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Preface

This is an evolving set of lecture notes on the classical theory of curves and
surfaces.

The first 5 chapters can be covered in a one quarter class. The first 6 chapters
in a one semester class. Chapters 6 and 7 can be covered in a second quarter class.

An excellent reference for the classical treatment of di↵erential geometry is the
book by Struik [2]. There is another more descriptive guide by Hilbert and Cohn-
Vossen [1]. This book covers both geometry and di↵erential geometry essentially
without the use of calculus. It contains many interesting results and gives excellent
descriptions of many of the constructions and results in di↵erential geometry.
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CHAPTER 1

General Curve Theory

One of the key aspects in geometry is invariance. This can be somewhat di�cult
to define, but the idea is that the properties or measurements under discussion
should be described in such a way that they they make sense without reference
to a special coordinate system. This can be quite di�cult, but it has been a
guiding principle since the ancients Greeks started formulating geometry. We’ll
often take for granted that we work in a Euclidean space where we know how to
compute distances, angles, areas, and even volumes of simple geometric figures.
Descartes discovered that these types of geometries could be described by what
we call Cartesian space through coordinatizing the Euclidean space with Cartesian
coordinates. This is the general approach we shall use, but it is still worthwhile to
occasionally try to understand measurements not just algebraically or analytically,
but also purely descriptively in geometric terms.

For example, how does one define a circle? It can defined as a set of points
given by a specific type of equation, it can be given as a parametric curve, or it can
be described as the collection of points at a fixed distance from the center. Using
the latter definition without referring to coordinates is often a very useful tool in
solving many problems.

There are as yet no figures in the text. It is however easy to find pictures of all
the curves and surfaces mentioned in the text. A simple web search for “cissoid” or
“conchoid of Nicomedes” or “minimal surfaces” or “Enneper’s surface” will quickly
bring up lots of information. Wikipedia is a very good general source. There are
also other good sources that are commercial and can therefore not be mentioned
directly.

1.1. Curves

The primary goal in the geometric theory of curves is to find ways of measuring
that do not take in to account how a given curve is parametrized or how Euclidean
space is coordinatized. However, it is generally hard to measure anything without
coordinatizing space and parametrizing the curve. Thus the idea will be to see
if some sort of canonical parametrization might exist and secondly to also show
that our measurements can be defined using whatever parametrization the curve
comes with. We will also try to make sure that our formulas are so that they do
not necessarily refer to a specific set of Cartesian coordinates. To understand more
general types of coordinates requires quite a bit of work and this will not be done
until we introduce surfaces later in these notes.

Imagine traveling in a car or flying an airplane. You can keep track of time
and/or the odometer and for each value of the time and/or odometer reading do a
GPS measurement of where you are. This will give you a curve that is parametrized
by time or distance traveled. The goal of curve theory is to decide what further
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1.1. CURVES 2

measurements are needed to retrace the precise path traveled. Clearly one must
also measure how one turns and that becomes the important thing to describe
mathematically.

The fundamental dynamical vectors of a curve whose position is denoted q are

the velocity v = dq
dt , acceleration a = d2

q

dt2 , and jerk j = d3
q

dt3 . The tangent line to
a curve q at q (t) is the line through q (t) with direction v (t). The goal is to find
geometric quantities that depend on velocity (or tangent lines), acceleration, and
jerk that completely determine the path of the curve when we use some parameter
t to travel along it.

Most of the curves we shall study will given as parametrized curves, i.e.,

q (t) =

2

6

4

x (t)
y (t)
...

3

7

5

: I ! Rn,

where I ⇢ R is an interval. Such a curve might be constant, which is equivalent to
its velocity vanishing everywhere.

Occasionally curves are given to us in a more implicit form. They could come
as solutions to first order di↵erential equations

dq

dt
= F (q (t) , t) .

In this case we obtain a unique solution (also called an integral curve) as long as
we have an initial position q (t0) = q0 at some initial time t0. In case the function
F (q) only depends on the position we can visualize it as a vector field as it gives
a vector at each position. The solutions are then seen as curves whose velocity at
each position q is the vector v = F (q).

Very often the types of di↵erential equations are of second or even higher order

d2q

dt2
= F

✓

q (t) ,
dq

dt
, t

◆

.

In this case we have to prescribe both the initial position q (t0) = q0 and velocity
v (t0) = v0 in order to obtain a unique solution curve.

Another very general method for generating curves is through equations. In
general one function F (x, y) : R2 ! R gives a collection of planar curves via the
level sets

F (x, y) = c.

The implicit function theorem guarantees us that we get a unique curve as a graph
over either x or y when the gradient of F doesn’t vanish. The gradient is the vector

rF =

 @F
@x
@F
@y

�

.

Geometrically the gradient is perpendicular to the level sets. This means that the
level sets themselves have tangents that are given by the directions



�@F
@y

@F
@x

�

as this vector is orthogonal to the gradient. This in turn o↵ers us a di↵erent way of
finding these levels as parametrized curves since they now also appear as solutions
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to the di↵erential equation


dx
dt
dy
dt

�

=



�@F
@y (x (t) , y (t))

@F
@x (x (t) , y (t))

�

.

In three variables we need two functions as such functions have level sets that are
surfaces:

F1 (x, y, z) = c1,

F2 (x, y, z) = c2.

In this case we also have a di↵erential equation approach. Both of the gradientsrF1

and rF2 are perpendicular to their level sets. Thus the cross product rF1 ⇥rF2

is tangent to the intersection of these two surfaces and we can describe the curves
as solutions to

dq

dt
= (rF1 ⇥rF2) (q) .

It is important to realize that when we are looking for solutions to a first order
system

dq

dt
= F (q (t)) ,

then we geometrically obtain the same curves if we consider

dq

dt
= � (q (t))F (q (t)) ,

where � is some scalar function, as the directions of the velocities stay the same.
However, the parametrizations of the curves will change.

Classically curves were given descriptively in terms of geometric or even me-
chanical constructions. Thus a circle is the set of points in the plane that all have a
fixed distance R to a fixed center. It became more common starting with Descartes
to describe them by equations. Only about 1750 did Euler switch to considering
parametrized curves. It is also worth mentioning that what we call curves used to
be referred to as lines. This terminology still has remnants in some of the terms
we introduce later.

We present a few classical examples of these constructions in the plane.

Example 1.1.1. Consider the equation

F (x, y) = x2 + y2 = c.

When c > 0 this describes a circle of radius
p
c. When c = 0 we only get the origin,

while when c < 0 there are no solutions. The gradient is given by (2x, 2y) and only
vanishes at the origin.

The di↵erential equation describing the level sets is


dx
dt
dy
dt

�

=



�2y
2x

�

.

The solutions are given by q (t) = R (cos (2 (t+ ')) , sin (2 (t+ '))) where the con-
stants R and ' can be adjusted according to any given initial position. A more
convenient parametrization happens when we scale the system to become



dx
dt
dy
dt

�

=



�y
x

�
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so that the solutions are q (✓) = R (cos (✓ + ') , sin (✓ + ')) with ✓ being the angle
to the x-axis. Yet a further scaling is possible as long as we exclude the origin



dx
dt
dy
dt

�

=
1

p

x2 + y2



�y
x

�

.

This time the solutions are given by

q (✓) = R

✓

cos

✓

✓ + '

R

◆

, sin

✓

✓ + '

R

◆◆

and we have to assume that R > 0.

Example 1.1.2. Consider

F (x, y) = x2 � y2 = c.

When c 6= 0 the solution set consists of two hyperbolas. They’ll be separated by
the y-axis when c > 0 and by the x-axis when c < 0. When c = 0 the solution set
consists of the two lines y = ±x. A tangent direction is given by (2y, 2x), which
we observe only vanishes at the origin. Unlike the above example we seem to have
a valid level set passing through the origin, however, it consists of two curves that
pass through the point of contention.

A nicely scaled di↵erential equation is given by


dx
dt
dy
dt

�

=



y
x

�

and the solutions are given by


x
y

�

=



aet + be�t

aet � be�t

�

,

where a, b can be adjusted according to the initial values. There are five separate
solutions that together give us the solutions to x2 � y2 = 0. We get the origin
when a = 0, b = 0. The two parts of y = x when b = 0 with the part in the first
quadrant when a > 0 and in the third quadrant when a < 0. The two parts of
y = �x similarly come from a = 0.

Example 1.1.3. Consider the second order equation

d2q

dt2
= 0.

The solutions are straight lines q (t) = q0 + v0 (t� t0).

The next two examples show that scaling second order equations can, in con-
trast to first order equations, change the solutions drastically.

Example 1.1.4. The first example is given by the harmonic oscillator

d2q

dt2
= �q.

This is easy to solve if we look at each coordinate separately. The solutions are:

q (t) = q0 cos (t� t0) + v0 sin (t� t0) .
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Example 1.1.5. A far more subtle problem is Newton’s inverse square law:

d2q

dt2
= � q

|q|3
= � 1

|q|2
q

|q| .

Newton showed that the solutions are conic sections (intersections of planes and a
cone) and can be lines, circles, ellipses, parabolas, or hyperbolas.

Example 1.1.6. Finally we mention a less well known ancient example. This is
the conchoid (conch-like) of Nicomedes. It is given by a quartic (degree 4) equation:

�

x2 + y2
�

(y � b)2 �R2y2 = 0.

(It is not clear why this curve looks like a conch.) Descriptively it consists of two
curves that are given as points (x, y) whose distance along radial lines to the line
y = b is R. The radial line is simply the line that passes through the origin and
(x, y). So we are measuring the distance from (x, y) to the intersection of this radial

line with the line y = b. As that intersection is
⇣

x
y b, b

⌘

the condition is

✓

x� x

y
b

◆2

+ (y � b)2 = R2,

which after multiplying both sides by y2 easily reduces to the above equation.
The two parts of the curve correspond to points that are either above or below

y = b. Note that no point on y = b solves the equation as long as b 6= 0.
A simpler formula appears if we use polar coordinates. The line y = b is

described as

(x, y) = (b cot ✓, b) =
b

sin ✓
(cos ✓, sin ✓)

and the point (x, y) by

(x, y) =

✓

b

sin ✓
±R

◆

(cos ✓, sin ✓) .

This gives us a natural parametrization of these curves.
Another parametrization is obtained if we intersect the curve with the lines y =

tx and use t as the parameter. This corresponds to t = tan ✓ in polar coordinates.
Thus we obtain the parameterized form

(x, y) =

✓

b

t
± Rp

1 + t2

◆

(1, t) .

As we have seen, what we consider the same curve might have several di↵erent
parametrizations.

Definition 1.1.7. Two parametrized curves q (t) and q⇤ (t⇤) are reparametriza-
tions of each other if it is possible to write t = t (t⇤) as a function of t⇤ and t⇤ = t⇤ (t)
such that

q (t) = q⇤ (t⇤ (t)) and q (t (t⇤)) = q⇤ (t⇤) .

If both of the functions t (t⇤) and t⇤ (t) are di↵erentiable, then it follows from the
chain rule that

dt

dt⇤
dt⇤

dt
= 1.

In particular, these derivatives never vanish and have the same sign. We shall almost
exclusively consider such reparametrizations. In fact we shall usually assume that
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these derivatives are positive so that the the direction of the curve is preserved
under the reparametrization.

Lemma 1.1.8. If q⇤ (t⇤) = q (t (t⇤)) where t (t⇤) is di↵erentiable with positive
derivative, then q⇤ is a reparametrization of q.

Proof. The missing piece in the definition of reparametrization is to show
that we can also write t⇤ as a di↵erentiable function of t. However, by assumption
dt
dt⇤ > 0 so the function t (t⇤) is strictly increasing. This means that for a given
value of the function there is at most one point in the domain yielding this value
(horizontal line test). This shows that we can find the inverse function t⇤ (t).
Graphically, simply take the graph of t (t⇤) and consider its mirror image reflected
in the diagonal line t = t⇤. This function is also di↵erentiable with derivative at
t = t0 is given by

1
dt
dt⇤ (t

⇤ (t0))
.

⇤

It is generally too cumbersome to use two names for curves that are reparametriza-
tions of each other. Thus we shall simply write q (t⇤) for a reparametrization of
q (t) with the meaning being that

q (t) = q (t⇤ (t)) and q (t (t⇤)) = q (t⇤) .

With that in mind we shall always think of two curves as being the same if
they are reparametrizations of each other.

Finally we define two concepts that are easy to understand but not so easy to
define rigorously.

Definition 1.1.9. We say that a curve q : I ! Rk is simple if I is an open
interval; the curve is regular; and for each point q on the curve there is an open set
q 2 O ⇢ Rk such that {t 2 I | q (t) 2 O} is a union of intervals Ii and the curves
q : Ii ! Rk are all reparametrizations of each other.

Remark 1.1.10. The special case where q (t1) 6= q (t2) whenever t1 6= t2 is
quite easy to check and understand. In e↵ect the curve must be regular and for
each q 2 q (I) there is an open set q 2 O ⇢ Rk such that {t 2 I | q (t) 2 O} is an
open interval. The situation when the curve intersects itself is somewhat delicate as
it is not obvious how to check that two curves are reparametrizations of each other.
The next proposition gives the simplest way of checking that a curve is simple.

Proposition 1.1.11. If a curve q is a solution to a first order equation v =
F (q), then it is simple. In particular, if a curve is part of a regular level set for a
function, then it is simple.

Proof. This is a consequence of uniqueness of solutions given initial values
and the fact that the velocity only depends on position and not time. Assume
q (t1) = q (t2), then the two curves qi (t) = q (t+ ti) are both solutions to the first
order equation and they have the same initial value at t = 0. Thus they are equal
and clearly reparametrizations of each other. ⇤

Example 1.1.12. A circle (cos t, sin t) is clearly simple no matter what interval
we use for a domain.
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Definition 1.1.13. We say that a curve q : I ! Rk is closed if there is an
interval [a, b] ⇢ I such that q (a) = q (b) and q (I) = q ([a, b]).

Example 1.1.14. The figure 1 is an example of a curve that is closed, but not
simple. It can be described by an equation

�

1� x2
�

x2 = y2.

Note that as the right hand side is non-negative it follows that x2  1. When
x = �1, 0, 1 we get that y = 0. For other values of x there are two possibilities for
y = ±

p

(1� x2)x2.

Exercises.

(1) Show that the following properties for a curve are equivalent.
(a) The curve is part of a line
(b) All its tangent lines pass through a fixed point.
(c) All its tangent lines are parallel.

(2) Show that lines in the plane satisfy r cos (✓ � ✓0) = r0 in polar coordinates
and characterize the two constants ✓0, r0.

(3) Show that if we parametrize the sphere

x2 + y2 + z2 = R2

by

x = R sin� cos ✓,

y = R sin� sin ✓,

z = R cos�,

then great circles satisfy tan� cos (✓ � ✓0) = tan�0.
(4) Show that a curve q (t) : I ! R2 lies on a line if and only if there is a

vector n 2 R2 such that q (t) · n is constant.
(5) Show that for a curve q (t) : I ! R3 the following properties are equiva-

lent:
(a) The curve lies in a plane.
(b) There is a vector n 2 R3 such that q (t) · n is constant.
(c) There is a vector n 2 R3 such that v (t) · n = 0 for all t.

(6) Show that a curve q (t) : I ! R3 lies on a line if and only if there are two
linearly independent vectors n1,n2 2 R3 such that q (t) · n1 and q (t) · n2

are constant.
(7) Show that for a curve q (t) : I ! Rn the following properties are equiva-

lent.
(a) The curve lies on a circle (n = 2) or sphere (n > 2.)
(b) There is a vector c such that |q� c| is constant.
(c) There is a vector c such that (q� c) · v = 0.

(8) Consider a curve of the form q (t) = r (t) (cos t, sin t) where r is a function
of both cos t and sin t

r (t) = p (cos t, sin t) .

(a) Show that this curve is closed.
(b) Show that if r (t) > 0, then it is a regular and simple curve.
(c) Let t1, t2 2 [0, 2⇡) be distinct. Show that if r (t1) = r (t2) = 0 and

ṙ (t1) 6= 0 6= ṙ (t2), then it is not simple.
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(d) Show that if r (t0) = ṙ (t0) = 0, then its velocity vanishes at t0.
(e) By adjusting a in r (t) = 1 + a cos t give examples of curves that

satisfy the conditions in (b), (c), and (d).
(9) Consider a curve of the form q (t) = r (t) (1, t)

(a) Show that if r (t) > 0, then it is a simple curve.
(b) Let t1, t2 be distinct. Show that if r (t1) = r (t2) = 0 and ṙ (t1) 6=

0 6= ṙ (t2), then it is not simple.
(c) Show that if r (t0) = ṙ (t0) = 0, then its velocity vanishes at t0.
(d) By adjusting a in

r (t) =
a+ t2

1 + t2

give examples of curves that satisfy the conditions in (a), (b), and
(c).

(10) Consider a curve in R2 whose velocity never vanishes and intersects all the
radial lines from the origin at a constant angle ✓0. These are also called
loxodromes. Determine what this curve must be if ✓0 = 0 or ⇡

2 . Show that
logarithmic spirals

q (t) = aebt (cos t, sin t)

have this property.
(11) Show that the two equations

x2 + y2 + z2 = 4R2,

(x�R)2 + y2 = R2

define a closed space curve that intersects itself at x = 2R by showing
that it can be parametrized as

q (t) = R

✓

cos (t) + 1, sin (t) , 2 sin

✓

t

2

◆◆

.

(12) The cissoid (ivy-like) of Diocles is given by the equation

x
�

x2 + y2
�

= 2Ry2.

(It is not clear why this curve looks like ivy.)
(a) Show that this can always be parametrized by y, but that this parametriza-

tion is not smooth at y = 0.
(b) Show that if y = tx, then we obtain a parametrization

(x, y) =
2Rt2

1 + t2
(1, t) .

(c) Show that in polar coordinates

r = 2R

✓

1

cos ✓
� cos ✓

◆

.

(13) The folium (leaf) of Descartes is given by the equation

x3 + y3 � 3Rxy = 0.

In this case the curve really does describe a leaf in the first quadrant.
(a) Show that it can not be parameterized by x or y near the origin.



1.2. ARCLENGTH AND LINEAR MOTION 9

(b) Show that if y = tx, then we obtain a parametrization

(x, y) =
3Rt

1 + t3
(1, t)

that is valid for t 6= �1. What happens when t = �1?
(c) Show that in polar coordinates we have

r =
3R sin ✓ cos ✓

sin3 ✓ + cos3 ✓
.

(14) Given two planar curves q1 and q2 we can construct a cissoid q as follows:
Assume that the line y = tx intersects the curves in q1 = (x1 (t) , tx1 (t))
and q2 = (x2 (t) , tx2 (t)), then define q (t) = (x (t) , tx (t)) so that |q (t)| =
|q1 (t)� q2 (t)|.
(a) Show that x (t) = ± (x1 (t)� x2 (t)).
(b) Show that the conchoid of Nicomedes is a cissoid.
(c) Show that the cissoid of Diocles is a cissoid.
(d) Show that the folium of Descartes is a cissoid.

(15) Let q be a cissoid where q1 is the circle of radius R centered at (R, 0) and
q2 a vertical line x = b.
(a) Show that when b = 2R we obtain the cissoid of Diocles

x
�

x2 + y2
�

= 2Ry2.

(b) Show that when b = R
2 we obtain the trisectrix (trisector) of Maclau-

rin

2x
�

x2 + y2
�

= �R
�

3x2 � y2
�

.

(c) Show that when b = R we obtain a strophoid

y2 (R� x) = x2 (x+R) .

(d) Show that the change of coordinates x = u+ v, y =
p
3 (u� v) turns

the trisectrix of Maclaurin into Descartes folium.

1.2. Arclength and Linear Motion

The arclength is the distance traveled along the curve. One way of measuring
the arclength geometrically is by imagining the curve as a thread that can be
stretched out and measured. This however doesn’t really help in formulating how
it should be measured mathematically. Archimedes succeeded in understanding
the arclength length of circles. The idea of measuring the length of general curves
is relatively recent going back only to about 1600. Newton was the first to give
the general definition that we shall use below. As we shall quickly discover, it
is generally impossible to calculate the arclength of a curve as it involves finding
anti-derivatives of fairly complicated functions.

From a dynamical perspective the change in arclength measures how fast the
motion is along the curve. Specifically, if there is no change in arclength, then the
curve is stationary, i.e., you stopped. More precisely, if the distance traveled is
denoted by s (we can’t use d for distance as it is used for di↵erentiation), then the
relative change with respect to the general parameter is the speed

ds

dt
=

�

�

�

�

dq

dt

�

�

�

�

= |v| .
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This means that s is the anti-derivative of speed and is defined up to an additive
constant. The constant is determined by where we start measuring from. This
means that we should define the length of a curve on [a, b] as follows

L (q)ba =

ˆ b

a

|v| dt = s (b)� s (a) .

Using substitution this is easily shown to be independent of the parameter t as long
as the reparametrization is in the same direction. One also easily checks that a
curve on [a, b] is stationary if and only if its speed vanishes on [a, b]. We usually
suppress the interval and instead simply write L (q).

Example 1.2.1. If q (t) = q0+v0t is a straight line, then its speed is constant
|v0| and so the arclength over an interval [a, b] is |v0| (b� a).

Example 1.2.2. If q (t) = R (cos t, sin t) + c is a circle of radius R centered at
c, then the speed is also constant R and so again it becomes easy to calculate the
arclength.

Example 1.2.3. Consider the hyperbola x2 � y2 = 1. It consists of two com-
ponents separated by the y-axis. The component with x > 0 can be parametrized
using hyperbolic functions q (t) = (cosh t, sinh t). The speed is

ds

dt
=
p

sinh2 t+ cosh2 t =
p

2 sinh2 t+ 1 =
p
cosh 2t

While this is both a fairly simple curve and a not terribly di�cult expression for
the speed it does not appear in any way easy to find the arclength explicitly.

Definition 1.2.4. A curve is called regular if it is never stationary, or in
other words the speed is always positive. A curve is said to be parametrized by
arclength if its speed is alway 1. Such a parametrization is also called a unit speed
parametrization.

Lemma 1.2.5. A regular curve q (t) can be reparametrized by arclength.

Proof. If we have a reparametrization q (s) of q (t) with ds
dt > 0 that has unit

speed, then
dq

ds

ds

dt
=

dq

dt
= v

so it follows that
ds

dt
=

�

�

�

�

dq

dt

�

�

�

�

= |v|

must be the speed of q (t).
This tells us that we should define the reparametrization s = s (t) as the anti-

derivative of the speed:

s (t1) = s (t0) +

ˆ t1

t0

�

�

�

�

dq

dt

�

�

�

�

dt.

It then follows that
ds

dt
=

�

�

�

�

dq

dt

�

�

�

�

> 0.

Thus it is also possible to find the inverse relationship t = t (s) and we can define
the reparametrized curve as q (s) = q (s (t)) = q (t).
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This reparametrization depends on specifying an initial value s (t0) at some
specific parameter t0. For simplicity one often uses s (0) = 0 if that is at all
reasonable. ⇤

To see that arclength really is related to our usual concept of distance we show:

Theorem 1.2.6. The straight line is the shortest curve between any two points
in Euclidean space.

Proof. We shall give two almost identical proofs. Without loss of generality
assume that we have a curve q (t) : [a, b] ! Rk where q (a) = 0 and q (b) = p. We
wish to show that L (q) � |p| . To that end select a unit vector field X which is also
a gradient field X = rf. Two natural choices are possible: For the first, simply let
f (x) = x · p

|p| , and for the second f (x) = |x| . In the first case the gradient is simply
a parallel field and defined everywhere, in the second case we obtain the radial field
which is not defined at the origin. When using the second field we need to restrict
the domain of the curve to [a0, b] such that q (a0) = 0 but q (t) 6= 0 for t > a0. This
is clearly possible as the set of points where q (t) = 0 is a closed subset of [a, b] , so
a0 is just the maximum value where q vanishes.

This allows us to perform the following calculation using Cauchy-Schwarz, the
chain rule, and the fundamental theorem of calculus. When we are in the second
case the integrals are possibly improper at t = a0, but clearly turn out to be
perfectly well defined since the integrand has a continuous limit as t approaches a0

L (q) =

ˆ b

a0

|v| dt

=

ˆ b

a0

|q̇| |rf | dt

�
ˆ b

a0

|q̇ ·rf | dt

=

ˆ b

a0

�

�

�

�

d (f � q)
dt

�

�

�

�

dt

�

�

�

�

�

�

ˆ b

a0

d (f � q)
dt

dt

�

�

�

�

�

= |f (q (b))� f (q (a0))|
= |f (p)� f (0)|
= |f (p)|
= |p| .

We can even go backwards and check what happens when L (q) = |p| . It
appears that we must have equality in two places where we had inequality. Thus
we have d(f�q)

dt � 0 everywhere and q̇ is proportional to rf everywhere. This
implies that q is a possibly singular reparametrization of the straight line from 0
to p. ⇤

We can also characterize lines through their velocities.

Proposition 1.2.7. A curve is a straight line if and only if all of its velocities
are parallel.
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Proof. The most general type of parametrization of a line is

q (t) = q0 + v0u (t)

where u (t) : R ! R is a scalar valued function and q0,v0 2 Rn vectors. The
velocity of such a curve is v0

du
dt and so all velocities are indeed parallel.

Conversely if some general curve has the property that all velocities are parallel
then we can write

dq

dt
= v = v (t)v0

for some function v (t) : R ! R and a fixed vector v0 2 Rn. Then the curve it self
can be found by integration

q (t1) = q (t0) + v0

ˆ t1

t0

v (t) dt.

So we obtain the general form of a line by letting u (t) be an antiderivative of
v (t). ⇤

Proposition 1.2.8. The shortest distance from a point to a curve (if it exists)
is realized by a line segment that is perpendicular to the curve.

Proof. Let q : [a, b] ! Rk be a curve and assume that there is a t0 2 (a, b)
such that

|q (t)� p| � |q (t0)� p| for all t 2 [a, b] .

This implies that
1

2
|q (t)� p|2 � 1

2
|q (t0)� p|2 .

As the left hand side reaches a minimum at an interior point its derivative must
vanish at t0, i.e.,

(q (t0)� p) · dq
dt

(t0) = 0.

As the vector q (t0)�p represents the segment from p to q (t0) we have shown that
it is perpendicular to the velocity of the curve. ⇤

With just a little more e↵ort one can also find the shortest curves on spheres.

Theorem 1.2.9. The shortest curve between two points on a round sphere

S2 (R) =
n

q 2 R3 | |q|2 = R2
o

is the shortest segment of the great circle through

the two points.

Proof. Great circles on spheres centered at the origin are given as the inter-
sections of the sphere with 2-dimensional planes through the origin. Note that if
two points are antipodal then there are infinitely many great circles passing through
them and all of the corresponding segments have length ⇡R. If the two points are
not antipodal, then there is a unique great circle between them and the shortest
arc on this circle joining the points has length < ⇡R.

Let us assume for simplicity that R = 1. The great circle that lies in the plane
span {q0,v0} where q0 ? v0 and |q0| = |v0| = 1 can be parametrized as follows

q (t) = q0 cos t+ v0 sin t.

