value K ∈ H∩K0. The value K has a unique inverse image (i.e. solution
of (1.1)) u1 ∈ V ⊂ S and so there must be another solution u2 /∈ V of (1.1). (In fact with further
work it can be proved that u2 /∈ S). Moreover, the solutions u1 and u2 have JK-indices with
opposite (even-odd) parity. By (2.7), there exists a conformal dilation ϕ such that

ϕ∗u2 ∈ S,
and so

π(ϕ∗u2) = K ◦ ϕ.
Suppose that ũ2 = ϕ∗u2 ∈ V , so that K ◦ ϕ ∈ H. Then u1 and ũ2 are two regular points of π0 in
V ⊂ S with index of opposite parity. However, this is not possible. Namely, one may take a curve
K(t) from K to K ◦ ϕ in H with K(t) a regular value of π for all t. The curve K(t) has a unique
lift to a curve u(t) ⊂ V . As discussed in the proof of Theorem 1.3 in Section 3, the index of u(t) is
then independent of t, giving a contradiction. It follows that

(5.20) ũ2 /∈ V.
This argument proves that if K ∈ S is sufficiently close to 1, i.e. |K−1|Cm−2,α ≤ ε for ε sufficiently

small, then
|ϕ|C1 ≥ C = C(ε),

where C(ε)→∞ as ε→ 0. For if C were uniformly bounded as ε→ 0, then the solution ũ2 above
would necessarily be in V , contradicting (5.20).

Thus, pairs of solutions to (1.1) with K ∈ K0 sufficiently close to 1 are (very) far apart in Cm,α,
differing from each other by (very) large conformal factors. This illustrates concretely the effect of
the non-compactness of the conformal group.

Proposition 5.8 describes the general structure of the wall separating the regions of existence
and non-existence in K0. We next consider briefly the issue of existence and non-existence near the
second region ∂K. Recall that

∂K = ∂C ∪ ∂N .
By Proposition 4.7, for any (m,n) with m < n and m 6= 0, one has

∂Cnm ⊂ Imπ,
39



so that for any K ∈ ∂Cnm there is a solution u of (1.1) with Ku = K. From the proof of Proposition
4.7, for any such (m,n), say n = m+ 1, there are (large families of) solution curves u(t), t ∈ [0, 1]
with Ku(t) ∈ Km for t < 1

2 , u(1
2) ∈ ∂Cnm and Ku(t) ∈ Kn for t > 1

2 . Thus, curves of solutions do not
necessarily “blow-up” on approach to ∂C and π is “proper” along such curves.

We expect similar behavior holds at ∂N but this remains unknown in general. The eigenfunction
examples discussed in Proposition 4.5 and Remark 4.6 show that

Imπ ∩ ∂N 6= ∅.

Moreover, Remark 5.10 holds on any component Kn of degree n and not just on K0; for any such
Kn, there are solutions u with u ∈ Kn ∩H, for H as in (5.19). This follows for instance from the
work of Chang-Gursky-Yang [12], where deg πn is shown to be the intersection number of the orbit
{K ◦ ϕ}, ϕ ∈ Conf(S2) with H, for K sufficiently close to 1. As above with ∂C, there are (large
families of) solution curves u(t) ⊂ V ⊂ S with Ku(t) passing smoothly from one component of

Km ∩ P to another component Km+1 ∩ P within H.

Remark 5.11. Since the degree of π0 changes on passing from one component of ∂K to a neigh-
boring or bordering component, π0 cannot extend to a proper map on any open set containing a
portion of ∂K. In particular, the apriori estimates (2.76) do not extend to such larger domains.
On curves K(t) passing through ∂C ⊂ ∂K, there must exist curves of solutions u(t) which blow-up
as Ku(t) approaches ∂K. The analysis given in the proof of Proposition 4.7 shows that in a passage

from Km+1 to Km, m 6= 0, it is likely that only one solution curve blows up, while the remaining
m solution curves pass continuously through ∂Cm+1

m , i.e. a single blow-up curve is the reason for
the drop in degree from m+ 1 to m. Similarly, in passing from K1 to K0 through ∂C one expects
generically there is only one solution curve, and such a solution curve blows up on approach to ∂C1

0 .
One could expect similar behavior on passing through the ∂N region of ∂K.

6. Symmetry Breaking and Existence

In this section, we turn to the question of existence of solutions of (1.1) with extra symmetry.
A key point of view is to find conditions which break the symmetry of the (non-proper part of the)
action of the conformal group Conf(S2) on the domain and target spaces of the map π.

