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Let (M, g) be an Einstein vacuum chronological space-time. The space-time is
stationary if it admits a time-like Killing field X = 9/0¢t, and static if the Killing field
is hypersurface orthogonal. Let u = \/—g(X,X) > 0 and let 7 : (M, g) — (S, gs)
be the projection to the orbit space of the R -action generated by X. We recall the
following classical and well-known results of Lichnerowicz [1,§85, §90], c.f. however
[2] for an earlier version.

Lichnerowicz Theorems. (I). Suppose (M,g) is a geodesically complete
static vacuum space-time, with u(z) — 1, as £ — oo in S. Then (M, g) is flat.

(IT). Suppose (M, g) is a geodesically complete stationary vacuum space-time
which is asymptotically flat, (AF). Then (M, g) is flat.

Physically, these results appear quite satisfying. If the space-time is vacuum
and geodesically complete, then there are no "matter or energy sources” contained
in the space-time. Under the asymptotic conditions at infinity, one then concludes
that the gravitational field is empty. However one might question why it is necessary
to impose any asymptotic conditions on the field. (If there is no ”source”, how could
a non-trivial stationary gravitational field be produced under any conditions?).

The assumption that a space-time be AF occurs throughout general relativity
and is understood to model the asymptotic behavior of a non-trivial field far from
compact energy sources. While physically perhaps reasonable, this assumption is
mathematically very strong, imposing stringent requirements on both the topology
and the metric at infinity.

Further, the physical reasoning above, if rigorous, would make the Lichnerowicz
theorems above tautological. In fact, it would be invalid if one could produce a
geodesically complete stationary vacuum space-time (M, goo) Which is non-empty,
(i.e. not flat). Then the condition that a space-time with non-trivial sources be
asymptotic to (M, goo) at infinity would be equally as valid as the condition that
the space-time be AF. Apriori, it is not at all clear why the curvature of a stationary
vacuum space-time with compact source region should have curvature decaying at
all, or anywhere, at infinity.

It is often thought that in order to obtain unique solutions to the vacuum
Einstein equations, one must impose boundary conditions at infinity, (as in the
Lichnerowicz theorems). This is clearly the case for many elementary physical
theories, e.g. electrostatics. However, such boundary conditions at infinity are
essentially adhoc, and at a more fundamental level should be derived from the
theory itself, and not imposed. This issue was in fact of concern to Einstein, c.f. [3,
pp98-108], and is related to versions of Mach’s Principle. This discussion serves as
some motivation for the following result.

Theorem 1. If (M, g) is a geodesically complete chronological stationary vac-
uum space-time, then (M, g) is flat.



Thus, the asymptotic conditions in the Lichnerowicz theorems are in fact unnec-
essary. Given such a global result, one may then use it to obtain apriori estimates
for the local behavior of stationary vacuum solutions. Thus, suppose (M,g) and
(S,9s) as above are maximal and let S denote the metric or Cauchy boundary of
S w.r.t. gs. Theorem 1 implies that 0S # 0); at S either the metric g5 degenerates
or the Killing field X turns null, (or both).

Theorem 2. Let (M,g) be a chronological stationary vacuum space-time.
Then there is a K < o0, independent of (M, g), such that for r(z) = dist(n(z),d9),

|Rul(@) < K/r*(2), and |Viogu| < K/r(z).

In turn, this result may be used to analyse the apriori possible asymptotic behavior
of (incomplete) stationary vacuum solutions. Define 05 to be pseudo-compact if
r~1(s) C S is compact, for some s > 0. We point out that there are numerous
static or stationary vacuum solutions (for example, the Curzon solution) which are
pseudo-compact in this sense, but for which 85 is not compact.

Theorem 3. Let (M,g) be a static vacuum space-time over (S5,gg), with
pseudo-compact boundary. Then S has a finite number of ends E;. Each end E of
S on which limin f,—cou(x) > 0 is either AF or small, in the sense that

/oo(areaSE(r))*ldr = 00,

where Sg(r) is the geodesic r-sphere in (E, gs) about some base point. Further, E
is necessarily AF under the (physically reasonable) conditions that supgu < co and

mp = lim,_comge(r) = lim,a_,ooi / < Vlogu,Vr > dA # 0.
A Js(r)

Static vacuum solutions with small ends do exist, for instance the Kasner static
solutions, but they have strongly restricted geometry. Their area growth of spheres
is on the order of at most r - (logr)'*¢, ¢ > 0, which is markedly different from that
of AF ends. Typically at infinity, they are topologically R? x S, (in place of R?),
and the asymptotic geometry is that of (collapsed) Weyl solutions.

The results above are proved in [4],[5]. I would like to thank Piotr Chrusciel for
the invitation to participate in MGIX. This work was partially supported by NSF
Grant DMS 0072591.
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