This curve passes through the point q0 2 S2 (1) at t = 0 and has velocity v0 at
that point. It also passes through the antipodal point �q0 at time t = ⇡. Finally,
it is also parametrized by arclength.
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To find the great circle that passes through two points q0,q1 2 S2 (1) that are
not antipodal we simply select the initial velocity v0 to be the vector in the plane
span {q0,q1} that is perpendicular to q0 and has length 1, i.e.,

v0 =
q1 � (q1 · q0)q0

|q1 � (q1 · q0)q0|

=
q1 � (q1 · q0)q0
q

1� (q1 · q0)
2
.

Then the great circle

q (t) = q0 cos t+ v0 sin t

passes through q1 when

t = arccos (q1 · q0) .

The velocity of this great circle at q1 is

v1 =
�q0 + (q0 · q1)q1

|�q0 + (q0 · q1)q1|

since it is the initial velocity of the great circle that starts at q1 and goes through
�q0.

The goal now is to show that any curve q (t) : [0, L] ! S2 (1) between q0 and
q1 has length � arccos (q1 · q0). The proof of this follows the same pattern as the
proof for lines. We start by assuming that q (t) 6= q0,q1 when t 2 (0, L) and define

v1 (t) =
�q0 + (q0 · q (t))q (t)

|�q0 + (q0 · q (t))q (t)| .
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Before the calculation note that since q (t) is a unit vector it follows that q · dqdt = 0.
With that in mind we obtain

L (q) =

ˆ L

0
|v| dt

=

ˆ L

0
|v| |v1 (t)| dt

�
ˆ L

0

�

�

�

�

v1 (t) ·
dq

dt

�

�

�

�

dt

=

ˆ L

0

�

�

�

�

�q0 + (q0 · q (t))q (t)

|�q0 + (q0 · q (t))q (t)| ·
dq

dt

�

�

�

�

dt

=

ˆ L

0

�

�

�

�

�

�

�q0
q

1� (q0 · q (t))2
· dq
dt

�

�

�

�

�

�

dt

=

ˆ L

0

�

�

�

�

d arccos (q0 · q (t))

dt

�

�

�

�

dt

�

�

�

�

�

�

ˆ L

0

d arccos (q0 · q (t))

dt
dt

�

�

�

�

�

= |arccos (q0 · q (L))� arccos (q0 · q (0))|
= |arccos (q0 · q1)� arccos (q0 · q0)|
= |arccos (q0 · q1)|
= arccos (q0 · q1)

This proves that the segment of the great circle always has the shortest length.
In case the original curve was parametrized by arclength and also has this

length we can backtrack the argument and observe that this forces v = v1 or in
other words

dq

dt
=

�q0 + (q0 · q (t))q (t)

|�q0 + (q0 · q (t))q (t)|
This is a di↵erential equation for the curve and we know that great circles solve
this equation as the right hand side is the velocity of the great circle at q (t). So
it follows from uniqueness of solutions to di↵erential equations that any curve of
minimal length is part of a great circle. ⇤

Exercises.

(1) Compute the arclength parameter of y = x
3
2 .

(2) Compute the arclength parameter of the parabolas y =
p
x and y = x2.

(3) Redefine the concept of closed and simple curves using arclength parametriza-
tion.

(4) Compute the arclength of the logarithmic spiral

aebt (cos t, sin t)

and explain why it is called logarithmic.
(5) Show that every regular planar curve that makes a constant angle ✓0 > 0

with all radial lines can be reparametrized to be a logarithmic spiral

aebt (cos t, sin t) .
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Hint: One way of proving this is to show that all such curves satisfy a
di↵erential equation if we assume that they have unit speed.

(6) Compute the arclength of the spiral of Archimedes:

(a+ bt) (cos t, sin t) .

(7) Show that the parametrization of the folium of Descartes given by

(x, y) =
3Rt

1 + t3
(1, t)

is regular.
(8) Show that it is not possible to parametrize the cissoid of Diocles

x
�

x2 + y2
�

= 2Ry2

so that it is regular at the origin.
(9) Find the arclength parameter for the twisted cubic

q (t) =
�

t, t2, t3
�

.

(10) A cycloid is a planar curve that follows a point on a circle of radius R as
it rolls along a straight line without slipping.
(a) Show that

q (t) = tRe1 +Re2 �R (e2 cos t+ e1 sin t)

is a parametrization of a cycloid, when e1, e2 are orthonormal.
(b) Show that all cycloids can be parametrized to have the form

q (t) = tRe1 +Re2 �R (e2 cos t+ e1 sin t) + q0

where q (0) = q0.
(c) Show that any such cycloid stays on one side of the line q0 + tRe1

and has zero velocity cusps when it hits this line.
(d) Show that a cycloid hits the line at points that are 2⇡R apart.

(11) Let q (t) : I ! R2 be a closed planar curve.
(a) Show that the curve is contained in a circle of smallest radius and

that this circle is unique.
(b) Show that it either touches this circle in two antipodal points or in

three points that form an acute triangle. Note that in either of these
two cases it might still touch the circle in many other points as well.

(c) Show that if the radius of this circle is R, then L (q) � 4R. Hint:
This is clear when q hits the circle in antipodal points. When this
does not happen there are several possible strategies. One is to use
the acute triangle and show that the circumference of this triangle is
� 4R. This can be shown using the law of sines that relates the side
length to the opposite angle and the diameter of the circle

a = 2R sin↵,

b = 2R sin�,

c = 2R sin �.

The goal then is to show that

sin↵+ sin� + sin � � 2,
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when
↵,�, � 2

h

0,
⇡

2

i

, ↵+ � + � = ⇡.

(12) (Spherical law of cosines) Consider three points qi, i = 1, 2, 3 on a unit
sphere centered at the origin. Join these points by great circle segments
to obtain a triangle. Let the side lengths be aij and the interior angle ✓i
at qi.
(a) Show that

cos aij = qi · qj

and

cos ✓1 =

0

@

q2 � (q2 · q1)q1
q

1� (q2 · q1)
2

1

A ·

0

@

q3 � (q3 · q1)q1
q

1� (q3 · q1)
2

1

A .

(b) Show that

cos a23 = cos a12 cos a13 + cos ✓1 sin a12 sin a13.

(c) Compare this with the Euclidean law of cosines

a223 = a212 + a213 � 2a12a23 cos ✓

for a triangle with the same sides and conclude that ✓1 > ✓.

1.3. Curvature

We saw that arclength measures how far a curve is from being stationary. Our
preliminary concept of curvature is that it should measure how far a curve is from
being a line. For a planar curve the idea used to be to find a circle that best
approximates the curve at a point (just like a tangent line is the line that best
approximates the curve). The radius of this circle then gives a measure of how
the curve bends with larger radius implying less bending. Huygens did quite a lot
to clarify this idea for fairly general curves using purely geometric considerations
(no calculus) and applied it to the study involutes and evolutes. Newton seems to
have been the first to take the reciprocal of this radius to create curvature as we
now define it. He also generated some of the formulas in both Cartesian and polar
coordinates that are still in use today.

To formalize the idea of how a curve deviates from being a line we define the
unit tangent vector of a regular curve q (t) : [a, b] ! Rk as the direction of the
velocity:

v = q̇ = |v|T =
ds

dt
T.

When the unit tangent vector T = v/ |v| is stationary, then the curve is evidently
a straight line. So the degree to which the unit tangent is stationary is a measure
of how fast it changes and in turn how far the curve is from being a line. We let
✓ be the arclength parameter for T. The relative change between the arclength
parameters for the unit tangent and the curve is by definition the curvature

 =
d✓

ds
and for a general parametrization

 =
dt

ds

d✓

dt
.
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We shall see that the curvature is related to the part of the acceleration that is
orthogonal to the unit tangent vector. Note that  � 0 as ✓ increases with s.

Proposition 1.3.1. A regular curve is part of a line if and only if its curvature
vanishes.

Proof. The unit tangent of a line is clearly stationary. Conversely if the
curvature vanishes, then the unit tangent is stationary. This means that when the
curve is parametrized by arclength, then it will be a straight line. ⇤

Next we show how the curvature can be calculated with general parametriza-
tions.

Proposition 1.3.2. The curvature of a regular curve is given by

 =
|v| |a� (a ·T)T|

|v|3

=
area of parallelogram (v,a)

|v|3
.

Proof. We calculate

 =
d✓

ds

=
d✓

dt

dt

ds

=

�

�

�

�

dT

dt

�

�

�

�

|v|�1

=

�

�

�

�

d

dt

v

|v|

�

�

�

�

|v|�1

=

�

�

�

�

�

a

|v|2
� v (a · v)

|v|4

�

�

�

�

�

=
1

|v|2

�

�

�

�

�

a� (a · v)v
|v|2

�

�

�

�

�

=
1

|v|2
|a� (a ·T)T| .

The area of the parallelogram spanned by v and a is given by the product of the
length of the base represented by v and the height represented by the component
of a that is normal to the base, i.e., a� (a ·T)T. Thus we obtain the formula

 =
|v| |a� (a ·T)T|

|v|3

=
area of parallelogram (v,a)

|v|3
.

⇤
Remark 1.3.3. For 3-dimensional curves the curvature can also be written as

 =
|v ⇥ a|
|v|3

.
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Further note that when the unit tangent vector is regular it too has a unit
tangent vector called the normal N to the curve. Specifically

dT

d✓
= N.

The unit normal is the unit tangent to the unit tangent. This vector is in fact
perpendicular to T as

0 =
d |T|2

d✓
= 2

✓

T · dT
d✓

◆

= 2 (T ·N) .

This normal vector is also called the principal normal for q when the curve is a
space curve as there are also other vectors that are normal to the curve in that
case. The line through a point on a curve in the direction of the principal normal
is called the principal normal line.

In terms of the arclength parameter s for q we obtain

dT

ds
=

d✓

ds

dT

d✓
= N

and

 =
dT

ds
·N = �T · dN

ds
,

where the last equality follows from

0 =
dT ·N
ds

=
dT

ds
·N+T · dN

ds
.

Proposition 1.3.4. For a regular curve we have

v = (v ·T)T = |v|T,

a = (a ·T)T+ (a ·N)N = (a ·T)T+  |v|2 N,

and

N =
a� (a ·T)T

|a� (a ·T)T| .

Thus the unit normal is the direction of the part of the acceleration that is
perpendicular to the velocity.

Proof. The first formula follows directly from the definition of T. For the
second we note that

a =
dv

dt

=
d✓

dt

dv

d✓

=
d✓

dt

✓

d |v|
d✓

T+ |v| dT
d✓

◆

=
d✓

dt

✓

d |v|
d✓

T+ |v|N
◆

=
d |v|
dt

T+
d✓

dt
|v|N.
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This shows that a is a linear combination of T,N. It also shows that

a ·N =
d✓

dt
|v|

=
d✓

ds

ds

dt
|v|

=  |v|2 .
So we obtain the second equation. The last formula then follows from the fact that
N is the direction of the normal component of the acceleration. ⇤

Definition 1.3.5. An involute of a curve q (t) is a curve q⇤ (t) that lies on the
corresponding tangent lines to q (t) and intersects these tangent lines orthogonally.

We can always construct involutes to regular curves. First of all

q⇤ (t) = q (t) + u (t)T (t)

as it is forced to lie on the tangent lines to q. Secondly the velocity v⇤ must be
parallel to N. Since

dq⇤

dt
=

dq

dt
+

du

dt
T+ u

ds

dt
N

this forces us to select u so that
du

dt
= �ds

dt
.

Thus
q⇤ (t) = q (t)� s (t)T (t) ,

where s is any arclength parametrization of q. Note that s is only determined up
to a constant so we always get infinitely many involutes to a given curve.

Example 1.3.6. If we strip a length of masking tape glued to a curve keeping
it taut while doing so, then the end of the tape will trace an involute.

Assume the original curve is unit speed q (s). The process of stripping the tape
from the curve forces the endpoint of the tape to have an equation of the form

q⇤ (s) = q (s) + u (s)T (s)

since for each value of s the tape has two parts, the first being the curve up to q (s)
and the second the line segment from q (s) to q (s)+u (s)T (s). The length of this
is up to a constant given by

s+ u (s) .

As the piece of tape doesn’t change length this is constant. This shows that u = c�s
for some constant c and thus that the curve is an involute.

Example 1.3.7. Huygens designed pendulums using involutes. His idea was to
take two planar convex curves that are mirror images of each other in the y-axis and
are tangent to the y-axis with the unit tangent at this cusp pointing downwards.
Suspend a string from this cusp point of length L with a metal disc attached at the
bottom end to keep the string taut. Now displace the metal disc horizontally and
release it. Gravity will then force the disc to swing back and forth. The trajectory
will depend on the shape of the chosen convex curve and will be an involute of that
curve.

Huygens was interested in creating a pendulum with the property that its
period does not depend on the amplitude of the swing. Thus the period will remain
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constant even though the pendulum slows down with time. A curve with this
property is called tautochronic and Huygens showed that it has to be a cycloid that
looks like

R (sin t, cos t) +R (t, 0) .

The involute is also a cycloid (see also exercises below).

Example 1.3.8. Consider the unit circle q (s) = (cos s, sin s). This parametriza-
tion is by arclength so we obtain the involutes

q⇤ (s) = (cos s, sin s) + (c� s) (� sin s, cos s) .

In polar coordinates we have

r (s) = |q⇤ (s)| =
q

1 + (c� s)2.

When c = 0 we see that r increases with s and that the involute looks like a spiral.

Definition 1.3.9. An evolute of a curve q (t) is a curve q⇤ (t) such that the
tangent lines to q⇤ are orthogonal to q at corresponding values of t.

Remark 1.3.10. Note that if q⇤ is an involute to q, then conversely q is an
evolute to q⇤. It is however quite complicated to construct evolutes in general, but,
as we shall see, there are formulas for both planar and space curves.

Evolutes must look like

q⇤ (t) = q (t) +V (t) ,

where V ·T = 0 and also have the property that

0 = T · dq
⇤

dt
= T ·

✓

dq

dt
+

dV

dt

◆

,

which is equivalent to

T · dV
dt

= �ds

dt
.

Exercises.

(1) Show that a curve is part of a line if all its tangent lines pass through a
fixed point.

(2) Show that for all vectors v, w 2 Rn we have

area of parallelogram (v, w) =
q

|v|2 |w|2 � (v · w)2

= |v| |w| sin] (v, w) .

(3) Show that the curvature of a planar circle of radius R is 1
R by parametriz-

ing this curve in the following way q (t) = R (cos t, sin t) + c.
(4) Find the curvature for the twisted cubic

q (t) =
�

t, t2, t3
�

.

(5) Compute the curvature of the tractrix

q (t) =

✓

1

cosh t
, t� sinh t

cosh t

◆

.

(6) Let q (t) be a regular curve with positive curvature. Define two vector
fields whose integral curves are involutes to q.
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(7) (Huygens, 1673) Consider the cycloid

q (t) = R (t+ sin t, 1 + cos t)

(see also section 1.2 exercise 10 and note that this cycloid comes with a
di↵erent parametrization and initial position).
(a) Show that the speed satisfies

�

�

�

�

dq

dt

�

�

�

�

2

= 2R2 sin2 t

1� cos t
.

(b) Show that the arclength parameter s with initial value s (0) = 0
satisfies

s2 = 8R2 (1� cos t) .

(c) Show that the curvature satisfies

2 =
1

8R2 (1 + cos t)
.

(d) Show that for a general cycloid it is always possible to find a 2 R
such that

(s� a)2 +
1

2
= 16R2.

(e) Show a = 4R for the cycloid

q (t) = R (t� sin t, 1� cos t)

if we assume that s (0) = 0.
(8) If a curve in R2 is given as a graph y = f (x) show that the curvature is

given by

 =
|f 00|

⇣

1 + (f 0)2
⌘

3
2

.

(9) Let q (t) = r (t) (cos t, sin t). Show that the speed is given by
✓

ds

dt

◆2

=

✓

dr

dt

◆2

+ r2

and the curvature

 =

�

�

�

2
�

dr
dt

�2
+ r2 � r d2r

dt2

�

�

�

⇣

�

dr
dt

�2
+ r2

⌘

3
2

.

(10) Let q (t) : I ! R3 be a regular curve with speed ds
dt =

�

�

�

dq
dt

�

�

�

, where s is

the arclength parameter. Prove that

 =

q

d2
q

dt2 · d2
q

dt2 �
�

d2s
dt2

�2

�

ds
dt

�2 .

(11) Compute the curvature of the logarithmic spiral

aebt (cos t, sin t) .

(12) Compute the curvature of the spiral of Archimedes:

(a+ bt) (cos t, sin t) .



1.3. CURVATURE 22

(13) Show that the involute to a straight line is a point.
(14) Show that a planar circle has its center as an evolute.
(15) The circular helix is given by

q (t) = R (cos t, sin t, 0) + h (0, 0, t) .

Reparametrize this curve to be unit speed and show that its involutes lie
in planes given by z = c for some constant c.

(16) Let q (s) be a planar unit speed curve with positive curvature. Show that
the curvature of the involute

q⇤ (s) = q (s) + (L� s)T (s)

satisfies

⇤ =
1

|L� s|

and compute the evolute of q⇤.
(17) For a regular curve q (t) : I ! Rn we say that a field X is parallel along

q if X ·T = 0 and dX
dt is parallel to T, i.e.,

dX

dt
=

✓

dX

dt
·T

◆

T = �
✓

dT

dt
·X

◆

T.

(a) Show that for a fixed t0 and X (t0) ? T (s0) there is a unique parallel
field X that has the value X (t0) at t0.

(b) Show that if X1 and X2 are both parallel along q, then X1 · X2 is
constant.

(c) A Bishop frame consists of an orthonormal frameT,N1,N2, ...,Nn�1

along the curve so that all Ni are parallel along q. For such a frame
show that

d

dt

⇥

T N1 N2 · · · Nn�1

⇤

=
ds

dt

⇥

T N1 N2 · · · Nn�1

⇤

2

6

6

6

6

6

4

0 1 2 · · · n�1

�1 0 0 · · · 0
�2 0 0 · · · 0
...

...
...

. . .
...

�n�1 0 0 · · · 0

3

7

7

7

7

7

5

.

Note that such frames always exist, even when the curve doesn’t have
positive curvature everywhere.

(d) Show further for such a frame that

2 = 2
1 + 2

2 + · · ·+ 2
n�1.

The collection (1,2, ...,n�1) can in turn be thought of as a curve
going into Rn�1 and be investigated for higher order behavior of q.
When  > 0 one generally divides this curve by  and considers the
spherical curve into Sn�2.

(e) Give an example of a closed space curve where the parallel fields
don’t close up.
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1.4. Integral Curves

In this section we shall try to calculate the curvature of curves that are solu-
tions to di↵erential equations. As it is rarely possible to find explicit formulas for
such solutions the goal is to use the fact that we know they exist and calculate
their curvatures using only the data that the di↵erential equation gives us. Recall
that curves that are solutions to equations can also be considered as solutions to
di↵erential equations.

We start by considering a solution to a first order equation

v =
dq

dt
= F (q (t)) .

The first observation is that the speed is given by

|v| =
�

�

�

�

dq

dt

�

�

�

�

= |F (q (t))| .

The acceleration is computed using the chain rule

a =
dv

dt
=

dF (q (t))

dt
= DF

✓

dq

dt

◆

= DF (F (q (t))) .

The curvature is then given by

2 (t) =
|v|2 |a|2 � (v · a)2

|v|6

=
|F (q (t))|2 |DF (F (q (t)))|2 � (F (q (t)) ·DF (F (q (t))))2

|F (q (t))|6
.

So if we wish to calculate the curvature for a solution that passes through a fixed
point q0 at time t = t0, then we have

2 (t0) =
|F (q0)|2 |DF (F (q0))|2 � (F (q0) ·DF (F (q0)))

2

|F (q0)|6
.

This is a formula that does not require us to solve the equation.
For a second order equation

a =
d2q

dt2
= F

✓

q (t) ,
dq

dt

◆

= F (q (t) ,v (t))

there isn’t much to compute as we now have to be given both position q0 and
velocity v0 at time t0. The curvature is given by

2 (t) =
|v|2 |a|2 � (v · a)2

|v|6

=
|v0|2 |F (q0, v0)|2 � (v0 · F (q0, v0))

2

|v0|6
.

However, note that we can also calculate the change in speed by observing that

d |v|2

dt
= 2v · a = 2v · F (q,v) .

A few examples will hopefully clarify this a little better.
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Example 1.4.1. First an example were we know that the solutions are circles.

F (x, y) = (�y, x)

and

DF (F (x, y)) =

"

@(�y)
@x

@(�y)
@y

@(x)
@x

@(x)
@y

#



�y
x

�

=



0 �1
1 0

� 

�y
x

�

=



�x
�y

�

.

So at q0 = (x0, y0) we have

2 =

�

x2
0 + y20

�2 � (x0y0 � x0y0)
2

(x2
0 + y20)

3 =
1

|q0|2
,

which agrees with our knowledge that the curvature is the reciprocal of the radius.

Example 1.4.2. Next we look at the second order equation

a = � q

|q|3
.

The curvature is

2 =
|v|2

�

�

�

� q

|q|3

�

�

�

2
�
⇣

� q

|q|3 · v
⌘2

|v|6

=
|q|2 |v|2 � (q · v)2

|q|6 |v|6
.

Yielding

 =
area of parallelogram (q,v)

|q|3 |v|3
.

So the curvature vanishes when the velocity is radial (proportional to position), this
conforms with the fact that radial lines are solutions to this equation. Otherwise all
other solutions must have nowhere vanishing curvature. In general the numerator
is constant along solutions as

d

dt

⇣

|q|2 |v|2 � (q · v)2
⌘

= 2q · v |v|2 + 2 |q|2 v · a

�2q · v
⇣

|v|2 + q · a
⌘

= 2q · v |v|2 � 2
1

|q|v · q

�2q · v
✓

|v|2 � 1

|q|

◆

= 0.

This is better known as Kepler’s second law. The triangle with constant area in
Kepler’s second law has q and q+ v as sides. Thus its area is half the area of the
parallelogram we just calculated to be constant.
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Exercises.

(1) Consider a second order equation

a = F (q,v) ,

where F (q,v) 2 span {q,v} for all vectors q,v 2 Rn. Show that the
solutions are planar, i.e., span {q (t) ,v (t)} does not depend on t.

(2) Consider the equation

a = � q

|q|3
.

Show that

� q

|q|3
= r 1

|q|
and conclude that the total energy

E =
1

2
|v|2 � 1

|q|
is constant along solutions.

(3) Consider the equation

a = � q

|q|3

with q 2 R2. Show that along a solution the two equations

A2 = |q|2 |v|2 � (q · v)2 ,

E =
1

2
|v|2 � 1

|q|
allow us to compute the tangent line as a function of position q and the
two constants A,E.

(4) Consider an equation

a = f (|q|)q
coming from a radial force field. Show that

A2 = |q|2 |v|2 � (q · v)2

is constant along solutions.
(5) Assume a planar curve is given as a level set F (x, y) = c, where rF 6= 0

everywhere along the curve. We orient and parametrize the curve so that

v =
⇣

�@F
@y ,

@F
@x

⌘

. Use the chain rule to show that the acceleration is

a =

"

� @2F
@x@y �@2F

@y2

@2F
@x2

@2F
@y@x

#



�@F
@y

@F
@x

�

=



@v

@ (x, y)

�

[v] .



CHAPTER 2

Planar Curves

2.1. General Frames

Our approach to planar curves follows very closely the concepts that we shall
also use for space curves. This is certainly not the way the subject developed
historically, but it has shown itself to be a very useful strategy.

Before delving into the theory the keen reader might be interested in a few
generalities about taking derivatives of a basis U (t) , V (t) that depends on t, and
viewed as a choice of basis at q (t) . We shall normally use U (t) = ċ (t) or U (t) =
T (t) . Given any choice for U (t) , a natural choice for V (t) would be the unit vector
orthogonal to U (t) . The goal is to identify the matrix [D] that appears in

d

dt

⇥

U V
⇤

=
⇥

d
dtU

d
dtV

⇤

=
⇥

U V
⇤

[D]

There is a complicated formula (see theorem A.1.1)

[D] =
⇣

⇥

U V
⇤t ⇥

U V
⇤

⌘�1
⇥

U V
⇤t ⇥ d

dtU
d
dtV

⇤

that can be simplifies to

Theorem 2.1.1. Let U (t) , V (t) be an orthonormal frame that depends on a
parameter t, then

d

dt

⇥

U V
⇤

=
⇥

U V
⇤



0 �
�� 0

�

,

� = U · d

dt
V = �V · d

dt
U

or

d

dt
U = �V,

d

dt
V = ��U

Proof. We use that

⇥

U V
⇤t ⇥

U V
⇤

=



1 0
0 1

�

.

The derivative of this then gives


0 0
0 0

�

=
⇥

d
dtU

d
dtV

⇤t ⇥
U V

⇤

+
⇥

U V
⇤t ⇥ d

dtU
d
dtV

⇤

=

 �

d
dtU

�

· U
�

d
dtU

�

· V
�

d
dtV

�

· U
�

d
dtV

�

· V

�

+



U · d
dtU U · d

dtV
V · d

dtU V · d
dtV

�

.

26
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Thus
✓

d

dt
U

◆

· U = 0 =

✓

d

dt
V

◆

· V,
✓

d

dt
V

◆

· U = �V · d

dt
U.

Our formula for [D] then becomes

[D] =
⇥

U V
⇤t ⇥ d

dtU
d
dtV

⇤

=



U · d
dtU U · d

dtV
V · d

dtU V · d
dtV

�

=



0 �
�� 0

�

.

⇤
Occasionally we need one more derivative

d2

dt2
⇥

U V
⇤

=
⇥

U V
⇤



��2 d�
dt

�d�
dt ��2

�

,

d2U

dt2
= ��2U � d�

dt
V,

d2V

dt2
=

d�

dt
U � �2V.

2.2. The Fundamental Equations

For a planar regular curve q (t) : [a, b] ! R2 we have as for general curves

dq

dt
= |v| v

|v| =
ds

dt
T.

Instead of the choice of normal that depended on the acceleration (see section 1.3)
we select an oriented normal N± such that T and N± are positively oriented, i.e.,
if T = (a, b), then N± = (�b, a). Thus N± = ±N.

This leads us to a signed curvature defined by

± = N± · dT
ds

.

Proposition 2.2.1. The signed curvature can be calculated using the formula

± =
signed area of parallelogram (v,a)

|v|3
=

det
⇥

v a
⇤

|v|3

Theorem 2.2.2. (Euler, 1736) The fundamental equations that govern planar
curves are

dq

dt
=

ds

dt
T,

dT

dt
=

ds

dt
±N±,

dN±
dt

= �ds

dt
±T.

Moreover, given an initial position q (0) and unit direction T (0) the curve q (t) is
uniquely determined by its speed and signed curvature.
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Proof. The three equations are simple to check as T,N± form an orthonor-
mal basis. For fixed speed and signed curvature functions these equations form a
di↵erential equation which has a unique solution given the initial values q (0), T (0)
and N± (0). The normal vector is determined by the unit tangent so we have all of
that data. ⇤

Geometrically we say that the planar curve q (t) is determined by the planar
curve

�

ds
dt ,±

�

. If it is possible to find the arc-length parametrization, then the
data (s (t) ,± (t)) can equally well be used to describe the geometry of a planar
curve.

We o↵er a combined characterization of lines and circles as the curves that are
horizontal lines in (s,±) coordinates, i.e., they have constant curvature.