To begin, we give a new proof of Moser’s theorem [37], that any even function K on S2 (K(−x) =
K(x)) with K > 0 somewhere is the Gauss curvature of a conformal metric on S2. The proof below
does not use any sharp Sobolev inequality of Moser-Trudinger-Aubin type.

Let A be the antipodal map x→ −x of S2. Let Cm,αev ⊂ Cm,α be the subspace of even functions,
so u(−x) = u(x) and similarly consider Cm−2,α

ev ⊂ Cm−2,α
+ . The restriction of π in (1.3) to Cm,αev

gives a smooth Fredholm map

(6.1) πev : Cm,αev → Cm−2,α
ev .

Let Cev = C ∩ Cm−2,α
ev .

Theorem 6.1. Any even function K ∈ Cm−2,α
+ is the Gauss curvature of a metric γ = e2uγ+1,

with u an even function on S2. Moreover, the restriction of πev in (6.1) to Uev = π−1
ev (Cev) is proper

and the degree (up to sign) of the map

(6.2) πev : Uev → Cev,

satisfies

(6.3) deg πev = 1.
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Proof: As before, via (1.1), it is easy to see that πev in (6.1) is Fredholm of index 0. Recall
from the work in Section 2 that the non-properness of the map π has two sources. First, the non-
compactness of the conformal group Conf(S2), which gives rise to the division ∂N into the regions
N and second the ‘bubble formation’ at ∂C, giving rise to the region C. We will deal with these in
turn.

To begin, the conformal group of RP2 is compact, equal to its isometry group. Propositions 2.1,
2.8 and Theorem 2.3 apply equally well to RP2 in place of S2 and the proof of Theorem 2.9 for the
map πev in (6.2) becomes much simpler. The compactness of the conformal group implies that the
diffeomorphisms ψi of RP2 in (??), (which lift to even diffeomorphisms of S2) themselves converge
(in a subsequence) to a limit ψ, so that the renormalized diffeomorphisms ψi in (2.54) converge
to the identity in Cm+1,α. This shows that πev in (6.2) is indeed proper. In effect, ∂N = ∅ and

N = Cm−2,α
ev in this situation.

Proposition 2.14 shows that C is connected and the same proof shows that Cev is connected.
Hence deg πev is well-defined on Uev.

To compute the degree of πev, consider the value K = 1. The solutions of (1.1) with K = 1 are
given by u = logχ, for χ as in (2.3). The only such u which is even, and so descends to u on RP2

is u = 0. Thus, π−1
ev (1) is the function u = 0. Moreover, the kernel KerDπ of π at u = 0 is given

by the linear functions `, of which the only even function is ` = 0. Thus KerDπev = 0. This shows
that K = 1 is a regular value of πev, uniquely realized by the regular point u = 0. This proves
(6.3).

It follows that πev is onto Cev. Theorem 1.5, (or more precisely its proof in Proposition 4.7),
shows that πev is also onto ∂Cev. (There are no components of K = N ∩C = D of degree zero. This
completes the proof.

Remark 6.2. It is not asserted (and is not true) that πev in (6.1) is proper. The formation of
bubbles as discussed in Remark 2.7 holds on RP2 just as well as on S2. It follows in particular
that the number of even solutions of (1.1) as K ∈ Cev approaches a given function in ∂C from the
degree decreasing side (so a local maximum of K transitions from positive to negative values) is
often different than the number of even solutions as K approaches a given function from the degree
increasing side of ∂C; compare with the proof of Proposition 4.7.

It is not difficult to see that the result above generalizes, with essentially the same proof, to
the action of any compact group Γ ⊂ O(3) = Isom(S2) of isometries of S2 which breaks the non-

compact action of Conf(S2) on the target space Cm−2,α
+ . Thus, we assume Γ ⊂ O(3) satisfies the

following: for any conformal dilation ϕ = ϕp,t, ϕ 6= Id in Conf(S2), there exists γ ∈ Γ such that

(6.4) γ ◦ ϕ 6= ϕ ◦ γ,

as elements in Conf(S2). For example the subgroup Z2 ⊂ O(3) generated by the antipodal map
satisfies (6.4).