Theorem 2.2.3. A planar curve is part of a line if and only if its signed
curvature vanishes. A planar curve is part of a circle if and only if its signed
curvature is non-zero and constant.

Proof. If the curvature vanishes then we already know that it has to be a
straight line.

If the curve is a circle of radius R with center c, then

|q (s)� c|2 = R2.

Di↵erentiating this yields

T · (q (s)� c) = 0.

Thus the unit tangent is perpendicular to the radius vector q (s)�c. Di↵erentiating
again yields

±N± · (q (s)� c) + 1 = 0.

However the normal and radius vectors must be parallel so their inner product is
±R. This shows that the curvature is constant. We also obtain the equation

q = c� 1

±
N±.

This indicates that, if we take a curve with constant curvature, then we should
attempt to show that

c = q+
1

±
N±

is constant. Since ± is constant the derivative of this curve is

dc

ds
= T+

1

±
(�±T) = 0.

So c is constant and

|q (s)� c|2 =

�

�

�

�

1

±
N±

�

�

�

�

2

=
1

2
±
.

thus showing that q is a circle of radius 1
±

centered at c. ⇤

Proposition 2.2.4. The evolute of a unit speed planar curve q (s) of non-zero
curvature is given by

q⇤ = q+
1

±
N± = q+

1


N.
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Proof. This follows from remark 1.3.10 and

dq⇤

ds
= T+

1

±
(�±T) +

d

ds

✓

1

±

◆

N± =
d

ds

✓

1

±

◆

N±.

⇤

Exercises.

(1) Show that a planar curve is part of a line if all its tangent lines pass
through a fixed point.

(2) Compute the signed curvature of q (t) =
�

t, t3
�

and show that it has a
critical point at t = 0, is negative for t < 0, and positive for t > 0.

(3) Let q (s) = (x (s) , y (s)) : [0, L] ! R2 be a unit speed planar curve with
signed curvature ± (s) and q⇤ (s) = x (s) e1 + y (s) e2 +x another planar
curve where e1, e2 is a positively oriented orthonormal basis and x a point.
(a) Show that q⇤ is a unit speed curve with curvature ⇤

± (s) = ± (s).
(b) Show that a planar unit speed curve with the same curvature as q is

of the form q⇤.
(4) Compute the signed curvature of the logarithmic spiral

aebt (cos t, sin t)

(5) Compute the signed curvature of the spiral of Archimedes:

(a+ bt) (cos t, sin t)

(6) Show that if a planar unit speed curve q (s) satisfies:

± (s) =
1

es+ f

for constants e, f > 0, then it is a logarithmic spiral.
(7) Show that a planar curve is part of a circle if all its normal lines pass

through a fixed point.
(8) Show that ±

ds
dt = det

⇥

T dT
dt

⇤

.
(9) Let q (t) = r (t) (cos t, sin t). Show that the speed is given by

✓

ds

dt

◆2

=

✓

dr

dt

◆2

+ r2

and the curvature

± =
2
�

dr
dt

�2
+ r2 � r d2r

dt2
⇣

�

dr
dt

�2
+ r2

⌘

3
2

.

Parametrize the curve
�

1� x2
�

x2 = y2 in this way and compute its cur-
vature. Note that such a parametrization won’t be valid for all t.

(10) Assume a planar curve is given as a level set F (x, y) = c where rF 6= 0
everywhere along the curve. We orient and parametrize the curve so that

v =
⇣

�@F
@y ,

@F
@x

⌘

.

(a) Show that the signed normal is given by

N± = � rF

|rF | .
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(b) Use the chain rule to show that the acceleration is

a =

"

� @2F
@x@y �@2F

@y2

@2F
@x2

@2F
@y@x

#



�@F
@y

@F
@x

�

=



@v

@ (x, y)

�

[v] .

(c) Show that

± =
1

|rF |3
h

�@F
@x �@F

@y

i

"

� @2F
@x@y �@2F

@y2

@2F
@x2

@2F
@y@x

#



�@F
@y

@F
@x

�

=
1

|rF |3
h

�@F
@y

@F
@x

i

"

@2F
@x2

@2F
@x@y

@2F
@x@y

@2F
@y2

#



�@F
@y

@F
@x

�

.

(11) (Jerrard, 1961) With notation as in the previous exercise show that

± = div
rF

|rF | .

(12) Compute the curvature of
�

1� x2
�

x2 = y2 at the points where the above
formula works. What can you say about the curvature at the origin where
the curve intersects itself.

(13) Compute the curvature of the cissoid of Diocles x
�

x2 + y2
�

= 2Ry2.

(14) Compute the curvature of the conchoid of Nicomedes
�

x2 + y2
�

(y � b)2�
R2y2 = 0.

(15) Consider a unit speed curve q (s) with non-vanishing curvature and use
the notation df

ds = f 0. Show that q satisfies the third order equation

q000 �
0
±

±
q00 + 2

±q
0 = 0.

(16) Show that the curvature of the evolute q⇤ of a unit speed curve q (s)
satisfies

1

⇤
±

=
1

2

d

ds

✓

1

2
±

◆

.

(17) (Huygens, 1673) Consider the cycloid

q (t) = R (t+ sin t, 1 + cos t) .

It traces a point on a circle of radius R that rolls along the x-axis. Any
curve that is constructed by tracing a point on a circle rolling along a line
is called a cycloid (see also section 1.3 exercise 7).
(a) Show that the signed curvature is given by

± =
�1

2R
p

2 (1 + cos t)
.

(b) Show that the evolute is also a cycloid.
(c) Show that any curve that satisfies

(s� a)2 +
1

2
= 16R2

for a constant a 2 R is a cycloid. In other words cycloids are circles

centered on the first axis in
⇣

s, 1
±

⌘

coordinates.
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(d) Show that any cycloid is the involute of a cycloid.
(18) (Newton, Principia) Consider the equation

a = � q

|q|3

with q 2 R2.
(a) Show that solutions have the property that

A = q ·N± |v|
is constant in time.

(b) Show that

± =
A

|q|3 |v|3

and

a =
�q · v
|q|3 |v|

T+
A

|q|3 |v|
N±.

(c) Show that when A 6= 0 then

k = A |v|N± +
q

|q|
is constant and

A2 = |q|
✓

1� q · k
|q|

◆

.

(d) Show that if we parametrize the solution with respect to the angle
with the axis spanned by k, i.e., |q| |k| cos� = q · k, then this gives
us the classical formula

|q| = A2

1� |k| cos� ,

which for |k| < 1 describes an ellipse, |k| = 1 a parabola, and |k| > 1
a hyperbola.

(19) For a planar unit speed curve q (s) consider the parallel curve

q✏ = q+ ✏N±

for some fixed ✏.
(a) Show that this curve is regular as long as ✏± 6= 1.
(b) Show that the curvature is

±
|1� ✏±|

.

(20) If a curve in R2 is given as a graph y = f (x) show that the curvature is
given by

± =
f 00

⇣

1 + (f 0)2
⌘

3
2

.

(21) (Newton, 1671 and Huygens, 1673) Consider a regular planar curve q (t)
with ± (t0) 6= 0. Let l (t) denote the normal line to q at q (t).
(a) Show that l (t) and l (t0) are not parallel for t near t0.
(b) Let x (t) denote the intersection of l (t) and l (t0). Show that limt!t0 x (t)

exists and denote this limit c (t0).
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(c) Show that

(c (t0)� q (t0)) ·N (t0) =
1

± (t0)
.

Note the the left hand side is the signed distance from c (t0) to q (t0)

along the normal through q (t0). The circle of radius
�

�

�

1
±(t0)

�

�

�

centered

at c (t0) is the circle that best approximates the curve at q (t0).
(d) Show that the curve c (t) is the evolute of q (t).

(22) (Newton, 1671, but the idea is much older for specific curves. Kepler
considered it well-known.) Consider a regular planar curve q (t). For 3
consecutive values t � ✏ < t < t + ✏ let c (t, ✏) denote the center of the
unique circle that goes through the three points q (t� ✏) , q (t) , q (t+ ✏)
with c (t, ✏) = 1 if the points lie on a line.
(a) Show that c (t, ✏) is the point of intersection between the normal

lines to the segments between q (t) and q (t± ✏) that pass through
the midpoint of these segments.

(b) Show that q (t� ✏) , q (t) , q (t+ ✏) do not lie on a line for small ✏ if
± (t) 6= 0.

(c) Show that c (t, ✏) lies on the normal line through some point q (t0)
where t0 2 (t� ✏, t+ ✏). Hint: Show that there is a point on the curve
in the open interval closest to c (t, ✏) and use that as the desired point.

(d) Show that

lim
✏!0

(c (t, ✏)� q (t)) = lim
✏!0

(c (t, ✏)� q (t0)) =
1

± (t)
N (t) .

(23) (Normal curves) Consider a family of lines in the (x, y)-plane parametrized
by t:

F (x, y, t) = a (t)x+ b (t) y + c (t) = 0.

A normal curve to this family is a curve (x (t) , y (t)) such that its tangents
are precisely the lines of this family.
(a) Show that such a curve exists and can be determined by the equa-

tions:

F = a (t)x+ b (t) y + c (t) = 0,

@F

@t
= ȧ (t)x+ ḃ (t) y + ċ (t) = 0

when the Wronskian

det

2

4

a b c
ȧ ḃ ċ
ä b̈ c̈

3

5 6= 0.

(b) Show that for fixed x0, y0 the number of solutions or roots to the
equation F (x0, y0, t) = 0 corresponds to the number of tangent lines
to the normal curve that pass through (x0, y0).

(c) Consider the case where a = 1, b = t, c = tn, n = 2, 3, 4, ...
(i) Determine the number of roots in relation to how (x0, y0) is

placed relative to the normal curve.
(ii) Show that multiple roots only occur when (x0, y0) is on the

normal curve.
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2.3. Length and Area

In this section we establish some fundamental results about planar curves that
relate the arclength to areas or more generally surface integrals.

Oriented lines can be described by a directional angle ✓ 2 [0, 2⇡) and a distance
p 2 [0,1) from the origin, the equation for such a line is

x cos ✓ + y sin ✓ = p.

We denote the space of oriented lines by OL. To eliminate the choice of angle we
identify OL with with points on the cylinder S1 ⇥ [0,1), where the first factor
describes a unit direction in the plane and the second a distance. This eliminates
the angle choice, but it still leaves us with having specified p as a distance to a
specific point.

The cylinder model helps us put a measure on OL so that we can integrate
functions. This is simply done as a natural surface integral:

ˆ
l2OL

f (l) dl =

ˆ
f (l (u, v))

�

�

�

�

@l

@u
⇥ @l

@v

�

�

�

�

dudv.

If q : [a, b] ! R2 is a curve denote by n
q

(l) the number of times the curve
intersects the oriented line l.

Theorem 2.3.1. (Cauchy-Crofton) The length of a curve can be computed via
the formula

L (q) =
1

4

ˆ
l2OL

n
q

(l) dl.

Proof. Consider a regular curve q (t) : [a, b] ! R2. At a point q (t) of the
curve consider all lines passing through this point. If we denote the direction of
each of these oriented lines by (cos ✓, sin ✓) then the distance from this line to the
origin is given by

r (✓, t) = |(� sin ✓, cos ✓) · q (t)| .

This gives us a parametrization of the set of lines that intersect the curve

l (✓, t) = (cos ✓, sin ✓, p (✓, t)) .

However, di↵erent values of t correspond to the same line if that line intersects the
curve in several points, i.e., n

q

(l) is the number of t values where l = l (✓, t). Thus
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the integral on the right hand side can be reinterpreted as

1

4

ˆ
l2OL

n
q

(l) dl =
1

4

ˆ
(✓,t)2[0,2⇡]⇥[a,b]

dl (✓, t)

=
1

4

ˆ b

a

ˆ 2⇡

0

�

�

�

�

@l

@✓
⇥ @l

@t

�

�

�

�

d✓dt

=
1

4

ˆ b

a

ˆ 2⇡

0

�

�

�

�

�

�

2

4

� sin ✓
cos ✓
@r
@✓

3

5⇥

2

4

0
0
@r
@t

3

5

�

�

�

�

�

�

d✓dt

=
1

4

ˆ b

a

ˆ 2⇡

0

�

�

�

�

@r

@t

�

�

�

�

d✓dt

=
1

4

ˆ b

a

ˆ 2⇡

0

�

�

�

�

(� sin ✓, cos ✓) · dq
dt

�

�

�

�

d✓dt

=
1

4

ˆ b

a

ˆ 2⇡

0
|(� sin ✓, cos ✓) ·T| ds

dt
d✓dt

=
1

4

ˆ L

0

ˆ 2⇡

0
|(� sin ✓, cos ✓) ·T| d✓ds.

Now for a fixed s (or t) consider the integralˆ 2⇡

0
|(� sin ✓, cos ✓) ·T| d✓.

As (� sin ✓, cos ✓) is the unit normal to the line passing through q (s) we note that

|(� sin ✓, cos ✓) ·T| = |sin�| ,
where � denotes the angle between the line and T (s). Since s is fixed we have that
the two angles �, ✓ di↵er by a constant, so it follows thatˆ 2⇡

0
|(� sin ✓, cos ✓) ·T| d✓ =

ˆ 2⇡

0
|sin�| d�

= 4.

This in turn implies the result we wanted to prove. ⇤
Crofton’s formula will reappear in section 3.3 for curves on spheres and at that

point we will give a di↵erent proof.

Corollary 2.3.2. If we reparametrize OL using (�, s) instead of (✓, s) we
obtain ˆ

l2OL

f (l)n
q

(l) dl =

ˆ L

0

ˆ 2⇡

0
f (l (�, s)) |sin�| d�ds.

Proof. This is simply the change of variables formula for functions on OL
given our analysis in the proof of Crofton’s formula. ⇤

Before presenting another well known and classical result relating area and
length we need to indicate a proof of an intuitively obvious theorem. This result
allows us to speak of the inside and outside of a simple closed planar curve.

Theorem 2.3.3. (Jordan Curve Theorem) A simple closed planar curve divides
the plane in to two regions one that is bounded and one that is unbounded.



2.3. LENGTH AND AREA 35

Proof. Note that in case the curve is also part of the regular level set of a
function, then the constructions that follow are much simpler.

Consider a simple closed curve q that is parametrized by arclength. We con-
struct the parallel curves

q✏ = q+ ✏N±.

The velocity is
dq✏

dt
= (1� ✏±)T.

So as long as ✏ is small they are clearly regular. We also know that they are closed.
Finally we can also show that they are simple for small ✏. This follows from a
contradiction argument. Thus assume that there is a sequence ✏i ! 0 and distinct
parameter values si 6= ti such that

q (si) + ✏iN± (si) = q (ti) + ✏iN± (ti) .

By compactness we can, after passing to subsequences, assume that si ! s and
ti ! t. Since q is simple it follows that s = t. Now if |±|  K then the derivatives
of N± are bounded in absolute value by K so it follows that

|q (si)� q (ti)| = |✏i| |N± (ti)�N± (si)|
 |✏i|K |ti � si| .

But this implies that the derivative of q vanishes at s = t which contradicts that
the curve is regular.

Fix ✏0 > 0 so that both q✏0 and q�✏0 are closed simple curves. We think of
them as inside and outside curves, but we don’t know yet which is which. Every
point p not on q will either lie on a parallel curve q✏ with |✏|  ✏0, in which case we
can decide which side of q p lies on, or the shortest line from p to q will cross either
q✏0 or q�✏0 in a point closest to p (note that such a line crosses q orthogonally) so
again we can decide which side of q p lies on. Next, it is not too di�cult to see
that these two regions are open and connected. Finally, one of them is bounded
and that will be the inside region. ⇤

The isoperimetric ratio of a simple closed planar curve q is L2/A where L is
the perimeter, i.e., length of q, and A is the area of the interior. We say that q
minimizes the isoperimetric ratio if L2/A is as small as it can be.

The isomerimetric inequality asserts that the isoperimetric ratio always exceeds
4⇡ and is only minimal for circles. This will be established in the next theorem
using a very elegant proof that does not assume the existence of a curve that realizes
this ratio. Steiner in the 1830s devised several intuitive proofs of the isoperimetric
inequality assuming that such minimizers exist. It is, however, not so simple to
show that such curves exist as Dirichlet repeatedly pointed out to Steiner. Some of
Steiner’s ideas will be explored in the exercises.

The isoperimetric inequality would seem almost obvious and has been investi-
gated for millennia. In fact a related problem, known as Dido’s problem, appears
in ancient legends. Dido founded Carthage and was faced with the problem of
enclosing the largest possible area for the city with a long string (called a length
of hide as the string had to be cut from a cow hide). However, the city was to be
placed along the shoreline and so it was only necessary to enclose the city on the
land side. In mathematical terms we can let the shore line be a line, and the curve
that will enclose the city on the land side is a curve that begins and ends on the
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line and otherwise stays on one side of the line. It is not hard to imagine that a
semicircle whose diameter is on the given line yields the largest area for a curve of
fixed length.

Theorem 2.3.4. The isoperimetric inequality states that if a simple closed
curve bounds an area A and has circumference L, then

L2 � 4⇡A.

Moreover, equality can only happen when the curve is a circle.

Proof. (Knothe, 1957) We give a very direct proof using Green’s theorem in
the form of the divergence theorem. Unlike many other proofs, this one also easily
generalizes to higher dimensions.

Consider a simple closed curve q of length L that can be parametrized by
arclength. The domain of area A is then the interior of this curve. Let the domain
be denoted ⌦. We wish to select a (Knothe) map F : ⌦ ! B (0, R) where B (0, R)
also has area A. More specifically we seek a map with the properties

F (u, v) = (x (u) , y (u, v))

and

detDF =
@x

@u

@y

@v
= 1.

Such a map can be constructed if we select x (u0) and y (u0, v0) for a specific
(u0, v0) 2 ⌦ to satisfy

area ({u < u0} \ ⌦) = area ({x < x (u0)} \B (0, R))

and

area ({u < u0} \ {v < v0} \ ⌦) = area ({x < x (u0)} \ {y < y (u0, v0)} \B (0, R)) .

The choice of B (0, R) together with the intermediate value theorem guarantee that
we can construct this map. By choice, this map is area preserving as it is forced
to map any rectangle in ⌦ to a region of equal area in B (0, R). To see this note
that it preserves the area of sets {u0  u < u1} \ ⌦ as they can be written as a
di↵erence of sets

{u0  u < u1} \ ⌦ = {u < u1} \ ⌦� ({u < u0} \ ⌦)

whose areas are preserved by definition of the map. We then obtain the rectangle
[u0, u1) ⇥ [v0, v1) by intersecting this strip with the set {v0  v < v1} \ ⌦. Thus
this rectangle is in turn written as a di↵erence

[u0, u1)⇥ [v0, v1) = ({u < u1} \ ⌦� ({u < u0} \ ⌦)) \ ({v < v1} \ ⌦� ({v < v0} \ ⌦))

= ({u < u1} \ ⌦� ({u < u0} \ ⌦)) \ ({v < v1} \ ⌦)

� ({u < u1} \ ⌦� ({u < u0} \ ⌦)) \ ({v < v0} \ ⌦)

between two sets whose areas are preserved by the map.
The two conditions additionally force @x

@u > 0, @y
@v > 0. To prove the isoperi-

metric inequality we use Green’s theorem in the form of the divergence theorem
in the plane. The vector field is given by the map F . Note that the outward unit
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normal for ⌦ is the vector �N± if the curve q runs counter clockwise. Using that
|F |  R we obtain: ˆ

⌦
divFdudv = �

ˆ L

0
F ·N±ds

 RL.

On the other hand the geometric mean
p
ab is always smaller than the arithmetic

mean 1
2 (a+ b) so we also have:

divF =
@x

@u
+

@y

@v

� 2

r

@x

@u

@y

@v
= 2.

Consequently
2A  RL,

which implies
4A2  R2L2.

Now we constructed B (0, R) so that A = ⇡R2. So we obtain the isoperimetric
inequality

4⇡A  L2.

The equality case can only occur when we have equality in all of the above
inequalities. In particular

@x

@u
=

@y

@v
everywhere showing that

@x

@u
=

@y

@v
= 1.

This tells us that the function takes the form: F (u, v) = (u+ u0, v + g (u)). We
also used that |F ·N±|  |F |  R when the function is restricted to the boundary
curve. Thus we also have F � q = �RN±, i.e.,

q+ (u0, g (u (s))) = �RN±,

where q (s) = (u (s) , v (s)). Di↵erentiating with respect to s then implies that

(1�R)T =

✓

0,
@g

@u

du

ds

◆

.

This means either that 1 = R or that q is constant in the first coordinate. In the
latter case du

ds = 0, so it still follows that 1 = R. Thus the curve has constant
non-zero curvature which shows that it must be a circle. ⇤

Remark 2.3.5. We’ve used without justification that the Knothe map is smooth
so that we can take its divergence. This may however not be the case. The partial
derivative @x

@u , when it exists, is equal to the sum of lengths of the intervals that
make up the set {u = u0} \ ⌦. So if we assume that part of the boundary is a
vertical line at u = u0 and that the domain contains points both to the right and
left of this line, then @x

@u is not continuous at u = u0.
To get around this issue one can assume that the domain is convex. Or in

general that the boundary curve has the property that its tangent lines at points
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where the curvature vanishes are not parallel to the axes. The latter condition
can generally be achieved by rotating the curve and appealing to Sard’s theorem.
Specifically, we wish to ensure that the normal N± is never parallel to the axes at
places where dN±

dt = 0.
Alternately it is also possible to prove the divergence theorem under fairly weak

assumptions about the derivatives of the function.

Exercises.

(1) Show that for a domain ⌦ ⇢ R2 with smooth boundary curve q, the
divergence theorem

ˆ
⌦
divFdudv = �

ˆ L

0
F ·N±ds

follows from Green’s theorem.
(2) Show that

A =

ˆ
⌦
dudv = �1

2

ˆ L

0
q ·N±ds.

(3) Compute the area in the leaf of the folium of Descartes (see section 1.1
exercise 13).

(4) We say that a simple closed planar curve q has convex interior if the
domain ⌦ bounded by q has the property that for any two points in ⌦
the line segments between the points also lie in ⌦.
(a) Show that if q minimizes the isoperimetric ratio, then its interior

must be convex.
(b) Show that if q minimizes the isoperimetric ratio and has perimeter

L, then any section of q that has length L/2 solves Dido’s problem.
(c) Show that the isoperimetric problem is equivalent to Dido’s problem.

(5) Consider all triangles where two sides a, b are fixed. Show that the triangle
of largest area is the right triangle where a and b are perpendicular. Note
that this triangle can be inscribed in a semicircle where the diameter is
the hypotenuse. Use this to solve Dido’s problem if we assume that there
is a curve that solves Dido’s problem.

(6) Show that among all quadrilaterals that have the same four side lengths
a, b, c, d > 0 in order, the one with the largest area is the one that can be
inscribed in a circle so that all four vertices are on the circle. Use this
to solve the isoperimetric problem assuming that there is a curve that
minimizes the isoperimetric ratio.

(7) Try to prove that the regular 2n-gon maximizes the area among all 2n-
gons with the same perimeter.

2.4. The Rotation Index

We now turn to a geometric interpretation of the signed curvature.

Theorem 2.4.1. For a regular curve the angle between the unit tangent and
the x-axis is an anti-derivative of the signed curvature with respect to arclength.
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Proof. We start with an analysis of the problem. Assume that we have a
parametrization (we don’t know yet that it is possible to select such a parametriza-
tion) of the unit tangent by using the angle to the first axis:

T (t) = (cos ✓ (t) , sin ✓ (t)) ,

N± (t) = (� sin ✓ (t) , cos ✓ (t)) .

In this case
ds

dt
±N± =

dT

dt
=

d✓

dt
N±.

So we should be able to declare that ✓ is an antiderivative of ds
dt±. Note that as long

as the signed curvature is non-negative this is consistent with the interpretation of
✓ as an arclength parameter for T.

To verify that such a choice works, define

✓ (t1) = ✓0 +

ˆ t1

a

ds

dt
±dt, where

T (a) = (cos ✓0, sin ✓0)

and consider the orthonormal unit fields

U = (cos ✓ (t) , sin ✓ (t)) ,

V = (� sin ✓ (t) , cos ✓ (t)) .

They are clearly related by
dU

dt
=

d✓

dt
V.

If we can show that T · U ⌘ 1, then it follows that T = U . Our choice of ✓0 forces
the dot product to be 1 at t = a. To show that it is constant we show that the
derivative vanishes

d

dt
(T · U) =

dT

dt
· U +T · dU

dt

=
ds

dt
±N± · U +

d✓

dt
T · V

=
ds

dt
± (N± · U +T · V )

= 0,

where the last equality follows by noting that if T = (f, g), then N± (�g, f) so

N± · U +T · V = �g cos+f sin+� f sin+g cos = 0.

In other words, the two inner products define complementary angles. ⇤

Definition 2.4.2. The total curvature of a curve q : [a, b] ! R2 is defined as
ˆ b

a

±
ds

dt
dt.

When we reparametrize the curve by arclength this simplifies to
ˆ L

0
±ds.
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The total curvature measures the total change in the tangent since the curvature
measures the infinitesimal change of the tangent.

The ancient Greeks actually used a similar idea to calculate the angle sum in
a convex polygon. Specifically, the sum of the exterior angles in a polygon adds up
to 2⇡. This is because we can imagine the tangent line at each vertex jumping from
one side to the next and while turning measuring the angle it is turning. When
we return to the side we started with we have completed a full circle. When the
polygon has n vertices this gives us the formula (n� 2)⇡ for the sum of the interior
angles.

A similar result holds for closed planar curves as T (a) = T (b) for such a curve.

Proposition 2.4.3. The total curvature of a planar closed curve is an integer
multiple of 2⇡.

The integer is called the rotation index of the curve:

i
q

=
1

2⇡

ˆ b

a

±
ds

dt
dt.

We can more generally define the winding number of a closed unit curve t :
[a, b] ! S1 ⇢ R2. Being closed now simply means that t (a) = t (b). The idea is to
measure the number of times such a curve winds or rotates around the circle. The
specific formula is very similar. First construct the positively oriented normal n (t)
to t (t), i.e. the unit vector perpendicular to t (t) such that det

⇥

t (t) n (t)
⇤

= 1
and then check the change of t against n. Note that as t is a unit vector its
derivative is proportional to n. The winding number is given by

w
t

=
1

2⇡

ˆ b

a

dt

dt
· ndt.

With this definition
i
q

= w
T

.

Proposition 2.4.4. The winding number of a closed unit curve is an integer.
Moreover, it doesn’t change under small changes in t.

Proof. The results holds for all continuous curves, but as we’ve used deriva-
tives to define it we have to assume that it is smooth. However, the proof works
equally well if we assume that the curve is piecewise smooth.

As above define

✓ (t0) = ✓0 +

ˆ t0

a

dt

dt
· ndt,

where
t (a) = (cos ✓0, sin ✓0) .

Then show that
t (t) = (cos ✓ (t) , sin ✓ (t)) .

Next suppose that we have two t1, t2 parametrized on the same interval [a, b]
such that

|t1 � t2|  ✏ < 2.

If in addition their derivatives are also close and bounded then it is not hard to
see directly that the winding numbers are close. However, as they are integers, the
only way in which they can be close is if they agree.
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To prove the result without assumptions about derivatives we start with the
crucial observation that if

|✓1 � ✓2| < ⇡,

then
|✓1 � ✓2| <

⇡

2
|(cos ✓1, sin ✓1)� (cos ✓2, sin ✓2)| .

In other words if the di↵erence in angles between two points on the circle is less
that ⇡ then the di↵erence in angles is bounded by a uniform multiple of the cord
length between the points.

Now assume that we have

t1 (t) = (cos ✓1 (t) , sin ✓1 (t)) ,

t2 (t) = (cos ✓2 (t) , sin ✓2 (t)) ,

with
|✓1 (a)� ✓2 (a)| < ⇡,

then we claim that
|✓1 (t)� ✓2 (t)| <

⇡

2
|t1 (t)� t2 (t)|

for all t.
We know the claim holds for t = a and as all the functions are continuous

the set of parameters t that satisfy this condition is open (it is a strict inequality).
Next we can show that this set is also closed. To see this assume that the inequality
holds for tn and that tn ! t. We have

|✓1 (tn)� ✓2 (tn)| <
⇡

2
|t1 (tn)� t2 (tn)| 

⇡

2
✏,

so it follows from continuity that

|✓1 (t)� ✓2 (t)| 
⇡

2
✏ < ⇡.

This shows that
|✓1 (t)� ✓2 (t)| <

⇡

2
|t1 (t)� t2 (t)| .

It now follows that

|w
t1 � w

t2 |  1

2⇡
|(✓1 (b)� ✓1 (a))� (✓2 (b)� ✓2 (a))|

 1

2⇡
|(✓1 (b)� ✓2 (b))� (✓1 (a)� ✓2 (a))|

 1

2⇡
|(✓1 (b)� ✓2 (b))|+

1

2⇡
|(✓1 (a)� ✓2 (a))|

 1

2
✏ < 1.

This shows that the winding numbers are equal. ⇤

The next theorem is often called the Umlaufsatz (going around theorem). It
is universally credited to H. Hopf, however, the name and theorem is certainly due
to A. Ostrowski. Ostrowski’s papers were in fact published in the same journal in
the same year as Hopf’s paper. Hopf’s proof was meant as a shorter more elegant
version of Ostrowski’s far longer version. Ostrowski himself refers to the theorem
as Rolle’s theorem.
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Theorem 2.4.5. (Ostrowski, 1935) A simple closed curve has rotation index
±1.

Proof. (Hopf, 1935) We assume that we have a simple closed curve q (s) :
[0, l] ! R2 that is parametrized by arclength. Moreover, after possibly rotating
and translating the curve we’ll assume that q (0) = (0, 0), T (0) = (±1, 0), and
x (s) � 0 for all s. The idea is to create a family of unit vectors on a triangle where
0  s  t  l.

T (s, t) =

8

>

<

>

:

T (s) s = t,

�T (0) s = 0, t = l,
q(t)�q(s)
|q(t)�q(s)| for all other s < t.

Since the curve is simple, closed, and smooth this will yield a well-defined function
whose values are aways unit vectors. If we select any simple path in this triangle
that passes from (0, 0) to (l, l) then T will wind around the unit circle and end
up where it began as T (0, 0) = T (l, l). Moreover, if we make a slight change in
this path it will wind around the same number of times. Along the diagonal the
number of windings is the rotation index of the curve. However, if we move up the
y-axis and then along the upper edge of the triangle, then we are first following
T (0, t) = q(t)

|q(t)| and then T (s, l) = q(l)�q(s)
|q(l)�q(s)| . Assume that T (0) = (1, 0), then

T (0, t) rotates precisely ⇡ from right to left while it points upwards as q lies in the
upper half plane, and T (s, l) rotates ⇡ from left to right while pointing downwards.
Thus this rotation is precisely 2⇡. This shows that q also has rotation index 1.
When instead T (0) = (�1, 0) the rotation index is �1. ⇤

Definition 2.4.6. The total absolute curvature is defined asˆ b

a


ds

dt
dt =

ˆ b

a

|±|
ds

dt
dt.

Exercises.

(1) Let q (t) = r (t) (cos (nt) , sin (nt)) where is t 2 [0, 2⇡], n 2 Z, and r (t) > 0
is 2⇡-periodic. Show that i

q

= n.
(2) Show that the rotation index for

�

1� x2
�

x2 = y2 is zero. Show that the
total absolute curvature is > 2⇡.

(3) Let q (s) : [0, L] ! R2 be a unit speed curve that is piecewise smooth,
i.e., the domain can be subdivided

0 = a1 < a2 < · · · < ak+1 = L

such that the curve is smooth on each interval [ai, ai+1] , i = 1, ..., k. The
exterior angle ✓i 2 [�⇡,⇡] at ai is defined by

cos ✓i = T
�

a�i
�

·T
�

a+i
�

,

sin ✓i = N±
�

a�i
�

·T
�

a+i
�

,

where

T
�

a±i
�

=
dq

ds±
(ai) = lim

h!0

q (ai ± h)� q (ai)

±h

and N± defined as the corresponding signed normal.
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(a) If q is closed show that
ˆ L

0
±ds+

k
X

i=1

✓i = i
q

2⇡

for some i
q

2 Z.
(b) If q is both closed and simple show that i

q

= ±1.
(c) Show that the sum of the exterior angles in a polygon is 2⇡ if the

polygon is oriented appropriately.
(4) Let

q (t) = (1 + a cos t) (cos t, sin t) , t 2 [0, 2⇡] .

(a) Show that this is a simple curve when |a| < 1 and intersects it self
once when |a| > 1. Hint: Show that if r (t) > 0, then r (t) (cos t, sin t)
defines a simple curve. When r (t) changes sign investigate what
happens when it vanishes.

(b) Show that

d✓

dt
= 1 +

a (a+ cos t)

1 + a2 + 2a cos t

and conclude thatˆ 2⇡

0

a (a+ cos t)

1 + a2 + 2a cos t
dt =

(

0 |a| < 1,

2⇡ |a| > 1.

(5) Show that any closed planar curve satisfiesˆ b

a


ds

dt
dt � 2⇡.

(6) Show that by selecting a very flat 1 shape where the tangents at the
intersection are close to the x-axis we obtain examples with rotation index
0 and total absolute curvature close to 2⇡.

(7) Let q : [0, L] ! R2 be a closed curve parametrized by arclength. Show

that if
´ L
0 ds = 2⇡, then ± cannot change sign and the rotation index is

±1. Later we will show that this implies that the curve is simple as well.
(8) Let q (t), t 2 [a, b] be a regular planar curve and ✓ (t) 2 [✓0, ✓1] an ar-

clength parameter for T. Define v (t) as the distance from the origin to
the tangent line through q (t).
(a) Show that

v (t) = �q (t) ·N± (t) .

(b) Show by an example (e.g., a straight line) that q is not necessarily a
function of ✓.

(c) Define the curve

q⇤ (✓) =
dv

d✓
T� vN± =

dv

d✓
(cos ✓, sin ✓)� v (� sin ✓, cos ✓)

and show that

dq⇤

d✓
=

✓

d2v

d✓2
+ v

◆

(cos ✓, sin ✓) .

(d) Show that when q⇤ is a regular curve then it is a reparametrization
of q.
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(e) Under that assumption show further that

v +
d2v

d✓2
=

1


,

L (q) =

ˆ ✓1

✓0

v (✓) d✓.

(f) How is this related to Crofton’s formula?

2.5. Two Surprising Results

Definition 2.5.1. A vertex of a curve is a point on the curve where the cur-
vature is a local maximum or a local minimum.

Theorem 2.5.2. (Mukhopadhyaya, 1909 and Kneser, 1912) A simple closed
curve has at least 4 vertices.

We start with the following observation.

Proposition 2.5.3. Suppose we have a curve q that is tangent to a circle and
lies inside (resp. outside) the circle, then its curvature is larger (resp. smaller)
than or equal to the curvature of the circle at the points where they are tangent.

Proof. Assume the curve q is tangent to the circle of radius R centered at c
at s = s0. This implies that

|q (s)� c|2  R2 and |q (s0)� c|2 = R2.

Thus the function s 7! |q (s)� c|2 has a (local) maximum at s = s0. This implies
that its derivative at s0 vanishes. This is simply the fact that the curve is tangent
to the circle. Moreover, the second derivative is nonpositive. Assume that both
circle and curve are parametrized to run counter clockwise. Thus they have the
same unit tangents at s0 and consequently also the same inward pointing normals.
This normal is

N± (s0) = � q (s0)� c

|q (s0)� c| = �q (s0)� c

R
.

The second derivative of s 7! |q (s)� c|2 is

2 + 2 (q� c) · q̈ = 2 + 2±N± · (q� c) .

Therefore, at s0 we have

0 � 2 + 2± (s0)N± (s0) · (q (s0)� c)

= 2 + 2± (s0)N± (s0) · (�RN± (s0))

= 2� 2R± (s0) .

This implies our claim.
The proof of the second claim about the curve lying outside the circle is proved

in the same way with all inequalities reversed. ⇤
We are now ready to prove the four vertex theorem. Mukhopadhyaya proved

this result for simple planar curves with strictly positive curvature and a few
years later Kneser proved the general version, apparently without knowledge of
Mukhopadhyaya’s earlier contribution. An excellent account of the history of
this fascinating result can be found here: http://www.ams.org/notices/200702/fea-
gluck.pdf
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Proof. (Osserman, 1985) Select the circle of smallest radius R circumscribing
the simple closed curve. The points of contact between this circle and the curve
cannot lie on one side of a diagonal. If they did, then it’d be possible to slide the
circle in the orthogonal direction to the diagonal until it doesn’t hit the curve. We
could then find a circle of smaller radius that contains the curve. This means that
we can find points q1, ...., qk+1 of contact where qk+1 = q1 and either k = 2 and q1
and q2 are antipodal, or k > 2 and any two consecutive points qi and qi+1 lie one
one side of a diagonal. Note there might be more points of contact.

Now orient both circle and curve so that their normals always point inside. At
points of contact where the tangent lines are equal, the normal vectors must then
also be equal, as the curve is inside the circle. This forces the unit tangent vectors
to be equal.

First observe that the curvature at these k points is � R�1.
If the curve coincides with the circle between two consecutive points of contact

qi and qi+1, then the curvature is constant and we have infinitely many vertices.
Otherwise there will be a point q on the curve between qi and qi+1 that is inside
the circle. Then we can select a circle of radius > R that passes through qi and
qi+1 and still contains q in its interior. Now slide this new circle orthogonally to
the cord between qi and qi+1 until the part of the curve between qi and qi+1 lies
outside the circle but still touches it somewhere. At this place the curvature will
be < R�1.

This shows that we can find k points where the curvature is � R�1 and k points
between these where the curvature is < R�1. This implies that there must be at
least k local maxima for  where the curvature is � R�1 and between each two
consecutive local maxima a minimum where the curvature is < R�1. Note that the
maxima and minima don’t have to be at the points of contact. Thus we have found
2k vertices. ⇤

Definition 2.5.4. For a line and a curve consider the points on the line where
the curve is tangent to the line. This set will generally be empty. We say that the
line is a double tangent if this set is not empty and not a segment of the line. Thus
the curve will have contact with the line in at least two places but will not have
contact with the line at all of the points in between these two points of contact.

When a curve is not too wild it is possible to relate double tangents and self
intersections.

A generic curve is defined as a regular curve such that:

(1) Tangent lines cannot be tangent to the curve at more than 2 points.
(2) At self-intersection points the curve intersects itself twice.
(3) The curve only has a finite number of inflection points where the curvature

changes sign.
(4) Finally, no point on the curve can belong to more than one of these cate-

gories of points.

For a generic curve T+ is the number of tangent lines that are tangent to the curve in
two places such that the curve lies on the same side of the tangent line at the points
of contact. T� is the number of tangent lines that are tangent to the curve in two
places such that the curve lies on opposite sides of the tangent line at the points
of contact. I is the number of inflection points, i.e., points where the curvature
changes sign. D is the number of self-intersections (double points).
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Theorem 2.5.5. (Fabricius-Bjerre, 1962) For a generic closed curve we have

2T+ � 2T� � 2D � I = 0.

Proof. The proof proceeds by checking the number of intersections between
the positive tangent lines q (t) + rv (t) , r � 0 and the curve as we move forwards
along the curve. As we move along the curve this number will change but ultimately
return to its initial value.

When we pass through an inflection point or a self-intersection this number
will decrease by 1. When we pass a point that corresponds to a double tangent T±
the change will be 0 or ±2 with the sign being consistent with the type of tangent.

To keep track of what happens we subdivide the two types of double tangents

into three categories denoted
!!

T± ,
! 

T± ,
 !

T± . Here
!!

T± indicates that the tangent

vectors at the double points have the same directions,
! 

T± indicate that the tangent
vectors at the double points have opposite directions but towards each other, and
 !

T± indicate that the tangent vectors at the double points have opposite directions
but away from each other.

For double tangents of the type
 !

T± no intersections will be gained or lost as

we pass through points of that type. For
! 

T± the change is always ±2 at both of

the points of contact. For
!!

T± the change is ±2 for one of the points and 0 for the
other. Thus as we complete one turn of the curve we must have

2
!!

T+ + 4
! 

T+ � 2
!!

T� � 4
! 

T� � I � 2D = 0.

We now reverse the direction of the curve and repeat the counting procedure.

The points of type I,D,
!!

T± remain the same, while the points of types
! 

T± and
 !

T±
are interchanged. Thus we also have

2
!!

T+ + 4
 !

T+ � 2
!!

T� � 4
 !

T� � I � 2D = 0.

Adding these two equations and dividing by 2 now gives us the formula. ⇤

Exercises.

(1) Show that a vertex is a critical point for the curvature. Draw an example
where a critical point for the curvature does not correspond to a local
maximum/minimum.

(2) Show that a simple closed planar curve q (t) has the property that its unit

tangent T is parallel to d2
T

ds2 at at least four points.
(3) Show that concept of a vertex does not depend on the parametrization of

the curve.
(4) Show that an ellipse that is not a circle has 4 vertices.
(5) Find the vertices of the curve

x4 + y4 = 1.

(6) Show that the curve

(1� 2 sin ✓) (cos ✓, sin ✓)

is not simple and has exactly two vertices.
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(7) Show that a vertex for a curve given by a graph y = f (x) satisfies
 

1 +

✓

df

dx

◆2
!

d3f

dx3
= 3

df

dx

✓

d2f

dx2

◆2

.

(8) Consider a curve

q (t) = r (t) (cos t, sin t)

where r > 0 and is 2⇡-periodic. Draw pictures where maxima/minima
for r correspond to vertices. Is it possible to find an example where the
minimum for r corresponds to a local maximum for ± and the maximum
for r corresponds to a local minimum for ±?

Possible exercises: Define what it means for a curve to lie inside a simple closed
curve. If the simple closed curve is a circle this is easy, in general, a similar definition
can be adopted if the simple closed curve is defined as a level set of a function.
Otherwise we have to use the Jordan curve thm.

Define what it means for a curve to locally be on one side of the other relative
to a line. In this case think of the line as being the x-axis, then one curves lies
above the other if y-coordinates that correspond to the same x-coordinate lie above
each other. Note that this is strictly local and only works when the curves can be
written as graphs over the x-axis.

Prove that if two curves have the same unit tangent and one lies more to the
left than the other then it also has larger (or equal) curvature.

Prove that if a curve lies inside another curve and they are tangent at a point,
then it also lies more to the left of the other curve.

2.6. Convex Curves

Definition 2.6.1. We say that a regular planar curve is convex if it always lies
on one side of its tangent lines. We say that it is strictly convex if it only intersects
its tangent lines at the point of contact. A closed strictly convex curve is also called
an oval.

Note that we do not need to assume that the curve is closed for this definition
to make sense.

Theorem 2.6.2. A planar convex curve is simple and the signed curvature
cannot change sign.

Proof. First we show that the curvature can’t change sign. We assume that
the curve q : [0, L] ! R2 is parametrized by arclength. Since the curve lies on one
side of its tangent at any point q (s0) it follows that

(q (s)� q (s0)) ·N± (s0)

is either non-negative or nonpositive for all s. If it vanishes, then the curve must
be part of the tangent line through q (s0). In this case it is clearly simple and the
curvature vanishes. Otherwise we have two disjoint sets I± ⇢ [0, L], where

I+ = {s0 2 [0, L] | (q (s)� q (s0)) ·N± (s0) � 0 for all s 2 [0, L]}
I� = {s0 2 [0, L] | (q (s)� q (s0)) ·N± (s0)  0 for all s 2 [0, L]}
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Both of these sets must be closed by the continuity of (q (s)� q (s0)) · N± (s0).
However, it is not possible to write an interval as the disjoint union of two closed
sets unless one of these sets is empty.

Now assume that I+ = [0, L]. Thus (q (s)� q (s0)) · N± (s0) � 0 for all s, s0
with equality for s = s0. Then the second derivative with respect to s is also
non-negative at s0:

0  d2q

ds2
(s0) ·N± (s0)

=
dT

ds
(s0) ·N± (s0)

= ± (s0) .

This shows that the signed curvature is always non-negative.
We still assume that the curve always lies to the left of its oriented tangent

lines. If q (s0) = q (s1), then the tangent lines must agree at this point as the curve
otherwise can’t be smooth. The unit tangents must also agree since the entire curve
always lies to the left of its oriented tangents. Next we observe that if some nearby
point q (s0 + ✏) lies on the common tangent line, then the curve must lie on the
tangent line for all s 2 [s0, s0 + ✏] as q (s0 + ✏) would otherwise lie to the right of
one of the tangent lines through q (s). The same reasoning now shows that q (s)
must lie on the tangent line for s 2 [s1, s1 + ✏] as q (s0 + ✏) would otherwise lie to
the right of one of the tangent lines through q (s). This means we can suppose
that s0, s1 are chosen so that q (si + t) lies strictly to the left of the tangent line
for all small t 2 [0, ✏]. In other words the total curvature over [si, si + ✏] is positive.
This implies that the tangent line through q (s0 + ✏0) for small ✏0 is always parallel
to a tangent line through q (s1 + ✏1) for some small ✏1. These tangent lines must
agree as otherwise the curve couldn’t be to the left of both tangent lines. This
common tangent line is by construction not parallel to the tangent line through
q (si). In particular, if q (s0 + ✏0) 6= q (s1 + ✏1), then one of these points will be
closer to the tangent line through q (si). Assume q (s1 + ✏1) is closer. Then it
follows that q (s1 + ✏1) must lie to the right of the tangent lines through q (s0 + s)
for s < ✏0 close to ✏0. This shows that q (s0 + ✏0) = q (s1 + ✏1) and that the curve
is simple. ⇤

Theorem 2.6.3. If a curve has non-negative signed curvature and total curva-
ture  ⇡, then it is convex.

Proof. Any curve with non-negative curvature always locally lies on the left
of its tangent lines. So if it comes back to intersect a tangent l after having travelled
to the left of l, then there will be a point of locally maximal distance to the left of
l. At this local maximum the tangent line l⇤ must be parallel but not equal to l. If
they are oriented in the same direction, then the curve will locally be on the right
of l⇤. As that does not happen they have opposite direction. This shows that the
total curvature is � ⇡. However, the curve will have strictly larger total curvature
as it still has to make its way back to intersect l. ⇤

Theorem 2.6.4. If a closed curve has non-negative signed curvature and total
curvature  2⇡, then it is convex.

Proof. The argument is similar to the one above. Assume that we have a
tangent line l such that the curve lies on both sides of this line. As the curve is
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closed there’ll be points one both sides of this tangent at maximal distance from
the tangent. The tangent lines l⇤ and l⇤⇤ at these points are then parallel to l.
Thus we have three parallel tangent lines that are not equal. Two of these must
correspond to unit tangents that point in the same direction. As the curvature does
not change sign this implies that the total curvature of part of the curve is 2⇡. The
total curvature must then be > 2⇡ as these two tangent lines are di↵erent and the
curve still has to return to both of the points of contact. ⇤

Example 2.6.5. Euler’s construction. The details are discussed in the exercises
below. A piecewise smooth simple closed planar curve with n > 2 cusps and the
property that tangents at di↵erent points are never parallel has the property that
its involutes are curves of constant width. The cusps are the points where the curve
is not smooth and we assume that the unit tangents are opposite at those points,
i.e., the interior angles are zero at the non-smooth points.

Exercises.

(1) Let q (✓) be a simple closed planar curve with  > 0 parametrized by ✓,
where ✓ is defined as the arclength parameter of the unit tangent field T.
Show that

dq

d✓
=

1


T,

dT

d✓
= N,

dN

d✓
= �T,

T (✓ + ⇡) = �T (✓) .

(2) Let q (✓) be a simple closed planar curve with  > 0 parametrized by ✓,
where ✓ is defined as the arclength parameter of the unit tangent field T.
Define v (✓) as the distance from the origin to the tangent line through
q (✓).
(a) Show that

v (✓) = �q (✓) ·N (✓) .

(b) Show that the width (distance) between the parallel tangent lines
through q (✓) and q (✓ + ⇡) is

w (✓) = v (✓) + v (✓ + ⇡) = N (✓) · (q (✓ + ⇡)� q (✓)) .

(c) Show that:

L (q) =

ˆ 2⇡

0
v (✓) d✓.

(d) Show that

1


= v +

d2v

d✓2
.

(e) Let A denote the area enclosed by the curve. Establish the following
formulas for A

A =
1

2

ˆ L

0
vds =

1

2

ˆ 2⇡

0

✓

v2 + v
d2v

d✓2

◆

d✓ =
1

2

ˆ 2⇡

0

 

v2 �
✓

dv

d✓

◆2
!

d✓.
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(3) Let q (✓) be a simple closed planar curve with  > 0 parametrized by ✓,
where ✓ is defined as the arclength parameter of the unit tangent field T.
Show that the width from the previous problem satisfies:

d2w

d✓2
+ w =

1

 (✓)
+

1

 (✓ + ⇡)
.

(4) Let q (✓) be a simple closed planar curve with  > 0 parametrized by ✓,
where ✓ is defined as the arclength parameter of the unit tangent field T.
With the width defined as in the previous exercises show that:ˆ 2⇡

0
wd✓ = 2L (q) .

(5) Let q (✓) be a simple closed planar curve of constant width with  >
0. The curve is parametrized by ✓, where ✓ is defined as the arclength
parameter of the unit tangent field T.
(a) Show that if ✓ corresponds to a local maximum for , then the op-

posite point ✓ + ⇡ corresponds to a local minimum.
(b) Assume for the remainder of the exercise that  has a finite number

of critical points and that they are all local maxima or minima. Show
that the number of vertices is even and � 6.

(c) Show that each point on the evolute corresponds to two points on
the curve.

(d) Show that the evolute consists of n convex curves that are joined at
n cusps that correspond to pairs of vertices on the curve.

(e) Show that the evolute has no double tangents.
(6) (Euler) Reverse the construction in the previous exercise to create curves

of constant width by taking involutes of suitable curves.
(7) Let q be a closed convex curve and l a line.

(a) Show that l can only intersect q in one point, two points, or a line
segment.

(b) Show that if l is also a tangent line then it cannot intersect q in only
two points.

(c) Show that the interior of q is convex, i.e., the segment between any
two points in the interior also lies in the interior.

(8) Let q be a planar curve with non-negative signed curvature. Show that if
q has a double tangent, then its total curvature is � 2⇡. Note that it is
possible for the double tangent to have opposite directions at the points
of tangency.

(9) Give an example of a planar curve (not closed) with positive curvature
and no double tangents that is not convex.

(10) Let q be a closed planar curve without double tangents. Show that q
is convex. Hint: Consider the set A of points (parameter values) on q
where q lies on one side of the tangent line. Show that A is closed and
not empty. Show that boundary points of A (i.e., points in A that are
limit points of sequences in the complement of A) correspond to double
tangents.



CHAPTER 3

Space Curves

3.1. The Fundamental Equations

The theory of space curves dates back to Clairaut in 1731. He considered
them as the intersection of two surfaces given by equations. Clairaut showed that
space curves have two curvatures, but they did not corresponds exactly to the
curvature and torsion we introduce below. The subject was later taken up by
Euler who was the first to work with parametrized curves and use arclength as
a parameter. Lancret in 1806 introduced the concepts of unit tangent, principal
normal and bi-normal and with those curvature and torsion as we now understand
them. It is possible that Monge had some inklings of what torsion was, but he
never presented an explicit formula. Cauchy in 1826 considerably modernized the
subject and formulated some of the relations that later became part of the Serret
and Frenet equations that we shall introduce below.

In order to create a set of equations for space curves q (t) : [a, b] ! R3 we
need to not only assume that the curve is regular but also that its velocity and
acceleration are always linearly independent. This is equivalent to assuming that
q is regular and that the unit tangent T also defines a regular curve, i.e., that the
curvature never vanishes. In this case it is possible to define a suitable positively
oriented orthonormal frame T, N, and B by declaring

T =
v

|v| ,

N =
a� (a ·T)T

|a� (a ·T)T| ,

B = T⇥N.

The new normal vector B is called the bi-normal. We define the curvature and
torsion by

 = N · dT
ds

,

⌧ = B · dN
ds

.

We should check that these definitions for N and  are consistent with our
earlier definitions. In section 1.3 we started by defining ✓ as arclength parameter
for T and then proceeded to show that the above formulas for  and N hold. So
it is a question of checking that our new definitions conversely imply the old ones.
We’ll do this after having established the next theorem using the new definitions.

51
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Theorem 3.1.1. (Serret, 1851 and Frenet, 1852) If q (t) is a regular space
curve with linearly independent velocity and acceleration, then

dq

dt
=

ds

dt
T,

dT

dt
= 

ds

dt
N,

dN

dt
= �

ds

dt
T+ ⌧

ds

dt
B,

dB

dt
= �⌧

ds

dt
N,

or

d

dt

⇥

q T N B
⇤

=
ds

dt

⇥

q T N B
⇤

2

6

6

4

0 0 0 0
1 0 � 0
0  0 �⌧
0 0 ⌧ 0

3

7

7

5

.

Moreover,

 =
|v ⇥ a|
|v|3

=
|a� (a ·T)T|

|v|2
,

⌧ =
det

⇥

v a j
⇤

|v ⇥ a|2
=

(v ⇥ a) · j
|v ⇥ a|2

,

N =
a� (a ·T)T

|a� (a ·T)T| ,

B =
v ⇥ a

|v ⇥ a| .

Proof. The explicit formula for N is our explicit formula for the principal
normal. As T,N,B form an orthonormal basis we have

dT

dt
=

✓

dT

dt
·T

◆

T+

✓

dT

dt
·N

◆

N+

✓

dT

dt
·B

◆

B.

Here
dT

dt
·T =

1

2

d |T|2

dt
= 0,

dT

dt
·N =

ds

dt

dT

ds
·N =

ds

dt
,

dT

dt
·B =

d

dt

✓

v

|v|

◆

·B =

 

a

|v| �
v

|v|2
d |v|
dt

!

·B = 0,

as B is perpendicular to T,N and thus also to v,a. The establishes

dT

dt
= 

ds

dt
N.

Next note that

0 = B · dT
dt

= �dB

dt
·T.

This together with

B · dB
dt

= 0
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shows that

dB

dt
=

✓

dB

dt
·N

◆

N.

However, we also have

0 =
dB

dt
·N+B · dN

dt
=

dB

dt
·N+

ds

dt
⌧.

This implies

dB

dt
= �⌧

ds

dt
N.