Let Cm−2,α
Γ be the space of Γ-invariant functions in Cm−2,α

+ , i.e. K(γ(x)) = K(x), for all x ∈ S2,
γ ∈ Γ and similarly for Cm,αΓ . As before, π restricts to a smooth Fredholm map of index 0,

πΓ : Cm,αΓ → Cm−2,α
Γ .

As in (6.2), consider also

(6.5) πΓ : UΓ → CΓ,

We then have:
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Theorem 6.3. If a finite group action Γ ⊂ O(3) as above breaks the non-compact action of the

conformal group, then any Γ-invariant function K ∈ Cm−2,α
+ is the Gauss curvature of a conformal

metric γ = e2uγ+1 with u also Γ-invariant. Further, the map πΓ in (6.5) is proper and (up to sign)

(6.6) deg πΓ = 1.

Proof: The proof is identical to the proof of Theorem 6.1, with one distinction. Let S = S2/Γ
be the orbit space of the Γ-action on S2. Then S is an orbifold, in fact a “good” orbifold in the
sense of Thurston. A classification of orbifolds in the special case when Γ ⊂ SO(3) is given for
instance in [49]. As in the proof of Theorem 6.1, the metrics gi descend to orbifold metrics g̃i on
S, and one needs an orbifold or Γ-equivariant version of Propositions 2.1, 2.8 and Theorem 2.3 to
complete the proof as before.

However, since the Γ-action is fixed for all metrics gi, this is essentially standard. Namely, recall
that the proof of the Gromov convergence theorem (Proposition 2.1) is fundamentally based on
the construction of suitable harmonic coordinate charts of uniform size in which the metric is well-
controlled, cf. [22] or [41]. Since Γ acts by isometries on (S2, gi), for each i one may choose a suitable
Γ-equivariant finite atlas A of harmonic coordinates on (S2, gi), i.e. {xki } : U ⊂ S2 → B ⊂ R2 is a
gi-harmonic coordinate chart in A if and only if {xki ◦ γ} is in A, for each γ ∈ Γ. The collection
of transition maps between charts in A are thus also Γ-equivariant. The geometric center of mass
construction used in [22] or [41] to pass from local to global maps is also Γ-equivariant. Given this,
it is readily verified by inspection that the proof in [22] or [41] implies the Γ-equivariant convergence
of the metrics modulo diffeomorphism, i.e. the diffeomorphisms ψi as in (??) satisfy

γ ◦ ψi = ψi ◦ γ,
for all γ ∈ Γ and so are orbifold diffeomorphisms. The condition (6.4) ensures that the group of
Γ-equivariant conformal diffeomorphisms is trivial, so that.by the same arguments used before in
the proof of Theorem 6.1, πΓ in (6.5) is proper. The remainder of the proof then proceeds exactly
as in the proof of Theorem 6.1.

As a simple example, one may take Γ to be the group generated by rotation by angle π (or
any other non-zero rational angle) along one axis and rotation by angle π (or any other non-zero
rational angle) along a linearly independent axis.

Remark 6.4. The surjectivity statements in Theorems 6.1 and 6.3 also hold for thickenings of
Cm−2,α

Γ , i.e. open sets in Cm−2,α
+ containing Cm−2,α

Γ . Namely, first observe that Cm−2,α
Γ is not

contained in the singular value set Z. To see this, suppose K ∈ Cm−2,α
Γ ∩ Z and let ω be an

outward normal vector to TZ in Cm−2,α
+ , i.e. ω ∈ N ; ω is generically unique up to scalar multiples.

Choose a Γ-invariant function χ such that

〈χ, ω〉 =

∫
S2

χωdv+1 6= 0.

Then there exists ε small such that Kε = K − εχ ∈ Cm−2,α
Γ \ Z.

Thus, although Cm−2,α
Γ is of infinite codimension in Cm−2,α

+ , there are open neighborhoods V of

Cm−2,α
Γ contained in Imπ. Hence the full Conf(S2) orbit of V is contained in Imπ.

Remark 6.5. Although deg πev or deg πΓ in (6.3) or (6.6) equals one (up to sign), this does not

imply that the image Cm−2,α
Γ is contained in the degree one component N 1 (or N−1) of π0. For

instance, for Γ = Z2 it is easy to see from the degree formula (1.11) that for any odd n ∈ Z, there

exist K ∈ Cm−2,α
ev such that K ∈ N n. Hence, for such K, there are at least n distinct solutions of

(1.1); one expects that often only one these n solutions is an even function.
Finally, Remark 6.2 also applies to the map πΓ.
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