Finally the equation

dN

dt
= �

ds

dt
T+ ⌧

ds

dt
B.

is a direct consequence of the other two equations.
The formula for the curvature follows from observing that

dT

ds
·N =

 

a

|v| �
v

|v|2
d |v|
ds

!

·N

=
a

|v| ·
a� (a ·T)T

|a� (a ·T)T|

=
a · a� (a ·T)2

|v| |a� (a ·T)T|

=
|a|2 |v|2 � (a · v)2

|v|3 |a� (a ·T)T|

=
|a� (a ·T)T|

|v|2
,

where |v| |a� (a ·T)T| =
q

|a|2 |v|2 � (a · v)2.
The formula for the binormal B now follows directly from the calculation

T⇥N =
1

|v|v ⇥
✓

a� (a ·T)T

|a� (a ·T)T|

◆

=
1

|v|v ⇥
✓

a

|a� (a ·T)T|

◆

=
v ⇥ a

|v| |a� (a ·T)T|

=
v ⇥ a

|v ⇥ a| .

In the last equality recall that the denominators are the areas of the same parallel-
ogram spanned by v and a.

To establish the general formula for ⌧ we note (with more explanations to
follow)
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B · dN
dt

=
v ⇥ a

|v ⇥ a| ·
d

dt

✓

a� (a ·T)T

|a� (a ·T)T|

◆

=
v ⇥ a

|v ⇥ a| ·
j

|a� (a ·T)T|

=
(v ⇥ a) · j
|v ⇥ a|2

|v| .

In the third line all of the missing terms disappear as they are perpendicular to
v ⇥ a. The last line follows from our formulas for the area of the parallelogram
spanned by v and a. A slightly more convincing proof works by first noticing that

v = (v ·T)T,

a = (a ·T)T+ (a ·N)N,

j = (j ·T)T+ (j ·N)N+ (j ·B)B.

Thus

det
⇥

v a j
⇤

= (v ·T) (a ·N) (j ·B) .

Next we recall that

v ·T = |v| ,
a ·N = |v|2 .

So we have to calculate j ·B. Keeping in mind that a ·B = 0 we obtain

j ·B = �a · dB
dt

= ⌧ |v|a ·N
= ⌧ |v|3

and finally combine this with

 =
|v ⇥ a|
|v|3

to obtain the desired identity. ⇤

The curvature and torsion can also be described by the formulas

 =
area of parallelogram (v,a)

|v|3
,

⌧ =
signed volume of the parallepiped (v,a, j)

(area of the parallelogram (v,a))2
.

Corollary 3.1.2. If q (t) is a regular space curve with linearly independent
velocity and acceleration, then T is regular and if ✓ is its arclength parameter, then

d✓

ds
=

dT

ds
·N

and
dT

d✓
=

a� (a ·T)T

|a� (a ·T)T| .
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Proof. By assumption

0 <  =
dT

ds
·N.

This implies in particular that T is regular. We know from the chain rule that

dT

d✓
=

ds

d✓

dT

ds
=

ds

d✓
N.

Here both sides are unit vectors that are perpendicular to T and by definition
ds
d✓ > 0 and  > 0. This forces

d✓

ds
= 

and
dT

d✓
= N.

This establishes the formulas ⇤

There is a very elegant way of collecting the Serret-Frenet formulas.

Corollary 3.1.3. (Darboux) For a space curve as above define the Darboux
vector

D = ⌧T+ B,

then
d

dt

⇥

T N B
⇤

=
ds

dt
D⇥

⇥

T N B
⇤

.

Proof. We have

D⇥T = N,

D⇥N = ⌧B� T,

D⇥B = �⌧N,

so the equation follows directly from the Serret-Frenet formulas. ⇤

Exercises.

(1) Find the curvature, torsion, normal, and binormal for the twisted cubic

q (t) =
�

t, t2, t3
�

.

(2) Consider a regular space curve q (t) with non-vanishing curvature and
torsion. Let k be a fixed vector and denote by �

T

, �
N

, �
B

the angles
between T, N, B and k. Show that

 = � sin�
T

cos�
N

d�
T

dt
,

d�
N

dt
sin�

N

=  cos�
T

� ⌧ cos�
B

,

⌧ =
sin�

B

cos�
N

d�
B

dt
,

and
d�

B

dt
sin�

B

= � ⌧



d�
T

dt
sin�

T

.
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(3) Consider a cylindrical curve of the form

q (✓) = (cos ✓, sin ✓, z (✓)) .

Show that

 =

⇣

1 + (z0)2 + (z00)2
⌘

1
2

⇣

1 + (z0)2
⌘

3
2

,

⌧ =
z0 + z000

1 + (z0)2 + (z00)2
.

(4) Show that for a unit speed curve q (s) with positive curvature

det
h

a j d4
q

ds4

i

= 5 d

ds

⇣ ⌧



⌘

.

(5) For a unit speed curve q (s) with positive curvature and torsion define
q⇤ (s) =

´
B (s) ds. Show that q⇤ is also unit speed and that T⇤ = B,

N⇤ = �N, B⇤ = T, ⇤ = ⌧ , and ⌧⇤ = .
(6) Let q (t) : I ! R3 be a regular curve such that its tangent field T (t) is

also regular. Let s be the arclength parameter for q and ✓ the arclength
parameter for T. Show that

det
h

T dT
d✓

d2
T

d✓2

i

=
⌧


.

(7) Show that T is regular when  > 0 and that in this case the curvature of
T is given by

r

1 +
⇣ ⌧



⌘2

and the torsion by

1


⇣

1 +
�

⌧


�2
⌘

d

ds

⇣ ⌧



⌘

.

(8) Show that the circular helix

(R cos t, R sin t, ht)

has constant curvature and torsion. Compute R, h in terms of the curva-
ture and torsion. Conversely show that any unit speed space curve with
constant curvature and torsion must look like

q (s) = R cos

✓

sp
R2 + h2

◆

e1 +R sin

✓

sp
R2 + h2

◆

e2 +
hp

R2 + h2
se3 + q (0) ,

where e1, e2, e3 is an orthonormal basis.
(9) Let q (s) = (x (s) , y (s) , z (s)) : [0, L] ! R3 be a unit speed space curve

with curvature  (s) and torsion ⌧ (s). Construct another space curve
q⇤ (s) = x (s) e1 + y (s) e2 + z (s) e3 + x, where e1, e2, e3 is a positively
oriented orthonormal basis and x and point.
(a) Show that q⇤ is a unit speed curve with curvature ⇤ (s) =  (s) and

torsion ⌧⇤ (s) = ⌧ (s).
(b) Show that a unit speed space curve with the same curvature and

torsion as q is of the form q⇤.
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(10) Show that B is regular when |⌧ | > 0 and that in this case the curvature
of B is given by

r

1 +
⇣

⌧

⌘2
.

(11) Show that for a unit speed curve q (s) with positive curvature and non-
zero torsion

det
h

dB
ds

d2
B

ds2
d3

B

ds3

i

= ⌧5
d

ds

⇣

⌧

⌘

.

(12) Show thatN is regular when 2+⌧2 > 0 and that in this case the curvature
of N is given by

v

u

u

t1 +

�

d⌧
ds � ⌧ d

ds

�2

(2 + ⌧2)3
.

(13) Define ⇢ =
p
2 + ⌧2 and � by

 = ⇢ cos�, ⌧ = ⇢ sin�.

Show that ⇢ = |D| and that � is the natural arclength parameter for the
unit field 1

⇢D.

(14) Show that a space curve is part of a line if all its tangent lines pass through
a fixed point.

(15) Let Q (t) be a vector associated to a curve q (t) such that

d

dt

⇥

T N B
⇤

=
ds

dt
Q⇥

⇥

T N B
⇤

.

Show that Q = D.
(16) Let q (s) be a unit speed space curve with non-vanishing curvature and

torsion. Show that

d

ds

✓

1

⌧

d

ds

✓

1



d2q

ds2

◆◆

+
d

ds

✓



⌧

dq

ds

◆

+
⌧



d2q

ds2
= 0.

(17) For a regular space curve q (t) we say that a normal field X is parallel
along q if X ·T = 0 and dX

dt is parallel to T.
(a) Show that for a fixed t0 and X (t0) ? T (s0) there is a unique parallel

field X that is X (t0) at t0.
(b) A Bishop frame consists of an orthonormal frame T,N1,N2 along

the curve so that N1,N2 are both parallel along q. For such a frame
show that

d

dt

⇥

T N1 N2

⇤

=
ds

dt

⇥

T N1 N2

⇤

2

4

0 1 2

�1 0 0
�2 0 0

3

5 .

Note that such frames always exist, even when the space curve doesn’t
have positive curvature everywhere.

(c) Show further that for such a frame

2 = 2
1 + 2

2.

(d) Show that if q has positive curvature so that N is well-defined, then

N = cos�N1 + sin�N2,
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where
d�

dt
=

ds

dt
⌧,

1 =  cos�, 2 =  sin�.

(e) Give an example of a closed space curve where the parallel curves
don’t close up.

3.2. Characterizations of Space Curves

We show that the tangent lines determine a space curve, but that the (principal)
normal lines do not necessarily characterize the curve.

Theorem 3.2.1. If q (t) and q⇤ (t) are two regular curves that admit a common
parametrization such that their tangent lines agree at corresponding points, then
q (t) = q⇤ (t) for all t where either  (t) 6= 0 or ⇤ (t) 6= 0.

Proof. Note that the common parametrization is not necessarily the arclength
parametrization for either curve. These arclength parametrizations are denoted
s, s⇤. The assumption implies that corresponding velocity vectors are always par-
allel and that

q⇤ (t) = q (t) + u (t)T (t)

for some function u (t). We obtain by di↵erentiation

dq⇤

dt
=

dq

dt
+

du

dt
T+ u

ds

dt
N.

This forces

u
ds

dt
 = 0

as N is perpendicular to the other vectors. So whenever  6= 0 it follows that u = 0.
This means that the curves agree on the set where  6= 0. Reversing the roles of
the curves we similarly obtain that the curves agree when ⇤ 6= 0. ⇤

The analogous question for principal normal lines requires that these normal
lines are defined and thus that the curvatures never vanish. Nevertheless it is easy to
find examples of pairs of curves that have the same normal lines without being the
same curve. The double helix is in fact a great example of this. This corresponds
to the two pairs of circular helices

q = (R cos t, R sin t, ht) and q⇤ = (�R cos t,�R sin t, ht)

More generally for fixed h > 0 all of the curves

(R cos t, R sin t, ht)

have the same normal lines for all R 2 R.

Definition 3.2.2. We say that two curves q and q⇤ are Bertrand mates if it is
possible to find a common parametrization of both curves such that their principal
normal lines agree at corresponding points.

Theorem 3.2.3. Let q and q⇤ be Bertrand mates with non-zero curvatures and
torsion. Then either the curves agree or there are linear relationships

a+ b⌧ = 1, a⇤ � b⌧⇤ = 1

between curvature and torsion. Conversely any curve with non-zero curvature and
torsion where a+ b⌧ = 1 for some constants a, b has a Bertrand mate.
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Proof. We’ll use s, s⇤ for the arclength of the two curves. That two curves
are Bertrand mates is equivalent to

N (t) = ±N⇤ (t)

and
q⇤ (t) = q (t) + r (t)N (t)

for some function r (t).
The first condition implies

d

dt
(T ·T⇤) =

ds

dt
N ·T⇤ +

ds⇤

dt
⇤T ·N⇤ = 0,

which shows that there is an angle ✓ such that

T⇤ (t) = T (t) cos ✓ +B (t) sin ✓.

Di↵erentiating the second condition implies

ds⇤

dt
T⇤ =

ds

dt
T+

dr

dt
N+ r

ds

dt
(�T+ ⌧B) .

Here N is perpendicular to all of the other vectors so it follows that r is constant.
Note that when r = 0 the curves are equal and that in general the distance between
the curves is given by |r|. In any case we obtain the relationship

ds⇤

dt
(T (t) cos ✓ +B (t) sin ✓) =

ds⇤

dt
T⇤ =

ds

dt
T+ r

ds

dt
(�T+ ⌧B) ,

which implies
ds⇤

ds
cos ✓ = (1� r)

and
ds⇤

ds
sin ✓ = r⌧.

When r 6= 0 the fact that ⌧ 6= 0 implies

� (1� r) sin ✓ + r⌧ cos ✓ = 0,

which shows
r + ⌧r cot ✓ = 1.

Switching the roles force us to change the sign of ✓. Thus

T (t) = T⇤ (t) cos ✓ �B⇤ (t) sin ✓

and
⇤r � ⌧⇤r cot ✓ = 1.

Conversely assume that we have a regular curve q (s) parametrized by arclength
so that

r + ⌧r cot ✓ = 1.

Inspired by our conclusions from the first part of the proof we define

q⇤ (s) = q (s) + rN (s)

and note that
dq⇤

ds
= T+ r (�T+ ⌧B) = ⌧r (cot ✓T+B) .

Thus T⇤ = ± (cos ✓T+ sin ✓B). This shows that

dT⇤

ds
= ± ( cos ✓ � ⌧ sin ✓)N
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and in particular that N⇤ = ±N. ⇤

Exercises. All curves will be regular and have positive curvature.

(1) A curve is planar if there is a vector k such that q (t) · k is constant.
(a) Show that this is equivalent to saying that the tangent T is always

perpendicular to k and implies that all derivatives dk
q

dtk
, k � 1 are

perpendicular to k.
(b) Show that a curve is planar if and only if ⌧ vanishes.

(2) Consider solutions to the second order equation

a = F (q,v) .

Show that all solutions are planar if F (q,v) 2 span {q,v} for all vectors
q,v. This happens in particular when the force field F is radial, i.e., F is
proportional to position q.

(3) Let q (t) and q⇤ (t) be two regular curves that admit a common parametriza-
tion such that their tangent lines are parallel at corresponding points.
(a) Show that their normals and binormals are also parallel.
(b) Show that

⇤


=

ds

ds⇤
=

⌧⇤

⌧
.

(4) (Lancret, 1806) A generalized helix is a curve such that T · k is constant
for some fixed vector k.
(a) Show that this is equivalent to the normal N always being perpen-

dicular to k, i.e., the unit tangent is planar. Note that since the unit
tangent traces a curve on the sphere it has to lie in the intersection
of the unit sphere and a plane, i.e., a latitude, and must in particular
be a circle.

(b) Show that a curve is a generalized helix if and only if the ratio ⌧/
is constant.

(c) Show that this is equivalent to assuming that the curvature of the
unit tangent T is constant.

(d) Show that this is equivalent to the torsion of T vanishing.
(5) Show that a unit speed circular helix has constant Darboux vector, and

conversely that any unit speed curve with constant Darboux vector is a
helix.

(6) Let q (t) = (x (t) , y (t) , z (t)) be a generalized helix that lies on the cylin-
der x2 + y2 = 1.
(a) Show that as long as (x (t) , y (t)) is not stationary, then the curve

can be parametrized as

q (�) = (cos�, sin�, z (�)) .

(b) Using that parametrization compute the normal component of the
acceleration

a� a · v
|v|2

v

and show that this vector can only stay perpendicular to vectors
k = (0, 0, c) and in this case only when z00 = 0.
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(c) Show that (x (t) , y (t)) is never stationary. Hint: First show that it
can’t be stationary everywhere as it can’t be a line parallel to the
z-axis.

(d) Conclude that the original curve is a circular helix.
(7) Let q (t) = (x (t) , y (t) , z (t)) be a generalized helix that lies on the cone

x2 + y2 = z2 with z > 0. Show that the planar curve (x (t) , y (t)) forms a
constant angle with the radial lines and conclude that it is either a radial
line or can be reparametrized as a logarithmic spiral

(x (�) , y (�)) = aeb� (cos�, sin�) .

Hint: Look at the previous exercise, but the calculations are more in-
volved.

(8) A curve is spherical if it lies on some sphere. Show that a curve is spherical
if and only if its normal planes all pass through some fixed point.

(9) Assume we have a unit speed spherical curve. If the center of the sphere
is c and the radius R, then the curve must satisfy

|q (s)� c|2 = R2.

(a) Show that if a spherical curve has nowhere vanishing curvature, then

(q� c) ·N = � 1


,

⌧ (q� c) ·B =
d

ds

✓

1



◆

.

(b) Show that if both curvature and torsion are nowhere vanishing, then

1

2
+

✓

1

⌧

d

ds

✓

1



◆◆2

= R2

and
⌧


+

d

ds

✓

1

⌧

d

ds

✓

1



◆◆

= 0.

(10) Show that a unit speed curve on a sphere of radius R satisfies

 � 1

R
.

(11) Conversely, show that if a curve q with nowhere vanishing curvature and
torsion satisfies

⌧


+

d

ds

✓

1

⌧

d

ds

✓

1



◆◆

= 0,

then
1

2
+

✓

1

⌧

d

ds

✓

1



◆◆2

= R2

for some constant R. Furthermore show that

c (s) = q+
1


N+

1

⌧

d

ds

✓

1



◆

B

is constant and conclude that q lies on the sphere with center c and radius
R.
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(12) Prove that a unit speed curve q with non-zero curvature and torsion lies
on a sphere if there are constants a, b such that



✓

a cos

✓ˆ
⌧ds

◆

+ b sin

✓ˆ
⌧ds

◆◆

= 1.

Hint: Show
1

⌧

d

ds

✓

1



◆

= �a sin

✓ˆ
⌧ds

◆

+ b cos

✓ˆ
⌧ds

◆

and
⌧


= � d

ds

✓

�a sin

✓ˆ
⌧ds

◆

+ b cos

✓ˆ
⌧ds

◆◆

and use the previous exercise.
(13) Show that if a curve with constant curvature lies on a sphere then it is

part of a circle, i.e., it is forced to be planar.
(14) Show that

q⇤ (s) = q+
1


N+

1


cot

✓ˆ
⌧ds

◆

B

defines an evolute for q. Hint: See remark 1.3.10.
(15) Show that a planar curve has infinitely many Bertrand mates.
(16) Let q,q⇤ be two Bertrand mates.

(a) (Schell) Show that

⌧⌧⇤ =
sin2 ✓

r2
.

(b) (Mannheim) Show that

(1� r) (1 + r⇤) = cos2 ✓.

(17) Consider a curve q (s) parametrized by arclength with positive curvature
and non-vanishing torsion such that

r + ⌧r cot ✓ = 1,

i.e., there is a Bertrand mate.
(a) Show that the Bertrand mate is uniquely determined by r.
(b) Show that if q has two di↵erent Bertrand mates then it must be a

generalized helix.
(c) Show that if a generalized helix has a Bertrand mate, then its curva-

ture and torsion are constant, consequently it is a circular helix.
(18) Investigate properties of a pair of curves that have the same normal planes

at corresponding points, i.e., their tangent lines are parallel.
(19) Investigate properties of a pair of curves that have the same binormal lines

at corresponding points.

3.3. Closed Space Curves

We start by studying spherical curves. In fact any regular space curve generates
a natural spherical curve, the unit tangent. We studied this for planar curves in
section 2.4 where the unit tangent became a curve on a circle. In that case the
length of the unit tangent curve can be interpreted as an integral of the curvature
and it also measures how much the curve turns. When the planar curve is closed
this turning necessarily has to be a multiple of 2⇡.
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A regular spherical curve q (t) : I ! S2 (1) has an alternate set of equations
that describe its properties. Instead of the principal normal it has a signed normal
that is tangent to the sphere. If we note that q is also normal to the sphere, then
the signed normal can be defined as the vector

S = q⇥T.

This leads to the a new set of equations

dT

dt
=

ds

dt
(gS� q) ,

dS

dt
=

ds

dt
(�gT) ,

dq

dt
=

ds

dt
T,

where the geodesic curvature g is defined as g = dT
ds · S. It measures how far a

curve is from being a great circle as those curves have the property that dT
ds ·S = 0.

The last equation is obvious by now. The first then follows from our definition of
g and the second from the other two.

There is also a Crofton formula for spherical curves where we count intersections
with oriented great circles. An oriented great circle is uniquely determined by
its corresponding North pole if we think in terms of the right hand rule. Thus
intersections with the oriented great circle given by x can be counted as

n
q

(x) = |{t | x · q (t) = 0}|

and Crofton’s formula becomes

1

4

ˆ
S2

n
q

(x) dx = L (q) .

A similar proof works in this case, but we o↵er an alternate proof using the above
equations.

Any point q (t) on the curve, will clearly intersect all great circles going through
that point. These great circles are in turn given by the points along the great circle
that is the equator for q (t). This equator can be parametrized by

x (✓, t) = cos (✓)T (t) + sin (✓)S (t) .
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Thus the surface integral becomesˆ b

a

ˆ 2⇡

0

�

�

�

�

dx

ds
⇥ dx

dt

�

�

�

�

d✓dt =

ˆ b

a

ˆ 2⇡

0
|(� sin (✓)T+ cos (✓)S)⇥ ((gS� q) cos (✓)� gT sin (✓))| ds

dt
d✓dt

=

ˆ b

a

ˆ 2⇡

0
|(� sin (✓)T+ cos (✓)S)⇥ (�q cos (✓))| ds

dt
d✓dt

=

ˆ L(q)

0

ˆ 2⇡

0
|(� sin (✓)T+ cos (✓)S)⇥ (�q cos (✓))| d✓ds

=

ˆ L(q)

0

ˆ 2⇡

0

�

�

�

sin (✓) cos (✓)T (t)⇥ q� cos2 (✓)S⇥ q
�

�

� d✓ds

=

ˆ L(q)

0

ˆ 2⇡

0

q

sin2 (✓) cos2 (✓) + cos4 (✓)d✓ds

=

ˆ L(q)

0

ˆ 2⇡

0
|cos (✓)| d✓ds

=

ˆ L(q)

0
4ds

= 4L (q) .

Theorem 3.3.1. (Fenchel, 1929) If q is a closed space curve, thenˆ
ds � 2⇡

with equality holding only for simple planar convex curves.

Proof. Note that the total curvature is the length of the unit tangent. If the
unit tangent field lies in a hemisphere with pole x, i.e., T · x � 0 for all s, then
after integration we obtain

(q (L)� q (0)) · x � 0.

However, q (L) = q (0) as the curve is closed. So it follows that T · x = 0 for all s,
i.e., the unit tangent is always perpendicular to x and hence the curve is planar.

This shows that if the curve is not planar, then the unit tangent never lies in
a hemisphere. This in turn implies that the unit tangent must intersect all great
circles in at least two points. In fact if it does not intersect a certain great circle,
then it must lie in an open hemisphere. If it intersects a great circle exactly once,
then it must lie on one side of it and be tangent to the great circle. By moving the
great circle slightly away from the point of tangency we obtain a new great circle
that does not intersect the unit tangent, another contradiction. Having now shown
that T intersects all great circles at least twice we have from Crofton’s formula thatˆ

ds = L (T) =
1

4

ˆ
S2

n
T

(x) dx � 2

4
· 4⇡ = 2⇡.

This shows that the total curvature must be � 2⇡. And that equality forces
the curve to be planar. Finally we know that for planar curves the total absolute
curvature is > 2⇡ unless the curve is convex. ⇤

Definition 3.3.2. A simple closed curve q is called an unknot or said to be
unknotted if there is a one-to-one map from the disc to R3 such that boundary of
the disc is q.
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Theorem 3.3.3. (Fary, 1949 and Milnor, 1950) If a simple closed space curve
is knotted, then ˆ

ds � 4⇡.

Proof. We assume that
´
ds < 4⇡ and show that the curve is not knotted.

Crofton’s formula tells us that

1

4

ˆ
S2

n
T

(x) dx =

ˆ
ds < 4⇡.

As the sphere has area 4⇡ this can only happen if we can find x such that n
T

(x)  3.
Now observe that

d (q · x)
ds

= T (s) · x.

So the function q · x has at most three critical points. Since q is closed there
will be a maximum and a minimum. The third critical point, should it exist, can
consequently only be an inflection point. Assume that the minimum is obtained at
s = 0 and the maximum at s0 2 (0, L). The third critical point can be assumed to
be in (0, s0). This implies that the function q (s) · x is strictly increasing on (0, s0)
and strictly decreasing on (s0, L). For each t 2 (0, s0) we can then find a unique
s (t) 2 (s0, L) such that q (t) ·x = q (s (t)) ·x. Join the two points q (t) and q (s (t))
by a segment. These segments will sweep out an area whose boundary is the curve
and no two of the segments intersect as they belong to parallel planes orthogonal
to x. This shows that the curve is the unknot. ⇤

Exercises.

(1) Let q be a unit speed spherical curve
(a) Show that

2 = 1 + 2
g,

N =
1


(�q+ gS) ,

B =
1


(gq+ S) ,

⌧ =
1

1 + 2
g

dg

ds
.

(b) Show that q is planar if and only if the curvature is constant.
(2) Show that for a regular spherical curve q (t)

g =
det

h

q dq
dt

d2
q

dt2

i

�

ds
dt

�3 .

(3) (Jacobi) Let q (s) : [0, L] ! R3 be a closed unit speed curve with positive
curvature and consider the unit normal N as a closed curve on S2.
(a) Show that if s

N

denotes the arclength parameter of N, then
✓

ds
N

ds

◆2

= 2
q

+ ⌧2
q

,

where 
q

and ⌧
q

are the curvature and torsion of q.
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(b) Show that the geodesic curvature g of N is given by

g =

q

d⌧q
ds � ⌧

q

dq

ds
�

2
q

+ ⌧2
q

�

3
2

.

(c) Show that ˆ L

0
g (s)

ds
N

ds
ds = 0.

(4) Let q(t) be a regular closed space curve with positive curvature. Show
that if its curvature is  R�1, then its length is � 2⇡R.

(5) (Curvature characterization of great circles) Show that q (t) = a cos (t) +
b sin (t) where a, b are orthonormal is a unit speed spherical curve whose
geodesic curvature vanishes. Conversely show that any spherical unit
speed curve whose geodesic curvature vanishes is of that form.

(6) Show that the curve

q (t) = (cos (t) cos (at) , sin (t) cos (at) , sin (at))

lies on the unit sphere. Compute its curvature.
(7) Show that a simple closed planar curve is unknotted. Show similarly that

a simple closed spherical curve is unknotted. Hint: This relies on an
improved version of the Jordan curve theorem.

(8) The trefoil curve is given by

q (t) = ((a+R cos (3t)) cos (2t) , (a+R cos (3t)) sin (2t) , R sin (3t)) ,

where a > b > 0 and t 2 [0, 2⇡]. Sketch this curve (it lies on a torus which
is created by rotating the circle in the x, z-plane of radius R centered at
(a, 0, 0) around the z-axis) and try to prove that it is knotted.

(9) Let q (s) : [0, L] ! S2 be a closed curve. For each x 2 S2 let � (x) 2 [0,⇡]
be the largest spherical distance from x to the curve q (s) , s 2 [0, L], i.e.,
� (x) = maxs2[0,L] arccos (x · q (s)).
(a) Show that if � (x) � ⇡

2 for all x then

L � 2⇡.

Hint: Proceed as in the proof of Fenchel’s theorem.
(b) Show that if L < 2⇡, then q lies in an open hemisphere. Hint: Use

Crofton’s formula.
(c) Show that if � = min

x

� (x) < ⇡
2 , then L � 4�. Hint: If L <

4�, then divide the curve into two arcs of equal length and let x
be the midpoint on the shorter part of the great circle that goes
through the points that divide the curve. On the other hand � (x) =
arccos (x · q (s0)) � �. Use this to show that the arc that contains
q (s0) must have length � 2�. This contradicts that the two arcs
divide the curve into pieces of equal length.

(d) (Segre, 1947) Apply the results to the binormal B of a closed unit
speed curve to obtain results for the total absolute torsion

´
|⌧ | ds by

first showing that L (B) =
´
|⌧ | ds.
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(10) Show that if C (�) is a unit speed curve on the unit sphere, then for all
r, ✓ the curve

q = r

ˆ
Cd� + r cot ✓

ˆ
C⇥ dC

d�
d�

has a Bertrand mate. Hint: Start by establishing the formulas

T = sin ✓C+ cos ✓C⇥ dC

d�
,

N = ±dC

d�
,

B = ±
✓

� cos ✓C+ sin ✓C⇥ dC

d�

◆

.

Conversely show that any curve that has a Bertrand mate can be written
in this way.

(11) Let q (s) : [0, L] ! S2 be a closed unit speed spherical curve. Show thatˆ L

0

⌧


ds = 0.

Hint: Use that for a spherical curve ⌧
 = df

ds for a suitable function f .
(12) Let q (s) : [0, L] ! S2 be a unit speed spherical curve and write

q = ↵T+ �N+ �B.

(a) Show that

↵ = 0, � = � 1


,
d�

ds
= ⌧�.

(b) When  > 1 show that

⌧ =
df

ds
for a suitable function f (s) that only depends on  and 0.

(c) When  > 1 and q is closed show thatˆ L

0
⌧ds = 0.

(d) When  (s) = 1 for s = 0, L and  > 1 for s 2 (0, L) show thatˆ L

0
⌧ds = 0.

Note this does not rely on q being closed.
(e) Show that if  = 1 at only finitely many points and q is closed thenˆ L

0
⌧ds = 0.

This result holds for all closed spherical curves. Segre has also shown

that a closed space curve with
´ L
0 ⌧ds = 0 must be spherical.



CHAPTER 4

Basic Surface Theory

4.1. Surfaces

Definition 4.1.1. A parametrized surface is defined as a map q (u, v) : U ⇢
R2 ! R3 where @q

@u and @q
@v are linearly independent.

For parametrized surfaces we generally do not worry about self-intersections or
other topological pathologies. For example one can parametrize all but the North
and South pole of a sphere S2 (R) =

�

q 2 R3 | |q| = R > 0
 

using latitudes and
meridians:

q (µ,�) = R

2

4

cosµ cos�
sinµ cos�

sin�

3

5 ,

where � 2
�

�⇡
2 ,

⇡
2

�

denotes the latitude and µ the meridian/longitude. This is a
valid parametrization of a surface as long as cos� 6= 0. This parametrization is
called the equirectangular parametrization and is the most common way of coordi-
natizing Earth and the sky. Curiously, it predates Cartesian coordinates by about
1500 years and is very likely the oldest parametrization of a surface that is still in
use.

Definition 4.1.2. A reparametrization of a parametrized surface q (u, v) :
U ⇢ R2 ! R3 is a parametrized surface q (s, t) : O ⇢ R2 ! R3 such that
the parameters are smooth functions of each other on their respective domains:
(u, v) = (u (s, t) , v (s, t)) for all (s, t) 2 O, (s, t) = (s (u, v) , t (u, v)) for u, v 2 U , and
finally that with these changes we still obtain the same surface q (u, v) = q (s, t).

Definition 4.1.3. A map F : O ! U between open sets O,U ⇢ R2 is called a
di↵eomorphism if it is one-to-one, onto and both F and the inverse map F�1 : U !
O are smooth. Thus a reparametrization comes from a di↵eomorphism between the
domains.

When we wish to avoid self-intersections, then we resort to the more restrictive
class of surfaces that come from the next two general constructions. For curves this
corresponds to the notion of being simple and in that case we could have used the
approach we shall take for surfaces.

The first construction is to use a particularly nice way of parametrizing surfaces
without self-intersections or other nasty topological problems. These are the three
di↵erent types of parametrizations where the surface is represented as a smooth
graph:

q (u, v) = (u, v, f (u, v)) ,

q (u, v) = (u, f (u, v) , v) ,

q (u, v) = (f (u, v) , u, v) .

68
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They are also known as Monge patches.

Example 4.1.4. The western hemisphere on S2 (1) can be parametrized using
the y, z coordinates

q (u, v) =

2

4

�
p
u2 + v2

u
v

3

5 ,

where (u, v) 2 U =
�

u2 + v2 < 1
 

. Using latitudes/meridians the parametrization
is instead

q (µ,�) =

2

4

cosµ cos�
sinµ cos�

sin�

3

5 ,

with (µ,�) 2
�

⇡
2 ,

3⇡
2

�

⇥
�

�⇡
2 ,

⇡
2

�

. Setting these two expressions equal to each other
tells us that



u
v

�

= G (µ,�) =



sinµ cos�
sin�

�

.

This map is smooth and it is not hard to check that as a map from
�

⇡
2 ,

3⇡
2

�

⇥
�

�⇡
2 ,

⇡
2

�

to U it is one-to-one and onto. The di↵erential is

DG =
@ (u, v)

@ (µ,�)
=

"

@u
@µ

@u
@�

@v
@µ

@v
@�

#

=



cosµ cos� � sinµ sin�
0 cos�

�

.

The determinant is cosµ cos2 � which is always negative on our domain. The inverse
function theorem then guarantees us that G is indeed a di↵eomorphism. In this
case it is also possible to construct the inverse using inverse trigonometric functions.

Theorem 4.1.5. Let q (u, v) : U ⇢ R2 ! R3 be a parametrized surface. For
every (u0, v0) 2 U there exists a neighborhood (u0, v0) 2 V 2 U such that the
smaller parametrized surface q (u, v) : V ! R3 can be represented as a Monge
patch.

Proof. By assumption the matrix

⇥

@q
@u

@q
@v

⇤

=

2

4

@x
@u

@x
@v

@y
@u

@y
@v

@z
@u

@z
@v

3

5

always has rank 2. Assume for the sake of argument that at (u0, v0) the middle
row is a linear combination of the other two rows. Then the matrix



@x
@u

@x
@v

@z
@u

@z
@v

�

is nonsingular at (u0, v0). Thus the map (x, z) = (x (u, v) , z (u, v)) : U ! R2 has
nonsingular di↵erential at (u0, v0). The Inverse Function Theorem then tells us
that there must exist neighborhoods (u0, v0) 2 V ⇢ U and (x (u0, v0) , x (u0, v0)) 2
O ⇢ R2 such that function (x, z) = (x (u, v) , z (u, v)) : V ! O can be smoothly
inverted, i.e., there is a smooth inverse (u, v) = (u (x, z) , v (x, z)) : O ! V that
allows us to smoothly solve for (u, v) in terms of (x, z). This gives us the desired
reparametrization to a Monge patch

2

4

x (u, v)
y (u, v)
z (u, v)

3

5 = q (u, v) = q (x, z) =

2

4

x
y (u (x, z) , v (x, z))

z

3

5 .
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⇤

Definition 4.1.6. A surface is defined as a subset M ⇢ R3 where for all
q 2 M , there is exists an open set O ⇢ R3 such that O \M can be represented as
a Monge patch, i.e., it is locally a smooth graph over one of the three coordinate
planes.

A parametrization q (u, v) : U ⇢ R2 ! R3 is called a coordinate system if the
map is one-to-one and the image q (U) is a surface.

Example 4.1.7. Despite the above theorem not all parametrized surfaces are
surfaces in this restrictive sense. Let q (u) = (x (u) , y (u)) be a regular planar
curve, then we obtain a parametrized surface q (u, v) = (x (u) , y (u) , v). However,
this might not be a surface if the planar curve looks like a figure 8. We could also
take something like a figure 6 but parametrize it so that the loop gets arbitrarily
close without intersecting. In the latter case we simply parametrize the figure 6
using an open interval (0, 1).

The second construction comes from considering level sets. A level set is a set
of the form

{(x, y, z) 2 O | F (x, y, x) = c} ,
where c is some fixed constant and O ⇢ R3 is some open set.

Example 4.1.8. For example

x2 + y2 + z2 = R2

describes the sphere as a level set. Depending on where we are on the sphere
di↵erent parametrizations are possible. At points where, say, y < 0 we can use

q (u, v) =
⇣

u,�
p

R2 � u2 � v2, v
⌘

This will in fact parametrize all points where y < 0 if we use all (u, v) with u2+v2 <
R2.

We also have a general theorem that can be used

Theorem 4.1.9. Let F : O ! R be a smooth function and c 2 R a constant.
The level set

M = {(x, y, z) 2 O | F (x, y, x) = c}
is a smooth surface if it is not empty and for all q 2 M the gradient

rF (q) =

2

4

@F
@x (q)
@F
@y (q)
@F
@z (q)

3

5 6= 0.

Proof. Fix q = (x0, y0, z0) 2 M and assume for the sake of argument that
@F
@y (q) 6= 0. The implicit function theorem tells us that there are neighborhoods

q 2 O1 2 O and (x0, z0) 2 U 2 R2 as well as a smooth function f (u, v) : U ! R
such that for all (u, v) 2 U we have (u, f (u, v) , v) 2 O1 and

M \O1 = {(x, y, z) 2 O1 | F (x, y, x) = c} = {(u, f (u, v) , v) | (u, v) 2 U} .

Thus M \O1 can be written as a graph over the (x, z)-plane. ⇤
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Exercises.

(1) A generalized cylinder is determined by a regular curve ↵ (t) and a vector
X that is never tangent to the curve. It consists of the lines that are
parallel to the vector and pass through the curve.
(a) Show that

q (s, t) = ↵ (t) + sX

is a natural parametrization and show that it gives a parametrized
surface.

(b) Show that we can reconstruct the cylinder so that the curve lies in
the plane perpendicular to the vector X. Hint: Try the case where
X = (0, 0, 1) and the plane is the (x, y)-plane and make sure your
new parametrization is a valid parametrization precisely when the
old parametrization was valid.

(c) What happens when the curve is given by two equations and you
also want the surface to be given by an equation? Hint: If a planar
curve in the (x, y)-plane given by F (x, y) = c, then the generalized
cylinder is also given by F (x, y) = c.

(2) A generalized cone is generated by a regular curve ↵ (t) and a point p not
on the curve. It consists of the lines that pass through the point and the
curve.
(a) Show that

q (s, t) = s (↵ (t)� p) + p

is a natural parametrization and determine when/where it yields a
parametrized surface.

(b) Show that we can replace ↵ (t) by a curve � (t) that lies on a unit
sphere centered at the vertex p of the cone.

(3) Let F (x, y, z) be homogeneous of degree n, i.e., F (�x,�y,�z) = �nF (x, y, z).
Show that the set {(x, y, z) 6= 0 | F (x, y, z) = 0} defines a cone.

(4) A ruled surface is given by a parametrization of the form

q (s, t) = ↵ (t) + sX (t) .

It is evidently a surface that is a union of lines (rulers) and generalizes the
constructions in the previous exercises. Give conditions on ↵, X and the
parameter s that guarantee we get a parametrized surface. A special case
occurs when X is tangent to ↵. These are also called tangent developables.

(5) A surface of revolution is determined by a planar regular curve and a line
in the same plane. The surface is generated by rotating the curve around
the line.
(a) Show that for a curve (r (t) , z (t)) in the (x, z)- plane that is rotated

around the z-axis the parametrization is

q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t))

and show that it is a parametrized surface.

(b) Show that the equation for the surface is F
⇣

p

x2 + y2, z
⌘

= c when

the curve is given by F (x, z) = c with x > 0.
(6) Many classical surfaces are of the form

F (x, y, z) = ax2 + by2 + cz2 + dx+ ey + fz + g = 0.
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These are called quadratic surfaces if one of a, b, or c 6= 0.
(a) Give conditions on the coe�cients such that it generates a surface

(g = 0 takes special care).
(b) Under what conditions does it become a surface of revolution around

the z-axis?
(c) Show that when the equation does not depend on one of the coordi-

nates, then we obtain a generalized cylinder.
(d) When, say c = 0, but abf 6= 0 we obtain a paraboloid. It is elliptic

when a, b have the same sign and otherwise hyperbolic. Draw pictures
of these two situations.

(e) When abc 6= 0 show that it can be rewritten in the form

F (x, y, z) = a (x� x0)
2 + b (y � y0)

2 + c (z � z0)
2 + h = 0.

(f) When all three a, b, c have the same sign show that it is either empty
or an ellipsoid.

(g) When not all of a, b, c have the same sign and h 6= 0 we obtain a hy-
perboloid. Show that it might be connected or have two components
(called sheets) depending of the signs of all four constants.

(h) When not all of a, b, c have the same sign and h = 0 we obtain a
cone.

(i) Given constants ax, ay, az determine when

q (u, v) = (ax sinu sin v, ay sinu cos v, az cosu) ,

q (u, v) = (ax sinhu sin v, ay sinhu cos v, az coshu) ,

q (u, v) = (ax sinhu sinh v, ay sinhu cosh v, az sinhu) ,

q (u, v) =
�

axu cos v, ayu sin v, azu
2
�

,

q (u, v) =
�

axu cosh v, ayu sinh v, azu
2
�

,

yield parameterizations and identify them with the appropriate quadrat-
ics.

(7) Let q (z, µ) =
�

p
1� z2 cosµ,

p
1� z2 sinµ, z

�

with �1 < z < 1 and �⇡ <
µ < ⇡. Show that q defines a surface. What is the surface?

(8) Consider a regular curve ↵ (t) with non-vanishing curvature and construct
the tube of radius R around it

q (t,�) = ↵ (t) +R (N↵ cos�+B↵ sin�) ,

where N↵, B↵ are the normal and binormal to the curve.
(a) Show that this defines a parametrized surface as long as ↵ < R�1.
(b) Show by example that this surface might intersect itself if there is a

cord of length < 2R that is normal to the curve at both end points.
(c) Show that when ↵ is a circle, then we obtain a surface of revolution

that looks like a torus.
(9) For which R is the level set

z
�

x2 + y2
�

� xy = R

a surface? When R = 0 show that we get a surface as long as (x, y) 6=
(0, 0). This is called Plücker’s conoid. Show that it is in fact a ruled
surface where all of the lines are of the form (0, 0, c) + t (a, b, 0).
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(10) Show that
�

x2 + y2 + z2 +R2 � r2
�2

= 4R2
�

x2 + y2
�

defines a surface when R > r > 0. Show that it is rotationally symmetric
and a torus.

(11) The helicoid is given by the equation

tan
z

h
=

y

x

where h 6= 0 is a fixed constant.
(a) Show that this defines a surface for suitable (x, y, z).
(b) Show that the surface can be parametrized by

q (r, ✓) = (r cos ✓, r sin ✓, h✓)

and determine for which r, ✓ this defines a parametrized surface. Note
that for fixed r we obtain helices.

(12) Enneper’s surface is defined by the parametrization

q (u, v) =

✓

u� 1

3
u3 + uv2, v � 1

3
v3 + vu2, u2 � v2

◆

.

(a) For which u, v does this define a parametrization?
(b) Show that Enneper’s surface satisfies the equation

✓

y2 � x2

2z
+

2z2

9
+

2

3

◆3

= 6

✓

y2 � x2

4z
� 1

4

✓

x2 + y2 +
8

9
z2
◆

+
2

9

◆2

.

4.2. Tangent Spaces and Maps

Definition 4.2.1. The tangent space at p 2 M of a (parametrized) surface is
defined as

TpM = span

⇢

@q

@u
,
@q

@v

�

,

and normal space

NpM = (TpM)? .

Remark 4.2.2. For a parametrized surface with self-intersections this is a bit
ambivalent as the tangent in that case depends on the parameter values (u, v) and
not just the point p = q (u, v). This is just as for curves where the tangent line
at a point really is the tangent line at a point with respect to a specific parameter
value.

Proposition 4.2.3. Both tangent and normal spaces are subspaces that do not
change under reparametrization.

Proof. This would seem intuitively clear, just as with curves, where the tan-
gent line does not depend on parametrizations. For curves it boils down to the
simple fact that velocities for di↵erent parametrizations are proportional and hence
define the same tangent lines. With surfaces something similar happens, but it is
a bit more involved. Suppose we have two di↵erent parametrizations of the same
surface:

q (s, t) = q (u, v) .
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This tells us that the parameters are functions of each other

u = u (s, t) , v = v (s, t) ,

s = s (u, v) , t = t (u, v) .

The chain rule then gives us

@q

@u
=

@q

@s

@s

@u
+

@q

@t

@t

@u
2 span

⇢

@q

@s
,
@q

@t

�

.

Similarly
@q

@v
2 span

⇢

@q

@s
,
@q

@t

�

In the other direction we clearly also get

@q

@s
,
@q

@t
2 span

⇢

@q

@u
,
@q

@v

�

.

This shows that at a fixed point p on a surface the tangent space does not depend
on how the surface is parametrized. The normal space is then also well defined. ⇤

Note that the chain rule shows in matrix notation that
⇥

@q
@u

@q
@v

⇤

=
⇥

@q
@s

@q
@t

⇤



@s
@u

@s
@v

@t
@u

@t
@v

�

,

⇥

@q
@s

@q
@t

⇤

=
⇥

@q
@u

@q
@v

⇤



@u
@s

@u
@t

@v
@s

@v
@t

�

with


@s
@u

@s
@v

@t
@u

@t
@v

��1

=



@u
@s

@u
@t

@v
@s

@v
@t

�

.

A better way of defining the tangent space that also shows that it is independent
of parameterizations comes from the next result.

Proposition 4.2.4. The tangent space at q = q (u0, v0) for a (parametrized)
surface is given by

TqM =

⇢

v 2 R3 | v =
dq

dt
(0) for a smooth curve q (t) : I ! M with q (0) = q

�

.

Proof. Any curve q (t) on the surface that passes through q at t = 0 can be
written as

q (t) = q (u (t) , v (t))

for smooth functions u (t) and v (t) with u (0) = u0 and v (0) = v0 as long as t is
su�ciently small. This is because the parametrization is locally one-to-one. If we
write the curve this way, then

dq

dt
=

@q

@u

du

dt
+

@q

@v

dv

dt
.

Showing that velocities of curves on the surface are always tangent vectors. Con-
versely by using u (t) = at + u0 and v (t) = bt + v0 we obtain all possible linear
combinations of tangent vectors as

dq

dt
(0) =

@q

@u
a+

@q

@v
b.

⇤
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Corollary 4.2.5. Let M = {(x, y, z) 2 O | F (x, y, x) = c} be a smooth surface
as in theorem 4.1.9. The normal is given by

N (q) =
rF (q)

|rF (q)| =
1

⇣

�

@F
@x (q)

�2
+
⇣

@F
@y (q)

⌘

+
�

@F
@z (q)

�

⌘1/2

2

4

@F
@x (q)
@F
@y (q)
@F
@z (q)

3

5 .

Proof. We saw in proposition 4.2.4 that any tangent vector in TqM can be
represented as a velocity vector q̇ (0). Since q (t) 2 M it follows that F (q (t)) = c
for all t. Then chain rule then implies that

0 = rF (q (0)) · q̇ (0) = rF (q) · q̇ (0) .

This shows that the gradient is perpendicular to all tangent vectors and hence a
normal vector. This shows the claim as rF (q)

|rF (q)| is a unit vector. ⇤

Example 4.2.6. The sphere of radius R centered at the origin has a unit normal
given by the unit radial vector at q = (x, y, z) 2 S2 (R)

N =
1

R

2

4

x
y
z

3

5 .

The basis for the tangent space with respect to the meridian/latitude parametriza-
tion is

@q

@µ
= R

2

4

� sinµ cos�
cosµ cos�

0

3

5 ,
@q

@�
= R

2

4

� cosµ sin�
� sinµ sin�

cos�

3

5 .

It is often useful to find coordinates suited to a particular situation. However,
unlike for curves, it isn’t always possible to parametrize a surface such that the
coordinate curves are unit speed and orthogonal to each other. But there is one
general construction we can do.

Theorem 4.2.7. Assume that we have linearly independent tangent vector fields
X,Y defined on a surface M. Then it is possible to find a parametrization q (u, v) in
a neighborhood of any point such that @q

@u is proportional to X and @q
@v is proportional

to Y.

Proof. The vector fields have integral curves forming a net on the surface.
Apparently the goal is to reparametrize the curves in this net in some fashion. The
di�culty lies in ensuring that the levels where u is constant correspond to the v-
curves, and vice versa. We proceed as with the classical construction of Cartesian
coordinates. Select a point p and let the u-axis be the integral curve for X through
p, similarly set the v-axis be the integral curve for Y through p. Both of these curves
retain the parametrizations that make them integral curves forX and Y. Thus p will
naturally correspond to (u, v) = (0, 0) . We now wish to assign (u, v) coordinates
to a point q near p. There are also unique integral curves for X and Y through
q. These will be our way of projecting onto the chosen axes and will in this way
yield the desired coordinates. Specifically u (q) is the parameter where the integral
curve for Y through q intersects the u-axis, and similarly with v (q) . In general
integral curves can intersect axes in several places or might not intersect them at
all. However, a continuity argument o↵ers some justification when we consider that
the axes themselves are the proper integral curves for the qs that lie on these axes
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and so when q su�ciently close to both axes it should have a well defined set of
coordinates. We also note that as the projection happens along integral curves
we have ensured that coordinate curves are simply reparametrizations of integral
curves. To completely justify this construction we need to know quite a bit about
the existence, uniqueness and smoothness of solutions to di↵erential equations and
the inverse function theorem. ⇤

Remark 4.2.8. Note that this proof gives us a little more information. Specif-
ically, we obtain a parametrization where the parameter curves through (0, 0) are
the integral curves for X and Y .

Definition 4.2.9. A map between surfaces F : M1 ! M2 is simply an
assignment of points in the first surface to points in the second. The map is
smooth if around every point q 2 M1 we can find a parametrization q1 (u, v) where
q = q1 (u0, v0) such that the composition F � q1 : U ! R3 is a smooth map as a
map from the space of parameters to the ambient space that contains the target
M2.

We can also define maps between parametrized surfaces in a similar way.
Clearly parametrizations are themselves smooth maps. It is also often the case
that the compositions F � q1 are themselves parametrizations.

Example 4.2.10. Two classical examples of maps are the Archimedes and
Mercator projections from the sphere to the cylinder of the same radius placed to
touch the sphere at the equator. We give the formulas for the unit sphere and note
that neither map is defined at the poles.

The Archimedes map is simply a horizontal projection that preserves the z-
coordinate

A

2

4

x
y
z

3

5 =

2

6

4

xp
x2+y2

yp
x2+y2

z

3

7

5

.

In the meridian/latitude parametrization it looks particularly nice:

A

2

4

cosµ cos�
sinµ cos�

sin�

3

5 =

2

4

cosµ
sinµ
sin�

3

5 .

Note that what is here referred to as the Archimedes map is often called the Lambert
projection. However, Archimedes was the first to discover that the areas of the
sphere and cylinder are equal. This will be discussed in greater detail in section
4.5.

The Mercator projection (1569) di↵ers in that the z-coordinate is not preserved:

M

2

4

x
y
z

3

5 =

2

6

4

xp
x2+y2

yp
x2+y2

1
2 log

1+z
1�z

3

7

5

or

M

2

4

cosµ cos�
sinµ cos�

sin�

3

5 =

2

4

cosµ
sinµ

1
2 log

1+sin�
1�sin�

3

5 .
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Both of these maps really are maps in the traditional sense that they can be
used to picture the Earth on a flat piece of paper by cutting the cylinder vertically
and unfolding it. This unfolding is done along a meridian. For Eurocentric people
it is along the date line. In the Americas one also often sees maps cut along a
meridian that is just East of India.

Definition 4.2.11. The di↵erential of a smooth map F : M1 ! M2 at q 2 M1

is the map
DFq : TqM1 ! TF (q)M2

defined by

DFq (v) =
dF � q
dt

(0)

if q (t) is a curve (in M1) with q = q (0) and v = dq
dt (0).

Proposition 4.2.12. When v = dq
dt (0) =

@q
@uv

u + @q
@vv

v we have

DFq (v) =
⇥

@F�q
@u

@F�q
@v

⇤



vu

vv

�

.

In particular, the di↵erential is a linear map and is completely determined by the
two partial derivatives @F�q

@u , @F�q
@v .

Proof. This follows from the chain rule:

dF � q
dt

(t) =
dF (q (t))

dt

=
dF (q (u (t) , v (t)))

dt

=
@F � q
@u

du

dt
+

@F � q
@v

dv

dt

=
⇥

@F�q
@u

@F�q
@v

⇤



du
dt
dv
dt

�

.

⇤

Example 4.2.13. The Archimedes map satisfies

@ (A � q)
@µ

=

2

4

� sinµ
cosµ
0

3

5 ,
@ (A � q)

@�
=

2

4

0
0

� cos�

3

5

and the Mercator map

@ (M � q)
@µ

=

2

4

� sinµ
cosµ
0

3

5 ,
@ (M � q)

@�
=

2

4

0
0
1

cos�

3

5 .

Definition 4.2.14. We say that a surface M is orientable if we can select a
smooth normal field. Thus we require a smooth function

N : M ! S2 (1) ⇢ R3

such that for all q 2 M the vector N (q) is perpendicular to the tangent space TqM .
The map N : M ! S2 (1) is called the Gauss map.

Proposition 4.2.15. A surface which is given as a level set is orientable.
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Proof. Form corollary 4.2.5 we know that the normal can be given by

N =
rF

|rF |
if M = {q 2 O | F (q) = c}. ⇤

Example 4.2.16. A parametrized surface q (u, v) : U ! R3 always has a
natural map N (u, v) : U ! R3 defined by

N (u, v) =
@q
@u ⇥ @q

@v
�

�

�

@q
@u ⇥ @q

@v

�

�

�

that gives a unit normal vector at each point. However, it is possible (as well shall
see in the exercises) that there are parameter values that give the same points on
the surface without giving the same normal vectors.

Definition 4.2.17. The parameters u, v on a parameterized surface q (u, v)
define two di↵erentials du and dv. These are not mysterious infinitesimals, but
linear functions on tangent vectors to the surface that compute the coe�cients of
the vector with respect to the basis @q

@u ,
@q
@v . Thus

du (v) = du

✓

@q

@u
vu +

@q

@v
vv

◆

= vu,

dv (v) = dv

✓

@q

@u
vu +

@q

@v
vv

◆

= vv,

and

v =
⇥

@q
@u

@q
@v

⇤



du
dv

�

(v) =
⇥

@q
@u

@q
@v

⇤



vu

vv

�

.

From the chain rule we obtain the very natural transformation laws for di↵er-
entials

du =
@u

@s
ds+

@u

@t
dt,

dv =
@v

@s
ds+

@v

@t
dt,

or


du
dv

�

=



@u
@s

@u
@t

@v
@s

@v
@t

� 

ds
dt

�

.

Exercises.

(1) Show that the ruled surface

q (t,�) = (cos�, sin�, 0) + t

✓

sin
�

2
cos�, sin

�

2
sin�, cos

�

2

◆

defines a parametrized surface. It is called the Möbius band. Show that it
is not orientable by showing that when t = 0 and � = ±⇡ we obtain the
same point and tangent space on the surface, but the normals

N (t,�) =
@q
@t ⇥ @q

@�
�

�

�

@q
@t ⇥ @q

@�

�

�

�

are not the same.
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(2) Show that q (t,�) = t (cos�, sin�, 1) defines a parametrization for (t,�) 2
(0,1)⇥R. Show that the corresponding surface is x2 + y2 � z2 = 0, z >
0. Show that this parametrization is not one-to-one. Find a di↵erent
parametrization of the entire surface that is one-to-one.

(3) The inversion in the unit sphere or circle is defined as

F (q) =
q

|q|2
.

(a) Show that this is a di↵eomorphism of Rn � 0 to it self with the
property that q · F (q) = 1.

(b) Show that F preserves the unit sphere, but reverses the unit normal
directions.

(c) Let M be a surface. Show that M⇤ = F (M) defines another surface.
Show that DF : TqM ! Tq⇤M⇤ satisfies

DF (v) =
v � 2 (q · v) q

|q|2
.

(d) Show that if a normal N is a unit normal to M then a unit normal
to M⇤ is given by

N⇤ = �N+ q
2q ·N
|q|2

.

(4) A perspective projection is defined as a radial projection along lines ema-
nating from a fixed point c 2 Rn to a hyper-plane H ⇢ Rn.
(a) Let c = (0, 0, c) 2 R3 and H be the (x, y)-plane. Show that the

projection is given by (x, y, z) 7!
⇣

x
z�c ,

y
z�c , 0

⌘

.

(b) Let c = (0, 0, 0) 2 R3 and H be the {z = 1}-plane. Show that the
projection is given by (x, y, z) 7!

�

x
z ,

y
z , 1

�

.
(c) Let c = (0, 0, 1) 2 R3 and H be the {z = �1}-plane. Show that the

projection is given by (x, y, z) 7!
⇣

x
2�2z ,

y
2�2z ,�1

⌘

.

(5) Consider the two maps q± : Rn ! Rn ⇥ R = Rn+1

q± (q) = (q, 0) +
1� |q|2

1 + |q|2
(q,⌥1) .

These two maps are inverses of perspective projections to the unit sphere.
There are also called stereographic projections.
(a) Show that these maps are one-to-one, map in to the unit sphere, and

that together they cover the unit sphere.
(b) Show that they are the inverse maps of the projections from (0,⌥1) 2

Rn⇥R to the Rn ⇢ Rn⇥R plane where the last coordinate vanishes
when these projections are restricted to the unit-sphere.

(c) Show that q+
⇣

q
|q|2

⌘

= q� (q) and q+ (q) = q�
⇣

q
|q|2

⌘

.

(6) Consider the two surfaces M1 and M2 defined by the parametrizations:

q1 (t,�) = (sinh� cos t, sinh� sin t, t)

= (0, 0, u) + sinh� (cosu, sinu, 0) ,

q2 (t,�) = (cosh t cos�, cosh t sin�, t) .
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(a) Show that q1 : R ⇥ R ! M1 is a one-to-one parametrization of a
helicoid (see section 4.1 exercise 11.

(b) Show that q2 is a parametrization that is not one-to-one. Show that
M2 is rotationally symmetric (see section 4.1 exercise 5) and can also
be described by the equation

x2 + y2 = cosh2 z.

Show further that this equation defines a surface. It is called the
catenoid.

(c) Define a map F : M1 ! M2 by F � q1 (t,�) = q2 (t, ✓). Show that
this map is smooth, not one-to-one, but is locally a di↵eomorphism.

4.3. The Abstract Framework

This section can be skipped.
As with curves, parametrized surfaces can have intersections and other nasty

complications. Nevertheless, it is often easier to develop formulas for parametrized
surfaces.

For a parametrized surface q (u, v) we have the velocities of the coordinate
vector fields

@q

@u
,
@q

@v
.

While these can be normalized to be unit vectors we can’t guarantee that they are
orthogonal. Nor can we necessarily find parameters that make the coordinate fields
orthonormal. We shall see that there are geometric obstructions to finding such
parametrizations.

Before discussing general surfaces it might be instructive to see what happens
if q (u, v) : U ! R2 is simply a reparametrization of the plane. Thus @q

@u ,
@q
@v form

a basis at each point q. Taking partial derivatives of these fields give us

@

@u

⇥

@q
@u

@q
@v

⇤

=
h

@2
q

@u2
@2

q

@u@v

i

=
⇥

@q
@u

@q
@v

⇤

[�u] ,

@

@v

⇥

@q
@u

@q
@v

⇤

=
h

@q
@v@u

@2
q

@v2

i

=
⇥

@q
@u

@q
@v

⇤

[�v]

or in condensed form
@

@w

⇥

@q
@u

@q
@v

⇤

=
h

@2
q

@w@u
@2

q

@w@v

i

=
⇥

@q
@u

@q
@v

⇤

[�w] , w = u, v.

The matrices [�w] tell us how the tangent fields change with respect to themselves.
A good example comes from considering polar coordinates q (r, ✓) = (r cos ✓, r sin ✓):

@q

@r
=



cos ✓
sin ✓

�

,
@q

@✓
=



�r sin ✓
r cos ✓

�

,

@2q

@r@✓
=

@2q

@✓@r
=



� sin ✓
cos ✓

�

,
@2q

@r2
= 0,

@2q

@✓2
=



�r cos ✓
�r sin ✓

�

so

@

@r

⇥

@q
@r

@q
@✓

⇤

=
h

@2
q

@r@r
@2

q

@r@✓

i

=
⇥

@q
@r

@q
@✓

⇤



0 0
0 1

r

�

,

@

@✓

⇥

@q
@r

@q
@✓

⇤

=
h

@2
q

@✓@r
@2

q

@✓@✓

i

=
⇥

@q
@r

@q
@✓

⇤



0 �r
1
r 0

�
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and

[�r] =



0 0
0 1

r

�

,

[�✓] =



0 �r
1
r 0

�

.

The key is that only Cartesian coordinates have the property that its co-
ordinate fields are constant. When using general coordinates we are naturally
forced to find these quantities. To see why this is, consider a curve q (t) =
(r (t) cos ✓ (t) , r (t) sin ✓ (t)) in the plane. Its velocity is naturally given by

q̇ = ṙ
@q

@r
+ ✓̇

@q

@✓
.

If we wish to calculate its acceleration, then we must compute the derivatives of the
coordinate fields. This involves the chain rule as well as the formulas just developed

q̈ = r̈
@q

@r
+ ✓̈

@q

@✓
+ ṙ

d

dt

@q

@r
+ ✓̇

d

dt

@q

@✓

= r̈
@q

@r
+ ✓̈

@q

@✓
+ ṙ

✓

dr

dt

@

@r
+

d✓

dt

@

@✓

◆

@q

@r
+ ✓̇

✓

dr

dt

@

@r
+

d✓

dt

@

@✓

◆

@q

@✓

= r̈
@q

@r
+ ✓̈

@q

@✓
+ ṙ2

@2q

@r2
+ 2ṙ✓̇

@2q

@r@✓
+ ✓̇2

@2q

@✓2

= r̈
@q

@r
+ ✓̈

@q

@✓
+ 2ṙ✓̇

1

r

@q

@✓
� ✓̇2r

@q

@r

=
⇣

r̈ � r✓̇2
⌘ @q

@r
+

 

✓̈ +
2ṙ✓̇

r

!

@q

@✓
.

Note that r✓̇2 corresponds to the centrifugal force that you feel when forced to move
in a circle.

The term ✓̈ + 2ṙ✓̇
r is related to Kepler’s second law under a central force field.

In that context

✓̈ +
2ṙ✓̇

r
= 0

as the force and hence acceleration is radial. This in turn implies that r2✓̇ is
constant as Kepler’s law states.

The general goal will be to develop a similar set of ideas for surfaces and in
addition to find other ways of calculating [�w] that depend on the geometry of the
tangent fields.

Before generalizing we make another rather startling observation. Taking one
more derivative we obtain

@2

@w2@w1

⇥

@q
@u

@q
@v

⇤

=
@

@w2

�⇥

@q
@u

@q
@v

⇤

[�w1 ]
�

=

✓

@

@w2

⇥

@q
@u

@q
@v

⇤

◆

[�w1 ] +
⇥

@q
@u

@q
@v

⇤



@�w1

@w2

�

=
⇥

@q
@u

@q
@v

⇤

[�w2 ] [�w1 ] +
⇥

@q
@u

@q
@v

⇤



@�w1

@w2

�

=
⇥

@q
@u

@q
@v

⇤

✓

[�w2 ] [�w1 ] +



@�w1

@w2

�◆

.
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Switching the order of the derivatives cannot not change the outcome,

@2

@w1@w2

⇥

@q
@u

@q
@v

⇤

=
⇥

@q
@u

@q
@v

⇤

✓

[�w1 ] [�w2 ] +



@�w2

@w1

�◆

.

But the answer does look di↵erent when we use w1 = u and w2 = v. Therefore, we
can conclude that

[�v] [�u] +



@�u

@v

�

= [�u] [�v] +



@�v

@u

�

or


@�v

@u

�

�


@�u

@v

�

+ [�u] [�v]� [�v] [�u] = 0.

For polar coordinates this can be verified directly:


@�r

@✓

�

�


@�✓

@r

�

= 0�


0 �1
� 1

r2 0

�

=



0 1
1
r2 0

�

,

[�r] [�✓]� [�✓] [�r] =



0 0
0 1

r

� 

0 �r
1
r 0

�

�


0 �r
1
r 0

� 

0 0
0 1

r

�

=



0 1
1
r2 0

�

.

This means that the two matrices of functions [�u] , [�v] have some nontrivial
relations between them that are not evident from the definition.

For a surface q (u, v) in R3 we add to the tangent vectors the unit normal

N (u, v) =
@q
@u ⇥ @q

@v
�

�

�

@q
@u ⇥ @q

@v

�

�

�

in order to get a basis. While N does depend on the parametrizations we note that
as it is normal to a plane in R3 there are in fact only two choices ±N, just as with
planar curves.

This means that we consider frames
⇥

@q
@u

@q
@v N

⇤

and derivatives of such
frames

@

@w

⇥

@q
@u

@q
@v N

⇤

=
h

@2
q

@w@u
@2

q

@w@v
@N
@w

i

=
⇥

@q
@u

@q
@v N

⇤

[Dw] ,

where w can be either u or v.
The entries of Dw are divided up into parts or blocks. The principal 2 ⇥ 2

block consisting of what appears in the first two rows and columns depends only
on tangential information. This block corresponds to the [�w] that we defined in
the plane using general coordinates. The remaining parts, consisting of the third
row and third column, depend on normal information. Since N is a unit vector the
33 entry actually vanishes:

0 =
@ |N|2

@w
= 2N · @N

@w
.

Showing that @N
@w lies in the tangent space and hence does not have a normal

component.
As before we have

@2

@w1@w2

⇥

@q
@u

@q
@v N

⇤

=
@2

@w2@w1

⇥

@q
@u

@q
@v N

⇤

.
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In particular,

[Du] [Dv] +



@Dv

@u

�

= [Dv] [Du] +



@Du

@v

�

or


@Dv

@u

�

�


@Du

@v

�

+ [Du] [Dv]� [Dv] [Du] = 0.

As we shall see, other interesting features emerge when we try to restrict attention
to the tangential and normal parts of these matrices.

Elie Cartan developed an approach that uses orthonormal bases. Thus he
chose an orthonormal frame E1, E2, E3 along part of a surface with the property
that E3 = N is normal to the surface. Consequently, E1, E2 form an orthonormal
basis for the tangent space. The goal is again to take derivatives. For that purpose
we can still use parameters

@

@w

⇥

E1 E2 E3

⇤

=
⇥

@E1
@w

@E2
@w

@E3
@w

⇤

=
⇥

E1 E2 E3

⇤

[Dw] .

The first observation is that [Dw] is skew-symmetric since we used an orthonormal
basis:

⇥

E1 E2 E3

⇤t ⇥
E1 E2 E3

⇤

=

2

4

1 0 0
0 1 0
0 0 1

3

5

so

0 =
@

@w

⇣

⇥

E1 E2 E3

⇤t ⇥
E1 E2 E3

⇤

⌘

=

✓

@

@w

⇥

E1 E2 E3

⇤

◆t
⇥

E1 E2 E3

⇤

+
⇥

E1 E2 E3

⇤t @

@w

⇥

E1 E2 E3

⇤

=
�⇥

E1 E2 E3

⇤

[Dw]
�t ⇥

E1 E2 E3

⇤

+
⇥

E1 E2 E3

⇤t ⇥
E1 E2 E3

⇤

[Dw]

= [Dw]
t + [Dw] .

In particular, there will only be 3 entries to sort out. This is a significant reduction
from what we had to deal with above. What is more, the entries can easily be
found by computing the dot products

Ei ·
@Ej

@w
.

This is also in sharp contrast to what happens in the above situation as we shall
see. Taking one more derivative will again yield a formula



@Dw2

@w1

�

�


@Dw1

@w2

�

= [Dw2 ] [Dw1 ]� [Dw1 ] [Dw2 ] ,

where both sides are skew symmetric.
Given the simplicity of using orthonormal frames it is perhaps puzzling why

one would bother developing the more cumbersome approach that uses coordinate
fields. The answer lies, as with curves, in the unfortunate fact that it is often
easier to find coordinate fields than orthonormal bases that are easy to work with.
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Monge patches are prime examples. For specific examples and many theoretical
developments, however, Cartan’s approach has many advantages.

4.4. The First Fundamental Form

Let q (u, v) : U ! R3 be a parametrized surface. At each point of this surface
we have a basis

@q

@u
(u, v) ,

@q

@v
(u, v) ,

N (u, v) =
@q
@u ⇥ @q

@v
�

�

�

@q
@u ⇥ @q

@v

�

�

�

.

These vectors are again parametrized by u, v. The first two vectors are tangent to
the surface and give us an unnormalized version of the tangent vector for a curve,
while the third is the normal and is naturally normalized just as the normal vector
is for a curve. One of the issues that make surface theory more di�cult than curve
theory is that there is no canonical parametrization along the lines of the arclength
parametrization for curves.

The first fundamental form is the symmetric positive definite form that comes
from the matrix

[I] =
⇥

@q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤

=



@q
@u · @q

@u
@q
@u · @q

@v
@q
@v · @q

@u
@q
@v · @q

@v

�

=



guu guv
gvu gvv

�

.

For a curve the analogous term would simply be the square of the speed

✓

dq

dt

◆t dq

dt
=

dq

dt
· dq
dt

.

The first fundamental form dictates how one computes dot products of vectors
tangent to the surface assuming they are expanded according to the basis @q

@u ,
@q
@v .

If

X = Xu @q

@u
+Xv @q

@v
=
⇥

@q
@u

@q
@v

⇤



Xu

Xv

�

,

Y = Y u @q

@u
+ Y v @q

@v
=
⇥

@q
@u

@q
@v

⇤



Y u

Y v

�

,



4.4. THE FIRST FUNDAMENTAL FORM 85

then

I (X,Y ) =
⇥

Xu Xv
⇤



guu guv
gvu gvv

� 

Y u

Y v

�

=
⇥

Xu Xv
⇤ ⇥

@q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤



Y u

Y v

�

=

✓

⇥

@q
@u

@q
@v

⇤



Xu

Xv

�◆t✓
⇥

@q
@u

@q
@v

⇤



Y u

Y v

�◆

= XtY

= X · Y.

In particular, we see that while themetric coe�cients gw1w2 depend on our parametriza-
tion. The dot product I (X,Y ) of two tangent vectors remains the same if we change
parameters. Note that I stands for the bilinear form I (X,Y ) which does not depend
on parametrizations, while [I] is the matrix representation for a fixed parametriza-
tion.

Our first observation is that the normalization factor
�

�

�

@q
@u ⇥ @q

@v

�

�

�

can be com-

puted from [I] .

Definition 4.4.1. The area form of a parametrized surface is given by
p

det [I].

The next lemma shows that this is given by the area of the parallelogram
spanned by @q

@u ,
@q
@v .

Lemma 4.4.2. We have
�

�

�

�

@q

@u
⇥ @q

@v

�

�

�

�

2

= det [I] = guugvv � (guv)
2 .

Proof. This is simply the observation that both sides of the equation are
formulas for the square of the area of the parallelogram spanned by @q

@u ,
@q
@v , i.e.,

�

�

�

�

@q

@u
⇥ @q

@v

�

�

�

�

2

=

�

�

�

�

@q

@u

�

�

�

�

2 �
�

�

�

@q

@v

�

�

�

�

2

�
✓

@q

@u
· @q
@v

◆2

.

⇤

The inverse

[I]�1 =



guu guv
gvu gvv

��1

=



guu guv

gvu gvv

�

can be used to find the expansion of a tangent vector by computing its dots products
with the basis:

Proposition 4.4.3. If X 2 TpM, then

X =

✓

guu
✓

X · @q
@u

◆

+ guv
✓

X · @q
@v

◆◆

@q

@u

+

✓

gvu
✓

X · @q
@u

◆

+ gvv
✓

X · @q
@v

◆◆

@q

@v

=
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t
X.
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More generally for any Z 2 R3

Z =

✓

guu
✓

Z · @q
@u

◆

+ guv
✓

Z · @q
@v

◆◆

@q

@u

+

✓

gvu
✓

Z · @q
@u

◆

+ gvv
✓

Z · @q
@v

◆◆

@q

@v
+ (Z ·N)N

=
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t
Z + (Z ·N)N.

Proof. This formula works for X 2 TpM by writing

X =
⇥

@q
@u

@q
@v

⇤



Xu

Xv

�

= Xu @q

@u
+Xv @q

@v

and then observing that

⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t
X =

⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤



Xu

Xv

�

=
⇥

@q
@u

@q
@v

⇤

[I]�1 [I]



Xu

Xv

�

=
⇥

@q
@u

@q
@v

⇤



Xu

Xv

�

= X.

Note that the operation
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t

can be applied to any vector in R3 and that its kernel is spanned by N. In fact,
it orthogonally projects the vector to a vector in the tangent space. For a general
vector Z 2 R3 the result then easily follows by decomposing it

Z = X + (Z ·N)N,

X = Z � (Z ·N)N

and then using that we know what happens to X. ⇤

Defining the gradient of a function is another important use of the first funda-
mental form as well as its inverse. Let f (u, v) be viewed as a function on the surface
q (u, v) . Our definition of the gradient should definitely be so that it conforms with
the chain rule for a curve c (t) = q (u (t) , v (t)) . Thus on one hand we want

d (f � c)
dt

= rf · ċ

=
⇥

(rf)u (rf)v
⇤

[I]



du
dt
dv
dt

�

while the chain rule also dictates

d (f � c)
dt

=
⇥

@f
@u

@f
@v

⇤



du
dt
dv
dt

�

.

Thus
⇥

(rf)u (rf)v
⇤

=
⇥

@f
@u

@f
@v

⇤

[I]�1
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or

rf =
⇥

@q
@u

@q
@v

⇤



(rf)u

(rf)v

�

=
⇥

@q
@u

@q
@v

⇤

⇣

⇥

@f
@u

@f
@v

⇤

[I]�1
⌘t

=
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @f
@u

@f
@v

⇤t

=

✓

guu
@f

@u
+ guv

@f

@v

◆

@q

@u
+

✓

gvu
@f

@u
+ gvv

@f

@v

◆

@q

@v
.

In particular, we see that changing coordinates changes the gradient in such a way
that it isn’t simply the vector corresponding to the partial derivatives! The other
nice feature is that we now have a concept of the gradient that gives a vector field
independently of parametrizations. The defining equation

d (f � c)
dt

= rf · ċ = I (rf, ċ)

gives an implicit definition ofrf that makes sense without reference to parametriza-
tions of the surface.

Exercises.

(1) For a surface of revolution q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t)) (see sec-
tion 4.1 exercise 5) show that the first fundamental form is given by



gtt gtµ
gµt gµµ

�

=



ṙ2 + ż2 0
0 r2

�

.

A special and important case of this occurs when z = 0 and r = t as that
corresponds to polar coordinates in the plane.

(2) Assume that we have a cone (see section 4.1 exercise 2) given by

q (r,�) = r� (�) ,

where � is a space curve with |�| = 1 and
�

�

�

d�
d�

�

�

�

= 1. Show that the first

fundamental form is given by


grr gr�
g�r g��

�

=



1 0
0 r2

�

and compare this to polar coordinates in the plane.
(3) Assume that we have a generalized cylinder (see section 4.1 exercise 1)

given by

q (s, t) = (x (s) , y (s) , t) ,

where (x (s) , y (s)) is unit speed. Show that the first fundamental form is
given by



gss gst
gts gtt

�

=



1 0
0 1

�

.

(4) Assume that we have a ruled surface (see section 4.1 exercise 4) given by

q (s, t) = ↵ (t) + sX (t) ,
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where ↵ is a space curve and X is a unit vector field based along this
curve. Show that the first fundamental form is given by



gss gst
gts gtt

�

=

"

1 d↵
ds ·X

d↵
ds ·X

�

�

d↵
dt + sdX

dt

�

�

2

#

.

(5) Show that if we have a parametrized surface q (r, ✓) such that the first
fundamental form is given by



grr gr✓
g✓r g✓✓

�

=



1 0
0 r2

�

,

then we can locally reparametrize the surface to q (u, v) where the new
first fundamental form is



guu guv
gvu gvv

�

=



1 0
0 1

�

.

Hint: Let u = r cos ✓ and v = r sin ✓.
(6) Let ↵ (s) be a unit speed curve with non-zero curvature, binormal B↵ and

torsion ⌧ . Show that the first fundamental form for the ruled surface

q (s, t) = ↵ (s) + tB↵ (s)

is given by


gss gst
gts gtt

�

=



1 + t2⌧2 0
0 1

�

.

(7) Compute the first fundamental form of the Möbius band

q (t,�) = (cos�, sin�, 0) + t

✓

sin
�

2
cos�, sin

�

2
sin�, cos

�

2

◆

.

(8) Assume a surface has a parametrization q (s, µ) where


gss gsµ
gµs gµµ

�

=



1 0
0 r2

�

,

where r (s) is only a function of s.
(a) Show that if 0 < dr

ds < 1, then there is a function z (s) so that
(r (s) , 0, z (s)) is a unit speed curve.

(b) Conclude that there is a surface of revolution with the same first
fundamental form.

(9) Assume a surface has a parametrization q (u, v) where


guu guv
gvu gvv

�

=



r2 0
0 r2

�

,

where r (u) > 0 is only a function of u. Show that there is a reparametriza-
tion u = u (s) such that the first fundamental form becomes



gss gsv
gvs gvv

�

=



1 0
0 r2

�

.

(10) For a parametrized surface q (u, v) show that

N⇥ @q

@u
=

guu
@q
@v � guv

@q
@u

�

�

�

@q
@u ⇥ @q

@v

�

�

�

,
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N⇥ @q

@v
=

guv
@q
@v � gvv

@q
@u

�

�

�

@q
@u ⇥ @q

@v

�

�

�

.

(11) If we have a parametrization where

[I] =



1 0
0 gvv

�

,

then the coordinate function f (u, v) = u has

ru =
@q

@u
.

(12) Show that it is always possible to find an orthogonal parametrization, i.e.,
guv vanishes. Hint: Use theorem 4.2.7.

(13) Show that if

@guu
@v

=
@gvv
@u

= guv = 0,

then we can reparametrize u and v separately, i.e., u = u (s) and v = v (t) ,
in such a way that we obtain Cartesian coordinates :

gss = gtt = 1,

gst = 0.

(14) Show that if

@2q

@u@v
= 0,

then

q (u, v) = F (u) +G (v) ,

and conclude that
@guu
@v

=
@gvv
@u

= 0.

Give an example where guv 6= 0.
(15) Consider a unit speed curve ↵ (s) with non-vanishing curvature and the

tube (see section 4.1 exercise 8) of radius R around it

q (s,�) = ↵ (s) +R (N↵ cos�+B↵ sin�) ,

where T↵,N↵,B↵ are the unit tangent, normal, and binormal to the
curve.
(a) Show that T↵ and �N↵ sin� + B↵ cos� are an orthonormal ba-

sis for the tangent space and that the normal to the tube is N =
� (N↵ cos�+B↵ sin�).

(b) Show that



gss gs�
g�s g��

�

=



(1� R)2 + (⌧R)2 ⌧R2

⌧R2 R2

�

.
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4.5. Special Maps and Parametrizations

Definition 4.5.1. We call a map F : M1 ! M2 between surfaces an isometry
if its di↵erential preserves the first fundamental form

Ig1 (X,Y ) = Ig2 (DF (X) , DF (Y )) .

We call the map area preserving if it preserves the areas of parallelograms
spanned by vectors.

We call the map conformal if it preserves angles between vectors.

When the first surface is given as a parametrized surface these conditions can
be quickly checked.

Proposition 4.5.2. Let q : U ! M1 be a parametrization and F : M1 ! M2

a map. If F � q is also a parametrization, then the map is an isometry if

[Ig1 ] = [Ig2 ] ,

area preserving if
det [Ig1 ] = det [Ig2 ] ,

and conformal if
[Ig1 ] = �2 [Ig2 ]

for some non-zero function �.

Proof. Note that it is not necessary to first check that F�q is also a parametriza-
tion as that will be a consequence of any one of the three conditions if we define

[Ig2 ] =



@F�q
@u · @F�q

@u
@F�q
@u · @F�q

@v
@F�q
@v · @F�q

@u
@F�q
@v · @F�q

@v

�

and observe that @F�q
@v , @F�q

@u are linearly independent if and only if the matrix [Ig2 ]
has nonzero determinant.

Next note that the chain rule implies that

DF

✓

@q

@u

◆

=
@F � q
@u

, DF

✓

@q

@v

◆

=
@F � q
@v

So all three conditions are necessarily true if the map is an isometry, area preserving,
or conformal respectively. More generally, we see that

DF (X) = DF

✓

Xu @q

@u
+Xv @q

@v

◆

= Xu @F � q
@u

+Xv @F � q
@v

.

So if [Ig1 ] = [Ig2 ], then it follows from a direct but mildly long calculation that
Ig1 (X,Y ) = Ig2 (DF (X) , DF (Y )).

Similarly, if
�

�

�

�

@q

@u
⇥ @q

@v

�

�

�

�

2

= det [Ig1 ] = det [Ig2 ] =

�

�

�

�

@F � q
@u

⇥ @F � q
@v

�

�

�

�

2

,

then it also follows from a somewhat tedious calculation that

|X ⇥ Y |2 = |DF (X)⇥DF (Y )|2 .
Finally, as angles are given by

cos\ (X,Y ) =
X · Y
|X| |Y |
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the last statement follows by a similar calculation from the assumption that [Ig1 ] =
�2 [Ig2 ].

The last statement can also be rephrased without the use of � by checking that

@F�q
@u · @F�q

@u
@q
@u · @q

@u

=
@F�q
@v · @F�q

@v
@q
@v · @q

@v

and

@F � q
@v

· @F � q
@u

=
@F�q
@u · @F�q

@u
@q
@u · @q

@u

@q

@v
· @q
@u

⇤

Definition 4.5.3. In case the map is a parametrization q : U ! M then we
always use the Cartesian metric on U given by



1 0
0 1

�

.

So the parametrization is an isometry or Cartesian when

[I] =



1 0
0 1

�

,

area preserving when

det [I] = 1,

and conformal or isothermal when

guu = gvv,

guv = 0.

Example 4.5.4. It follows from proposition 4.5.2 and example 4.2.13 that the
Archimedes map is area preserving and the Mercator map is conformal.

Definition 4.5.5. The area of a parametrized surface q (u, v) : U ! M over
a region R ⇢ U where q is one-to-one is defined by the integral

Area (q (R)) =

ˆ
R

p

det [I]dudv.

Proposition 4.5.6. The area is independent under reparametrization.

Proof. Assume we have a di↵erent parametrization q (s, t) : V ! M and a
new region T ⇢ V with q (R) = q (T ) and the property that the reparametrization
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(u (s, t) , v (s, t)) : T ! R is a di↵eomorphism. Then

Area (q (R)) =

ˆ
R

p

det [I]dudv

=

ˆ
R

r

det
⇣

⇥

@q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤

⌘

dudv

=

ˆ
R

v

u

u

tdet

 

✓

⇥

@q
@s

@q
@t

⇤



@s
@u

@s
@v

@t
@u

@t
@v

�◆t
⇥

@q
@s

@q
@t

⇤



@s
@u

@s
@v

@t
@u

@t
@v

�

!

dudv

=

ˆ
R

v

u

u

tdet

 



@s
@u

@s
@v

@t
@u

@t
@v

�t
⇥

@q
@s

@q
@t

⇤t ⇥ @q
@s

@q
@t

⇤



@s
@u

@s
@v

@t
@u

@t
@v

�

!

dudv

=

ˆ
R

s

det



@s
@u

@s
@v

@t
@u

@t
@v

�t

det
q

⇥

@q
@s

@q
@t

⇤t ⇥ @q
@s

@q
@t

⇤

s

det



@s
@u

@s
@v

@t
@u

@t
@v

�

dudv

=

ˆ
R

det
q

⇥

@q
@s

@q
@t

⇤t ⇥ @q
@s

@q
@t

⇤

�

�

�

�

det



@s
@u

@s
@v

@t
@u

@t
@v

�

�

�

�

�

dudv

=

ˆ
R

det
q

⇥

@q
@s

@q
@t

⇤t ⇥ @q
@s

@q
@t

⇤

dsdt,

where the last equality follows from the change of variables formula for integrals. ⇤
Exercises.

(1) Check if the parameterization q (t,�) = t (cos�, sin�, 1) for the cone is an
isometry, area preserving, or conformal? Can the surface be reparametrized
to have any of these properties? Hint: See section 4.4 exercise 2.

(2) Show that the following two parametrizations of the unit sphere are area
preserving:
(a) (Lambert, 1772)

q (µ, z) =

2

4

p
1� z2 cosµp
1� z2 sinµ

z

3

5 , |µ| < ⇡, |z| < 1.

(b) (Sinusoidal projection, Cossin, 1570)

q (s, t) =

2

4

cos s cos
�

t
cos s

�

cos s sin
�

t
cos s

�

sin s

3

5 , |s| < ⇡
2 , t < ⇡ cos s.

(c) Relate the Lambert parametrization to the Archimedes map.
(3) (Stabius-Werner, c. 1500, Sylvanus, 1511, Bonne, c. 1780) Show that the

Bonne parametrizations

q (r, ✓) =

2

6

6

4

cos (r � r0) cos
⇣

r(✓�⇡/2)
cos(r�r0)

⌘

cos (r � r0) sin
⇣

r(✓�⇡/2)
cos(r�r0)

⌘

sin (r � r0)

3

7

7

5

,

have the property that det [I] = r2. Conclude that they are area preserving
when (r, ✓) correspond to polar coordinates

x = r cos ✓, y = r sin ✓.
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For r0 = 0 this is a sinusoidal projection, for r0 = ⇡/2 the Stabius-Werner
projection, and for 0 < r0 < ⇡/2 the Sylvanus projection. The planar
shape of these maps is bordered on the outside by an implicitly given
curve

|r|
�

�✓ � ⇡
2

�

� = cos (r � r0)

as r ! ⇡/2 this looks a heart shaped region.
(4) Show that the inversion map

F (q) =
q

|q|2
.

is a conformal map of Rn � 0 to it self. Hint: See section 4.2 exercise 3.
(5) Show that the inverse stereographic projections q± : Rn ! Rn⇥R = Rn+1

defined by

q± (q) = (q, 0) +
1� |q|2

1 + |q|2
(q,⌥1)

are conformal parametrizations of the unit sphere. Hint: See section 4.2
exercise 5. More specifically when n = 2 it is given by

q± (u, v) =

✓

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 ⌥ 1

u2 + v2 + 1

◆

.

(6) Consider the map F : H ! R2 defined by

F (x, y) =
1

x2 + (y + 1)2
(2x, 2 (y + 1)) + (0,�1)

=
1

x2 + (y + 1)2
�

2x, 1� x2 � y2
�

,

where H = {(x, y) | y > 0}.
(a) Show that F is one-to-one and that the image isD =

�

(x, y) | x2 + y2 < 1
 

.
Hint: Show that

|F (x, y)|2 = 1� 4y

x2 + (y + 1)2
.

(b) Show that the inverse is given by

F�1 (u, v) =
1

u2 + (v + 1)2
(2u, 2 (v + 1)) + (0,�1)

=
1

u2 + (v + 1)2
�

2u, 1� u2 � v2
�

.

(c) Show that F and F�1 are conformal.
(d) Show that F can be interpreted as an inversion in the circle of radiusp

2 centered at (0,�1).
(7) Show that Enneper’s surface

q (u, v) =

✓

u� 1

3
u3 + uv2, v � 1

3
v3 + vu2, u2 � v2

◆

defines a conformal parametrization.
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(8) Consider a map F : S2 ! P , where P = {z = 1} is the plane tangent to
the North Pole, that takes each meridian to the radial line that is tangent
to the meridian at the North Pole. Sometimes the map might just be
defined on part of the sphere such as the upper hemisphere.
(a) Show that such a map has a parametrization of the form

F

0

@

2

4

cosµ cos�
sinµ cos�

sin�

3

5

1

A =

2

4

r (�) cosµ
r (�) sinµ

1

3

5

for some function r, where r
�

⇡
2

�

= 0.

(b) Show that when r =
p

2 (1� sin�), then we obtain an area preserv-
ing map on the upper hemisphere.

(c) Show that when the map projects a point on the upper hemisphere
along the radial line through the origin, then r = cot�. Show that
this map takes all great circles (not just meridians) to straight lines.
This is also called the Beltrami projection and is an example of a
perspective projection (see section 4.2 exercise 4).

(d) Show that the inverse of the Beltrami projection from (c) onto the
upper hemisphere is given by

B�1 (s, t, 1) =

✓

sp
1 + s2 + t2

,
tp

1 + s2 + t2
,

1p
1 + s2 + t2

◆

.

(9) Show that a map F : M ! M⇤ that is both conformal and area preserving
is an isometry.

(10) Consider a ruled surface

q (s, t) = ↵ (s) + tX (s)

where ↵ is unit speed and X is a unit field. Show that it is conformal if
and only if it is Cartesian (in which case X is constant and normal to ↵
for all s.) Hint: See section 4.2 exercise 4.

(11) Find a conformal map from a surface of revolution q1 (r, µ) = (r cosµ, r sinµ, z1 (r))
to a circular cylinder q2 (r, µ) = (cosµ, sin rµ, z2 (r)).

(12) Reparametrize the curve (r (u) , z (u)) so that the new parametrization

q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t))

is conformal.
(13) Find an area preserving map from a surface of revolution q1 (r, µ) =

(r cosµ, r sinµ, z1 (r)) to a circular cylinder q2 (r, µ) = (cosµ, sinµ, z2 (r)).
(14) Reparametrize the curve (r (u) , z (u)) so that the new parametrization

q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t))

is area preserving.
(15) Show that a Monge patch z = f (x, y) is area preserving if and only if f

is constant.
(16) Show that a Monge patch z = f (x, y) is conformal if and only if f is

constant.
(17) Show that the equation

ax+ by + cz = d
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defines a surface if and only if (a, b, c) 6= (0, 0, 0). Show that this surface
has a parametrization that is Cartesian.

(18) The conoid is a special type of ruled surface where ↵ is a straight line and
X always lies in a fixed plane. The simplest case is when ↵ is the z-axis
and X lies in the (x, y)-plane

q (s, t) = (tx (s) , ty (s) , z (s))

= (0, 0, z (s)) + t (x (s) , y (s) , 0)

(a) Compute its first fundamental form when |X| = 1.
(b) Show that this parametrization is conformal (or area preserving) if

and only if the surface is a plane.
(c) Show that this surface is a helicoid when both X and z have constant

speed.
(d) Show that such a helicoid can be reparametrized using t = t (v) so as

to obtain either a conformal or an area preserving parametrization.
(19) Consider the two parametrized surfaces given by

q1 (�, u) = (sinh� cosu, sinh� sinu, u)

= (0, 0, u) + sinh� (cosu, sinu, 0)

q2 (t, µ) = (cosh t cosµ, cosh t sinµ, t)

Compute the first fundamental forms for both surfaces and construct a
local isometry from the first surface to the second. (The first surface is
a ruled surface with a one-to-one parametrization called the helicoid, the
second surface is a surface of revolution called the catenoid.) Hint: See
section 4.2 exercise 6.

(20) (Girard, 1626) A hemisphere on the unit sphere S2 is the part that lies on
one side of a great circle. A lune is the intersection of two hemispheres.
It has two antipodal vertices. A spherical triangle is the region bounded
by three hemispheres.
(a) Show that the area of a hemisphere is 2⇡.
(b) Use the Archimedes map to show that the area of a lune where the

great circles meet at an angle of ↵ is 2↵.
(c) If A (H) denotes the area of a region on S2 use a Venn type diagram

to show that

A (H1 [H2 [H3) = A (H1) +A (H2) +A (H3)

�A (H1 \H3)�A (H2 \H3)�A (H1 \H2)

+A (H1 \H2 \H3) .

(d) Let H1, H2, H3 be hemispheres and H 0
i = S2�Hi the complementary

hemispheres. Show that

H 0
1 \H 0

2 \H 0
3 = S2 �H1 [H2 [H3.

And further show that the spherical triangleH1\H2\H3 is congruent
to the spherical triangle H 0

1 \H 0
2 \H 0

3 via the antipodal map.
(e) Show that the area A of a spherical triangle is given by

A = ↵+ � + � � ⇡,

where ↵,�, � are the interior angles at the vertices of the triangle.



4.6. THE GAUSS FORMULAS 96

4.6. The Gauss Formulas

We are now going to compute the partial derivatives of our basis in both the u
and v directions. Since these derivatives might not be tangential we get a formula
that looks like

@2q

@w1@w2
=
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t @2q

@w1@w2
+

✓

@2q

@w1@w2
·N

◆

N.

The goal here and in the next two chapters is to first understand the normal part
of this formula

@2q

@w1@w2
·N

and then the tangential part

�w1w2 =
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t @2q

@w1@w2
.

Definition 4.6.1. The Christo↵el symbols of the first kind are defined as

�w1w2w =
@2q

@w1@w2
· @q
@w

.

Definition 4.6.2. The second fundamental form with respect to the normal
N is defined as

IIN (X,Y ) =
⇥

Xu Xv
⇤

[II]



Y u

Y v

�

=
⇥

Xu Xv
⇤



Luu Luv

Lvu Lvv

� 

Y u

Y v

�

,

where

Lw1w2 =
@2q

@w1@w2
·N.

The superscript N refers to the choice of normal and is usually suppressed since
there are only two choices for the normal ±N. This also tells us that NII is inde-
pendent of the normal.

To further simplify expressions we also need to do the appropriate multiplica-
tion with gw4w5 .

Definition 4.6.3. The Christo↵el symbols of the second kind are defined as

�w
w1w2

= gwu�w1w2u + gwv�w1w2v,


�u
w1w2

�v
w1w2

�

=



guu guv

gvu gvv

� 

�w1w2u

�w1w2v

�

= [I]�1 ⇥ @q
@u

@q
@v

⇤t @2q

@w1@w2
.

This now gives us the tangential component as

�w1w2 =
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t @2q

@w1@w2

= �u
w1w2

@q

@u
+ �v

w1w2

@q

@v
.
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The second derivatives of q (u, v) can now be expressed as follows in terms of
the Christo↵el symbols of the second kind and the second fundamental form. These
are often called the Gauss formulas :

@2q

@u2
= �u

uu

@q

@u
+ �v

uu

@q

@v
+ LuuN,

@2q

@u@v
= �u

uv

@q

@u
+ �v

uv

@q

@v
+ LuvN =

@2q

@v@u
,

@2q

@v2
= �u

vv

@q

@u
+ �v

vv

@q

@v
+ LvvN,

or
@2q

@w1@w2
= �u

w1w2

@q

@u
+ �v

w1w2

@q

@v
+ Lw1w2N,

or

@

@w

⇥

@q
@u

@q
@v

⇤

=
⇥

@q
@u

@q
@v N

⇤

2

4

�u
wu �u

wv

�v
wu �v

wv

Lwu Lwv

3

5 .

This means that we have introduced notation for the first two columns in [Dw] from
section 4.3. The last column is related to the last row and will also be examined in
the next chapter.

As we shall see, and indeed already saw in section 4.3 when considering polar
coordinates in the plane, these formulas are important for defining accelerations
of curves. They are however also important for giving a proper definition of the
Hessian or second derivative matrix of a function on a surface. This will be explored
in an exercise later.

The task of calculating the second fundamental form is fairly straightforward,
but will be postponed until the next chapter. Calculating the Christo↵el symbols is
more complicated and is delayed until we’ve gotten used to the second fundamental
form.

Exercises.

(1) Show that
@N

@w
is always tangent to the surface.

(2) Show that
@2q

@w1@w2
·N = � @q

@w2
· @N

@w1
.

This shows that the derivatives of the normal can be computed knowing
the first and second fundamental forms.

(3) Show that [II] vanishes if and only if the normal vector is constant. Show
in turn that this happens if and only if the surface is part of a plane.

(4) Show that when q (u, v) is a Cartesian parametrization, i.e.,

[I] =



1 0
0 1

�

,

then the Christo↵el symbols vanish. Hint: This is not obvious since we

don’t know @2
q

@w1@w2
.



CHAPTER 5

Extrinsic Geometry

The goal of extrinsic geometry is to study the shape of curves and surfaces
through understanding how the tangent lines or space vary in relation to an extrinsic
space such as Euclidean space. When we studied curves this was essentially all we
did. For surfaces there is also a rich intrinsic geometry that only addresses concepts
that can be calculated via the first fundamental form. This will be studied in
chapter 6 and 7.

5.1. Curves on Surfaces

In this section we o↵er a geometric construction that allows us to show that the
second fundamental form is, like the first fundamental form, defined independently
of parametrizations. This will also be done more algebraically in section 5.2.

The key observation is that if we have a surface M and a point p 2 M, then the
tangent space TpM and normal space NpM = (TpM)? are defined independently
of our parametrizations (see proposition 4.2.3). Therefore, if we have a vector Z
in Euclidean space then its projection onto both the tangent space and the normal
space are also independently defined.

Consider a curve q (t) on the surface. We know that the velocity q̇ and accel-
eration q̈ can be calculated without reference to parametrizations of the surface.
This means that the projections of q̈ onto the normal space, q̈II = (q̈ ·N)N,
and the tangent space, q̈I = q̇ � (q̈ ·N)N, can be computed without reference to
parametrizations. This shows that tangential and normal accelerations are well-
defined.

Theorem 5.1.1. (Euler, 1760 and Meusnier, 1776) The normal component of
the acceleration satisfies

(q̈ ·N)N = q̈II = NII (q̇, q̇)

In particular, two curves with the same velocity at a point have the same normal
acceleration components.

Proof. We have to show that

q̈ ·N = II (q̇, q̇)

To do so we select a parametrization and write q (t) = q (u (t) , v (t)), then

q̇ =
⇥

@q
@u

@q
@v

⇤



u̇
v̇

�

98
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and

q̈ =

✓

d

dt

⇥

@q
@u

@q
@v

⇤

◆ 

u̇
v̇

�

+
⇥

@q
@u

@q
@v

⇤



ü
v̈

�

=
⇥

u̇ v̇
⇤

"

@2
q

@u2
@2

q

@v@u
@2

q

@u@v
@2

q

@v2

#



u̇
v̇

�

+
⇥

@q
@u

@q
@v

⇤



ü
v̈

�

.

Taking inner products with the normal will eliminate the second term as it is a
tangent vector so we obtain

q̈ ·N =
⇥

u̇ v̇
⇤

"

@2
q

@u2 ·N @2
q

@v@u ·N
@2

q

@u@v ·N @2
q

@v2 ·N

#



u̇
v̇

�

=
⇥

u̇ v̇
⇤



Luu Lvu

Luv Lvv

� 

u̇
v̇

�

= II (q̇, q̇) .

⇤

Based on the velocity characterization of the tangent space in proposition 4.2.4
we now obtain the following definition of the second fundamental form.

Definition 5.1.2. We can now redefine NII (Z,Z) by selecting a curve on the
surface with q̇ = Z and then using that NII (q̇, q̇) is the normal component of q̈.

To compute NII (X,Y ) we can use polarization:

NII (X,Y ) =
1

2
(NII (X + Y,X + Y )�NII (X,X)�NII (Y, Y )) .

As with space curves we define the unit tangent T for a regular curve q (t)
on a surface q (u, v). However, we use the normal N to the surface instead of
the principal normal component of the acceleration in relation to the unit tangent.
From these two vectors we can define the normal to the curve tangent to the surface
as

S = N⇥T.

In this way curve theory on surfaces is closer to the theory of planar curves as we
can think of S as the signed normal to the curve in the surface (see also section
3.3 for the special case of curves on spheres). Using an arclength parameter s we
define the normal curvature

n = II (T,T) ,

the geodesic curvature

g = S · dT
ds

and the geodesic torsion

⌧g = N · dS
ds

Note that the geodesic curvature of curves on the sphere from section 3.3 is
consistent with the above definition.

Example 5.1.3. A plane always has vanishing second fundamental form as its
normal is constant. This means that any curve in this plane has vanishing normal
curvature and geodesic torsion. The geodesic curvature is the signed curvature ±.
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Example 5.1.4. A sphere of radius R centered at c is given by the equation

F (x, y, z) = |q� c|2 = R2 > 0.

The gradient is

rF = 2 (q� c) = 2 (x� a, y � b, z � c) ,

which cannot vanish unless q = c. This shows that the sphere is a surface and also
computes the two normals

N = ± 1

R
(q� c) .

as |q� c| = R (see theorem 4.1.9 and corollary 4.2.5). The + gives us an out-
ward pointing normal. If we have a parametrization q (u, v), then this relationship
between q and N implies that @q

@w = ± 1
R

@N
@w . This in turn implies that II = ± 1

R I.
This shows that the normal curvature of any curve on the sphere is ± 1

R .

We shall show below that only planes and spheres have the property that
the normal curvature is the same for all curves on a surface. Another interesting
consequence is an important theorem first noted by Euler and later in greater
generality by Gauss that it is not possible to draws maps of the Earth with the
property that all distances and angles are preserved.

Theorem 5.1.5. (Euler, 1775) A sphere does not admit a Cartesian parametriza-
tion.

Proof. Assume that q (u, v) is a Cartesian parametrization of part of a sphere
of radius R > 0. We start by showing that any line (u (t) , v (t)) with zero accel-
eration becomes part of a great circle q (t) = q (u (t) , v (t)) on the sphere. Great
circles are characterized as curves with acceleration normal to the sphere, i.e., the
tangential acceleration vanishes q̈I = 0 (see section 3.3 exercise 5 or exercise 7 in
this section). By assumption ü, v̈ = 0 so

q̈ =
⇥

u̇ v̇
⇤

"

@2
q

@u2
@2

q

@v@u
@2

q

@u@v
@2

q

@v2

#



u̇
v̇

�

.

Thus q̈I = 0 precisely when

@2q

@u2
· @q
@w

= 0,

@2q

@v@u
· @q
@w

= 0,

@2q

@v2
· @q
@w

= 0.

Note that as w = u, v there are 6 identities. Using that @q
@u ,

@q
@v are unit vectors we

obtain

0 =
@

@w

✓

@q

@u
· @q
@u

◆

= 2
@2q

@w@u
· @q
@u

=
@2q

@u@w
· @q
@u

and similarly

0 =
@

@w

✓

@q

@v
· @q
@v

◆

= 2
@2q

@w@v
· @q
@v

=
@2q

@v@w
· @q
@v

.
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This shows that four of the identities hold. Next we use that @q
@u ,

@q
@v are perpendic-

ular to conclude

0 =
@

@w

✓

@q

@u
· @q
@v

◆

=
@2q

@w@u
· @q
@v

+
@q

@u
· @2q

@w@v
.

Depending on whether w = u or v the second or first term on the left vanishes from
what we just did. Thus the remaining term also vanishes. This takes care of the
last two identities.

To finish the proof it remains to observe that if we select a small triangle in
the u, v plane, then it is mapped to a congruent spherical triangle whose sides
are parts of great circles. This, however, violates the spherical law of cosines or
Girard’s theorem (see section 4.5 exercise 20). To give a self contained argument
here select an equilateral triangle in the plane with side lengths ✏. Then we obtain
an equilateral triangle on the sphere with side lengths ✏ and interior angles ⇡

3 . As
the sides are parts of great circles we can check explicitly if this is possible. Let
the vertices be qi, i = 1, 2, 3, then qi · qj = cos ✏ when i 6= j. The unit directions
of the great circles at q1 are given by

v12 =
q2 � (q2 · q1)q1
q

1� (q2 · q1)
2

=
q2 � cos ✏q1

sin ✏
,

v13 =
q3 � cos ✏q1

sin ✏

and thus

1

2
= v12 · v13

=

✓

q2 � cos ✏q1

sin ✏

◆

·
✓

q3 � cos ✏q1

sin ✏

◆

=
cos ✏� 2 cos2 ✏+ cos2 ✏

sin2 ✏

=
cos ✏� cos2 ✏

sin2 ✏

=
1

2
� 1

8
✏2 + · · ·

<
1

2
.

So we have arrived at a contradiction. ⇤

Finally we prove what has come to be known as the Gauss-Bonnet theorem,
but for now only in the case when the surface is a sphere. This result can also be
used to show that the sphere doesn’t have Cartesian coordinates.

Theorem 5.1.6. Let q (s) be a simple closed unit speed curve on the unit sphere.
Let A be the area enclosed by the curve, then

A = 2⇡ ±
ˆ

gds.

Remark 5.1.7. Note that the closed curve divides the sphere in to two regions.
Together these areas add up to 4⇡ and di↵er from each other by 2

´
gds.
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Remark 5.1.8. Much of what we do will be valid in the more general context
of a surface of revolution where the (r, z)-curve is parametrized by arclength (see
section4.1 exercise 5 for notation). The one change is that we’ll no longer be
calculating the area of the region, but rather the integral of a quantity that is
called the Gauss curvature. More precisely, if the closed curve bounds a region ⌦,
then

�
ˆ ˆ

⌦

d2r
d�2

r

p

det [I]dµd� = 2⇡ ±
ˆ

gds.

Proof. We parametrize the unit sphere as a surface of revolution

q (µ,�) =

2

4

cosµ cos�
sinµ cos�

sin�

3

5 =

2

4

r (�) cosµ
r (�) sinµ

z (�)

3

5

We also restrict the domain to be (µ,�) 2 R = (0, 2⇡) ⇥
�

�⇡
2 ,

⇡
2

�

and consider a
unit speed curve

q (s) = q (µ (s) ,� (s)) ,

where (µ (s) ,� (s)) 2 R for s 2 [0, L]. The area under consideration will then be
the area bounded by the curve inside this region. We shall further assume that
the curve runs counter clockwise in this region so that S points inwards. Thus the
rotation of the curve is 2⇡ if we think of it as a planar curve on the rectangle.

The two vectors

Eµ =

2

4

� sinµ
cosµ
0

3

5 =
1

cos�

@q

@µ
=

1

r

@q

@µ
,

E� =
@q

@�
=

2

4

� sin� cosµ
� sin� sinµ

cos�

3

5

form an orthonormal basis for the tangent space at every point. Therefore, the unit
tangent can be written as

T =
dq

ds
= cos (✓ (s))Eµ + sin (✓ (s))E�

and

S = � sin ✓Eµ + cos ✓E�
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The geodesic curvature can then be computed as

g = S · dT
ds

= S ·
✓

d✓

ds
S+ cos ✓

dEµ

ds
+ sin ✓

dE�

ds

◆

=
d✓

ds
� sin2 ✓Eµ · dE�

ds
+ cos2 ✓E� · dEµ

ds

=
d✓

ds
+ E� · dEµ

ds

=
d✓

ds
+

2

4

� sin� cosµ
� sin� sinµ

cos�

3

5 ·

2

4

� cosµ
� sinµ

0

3

5

dµ

ds

=
d✓

ds
+ sin�

dµ

ds

=
d✓

ds
� dr

d�

dµ

ds
.

We can use Green’s theorem to conclude thatˆ
dr

d�

dµ

ds
ds = �

ˆ ˆ
d2r

d�2
dµd�.

Thus yielding ˆ
d✓

ds
ds�

ˆ
gds =

ˆ
dr

d�

dµ

ds
ds

=

ˆ
dr

d�
dµ

= �
ˆ ˆ

d2r

d�2
dµd�

=

ˆ ˆ
rdµd�

=

ˆ ˆ
p

det [I]dµd�

= A.

Finally we have to evaluate ˆ
d✓

ds
ds

For a simple planar curve we know that it is 2⇡ when the curve runs counterclock-
wise. In fact this is also true in this context. To see this we notice, as in the planar
case, that it must be a multiple of 2⇡. We can continuously deform the the sphere
to become a cylinder of height ⇡ through surfaces of revolution

q✏ (µ,�) =

2

4

(1� ✏+ ✏r) cosµ
(1� ✏+ ✏r) sinµ
(1� ✏)�+ ✏z

3

5 =

2

4

r✏ cosµ
r✏ sinµ

z✏

3

5 .

The first fundamental forms will be

[I✏] =

"

r2✏ 0

0
⇣

dr✏
d�

⌘2
+
⇣

dz✏
d�

⌘2

#

,
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which at ✏ = 1 gives us the sphere and at ✏ = 0 the Euclidean metric on R. The
angle in these metrics is calculated via

cos ✓✏ =

I✏

✓

dq
dt ,



1
0

�◆

�

�

�

dq
dt

�

�

�

✏

�

�

�

�



1
0

�

�

�

�

�

✏

=
r✏

dµ
dt

s

r2✏

⇣

dµ
dt

⌘2
+

✓

⇣

dr✏
d�

⌘2
+
⇣

dz✏
d�

⌘2
◆

⇣

dµ
d�

⌘2
.

This clearly varies continuously with ✏ soˆ
d✓✏
dt

dt

will also vary continuously as claimed. However as it is always a multiple of 2⇡ it
must stay constant. Finally, for the Euclidean metric it is 2⇡ so this is also the
value in general. ⇤

Exercises.

(1) A curve q (t) on a surface is called an asymptotic curve if II (q̇, q̇) = 0,
i.e., n vanishes. Show that the binormal to the curve is normal to the
surface.

(2) Let ↵ (s) be a unit speed curve with non-vanishing curvature. Show that
↵ is an asymptotic curve on the ruled surface

q (s, t) = ↵ (s) + tN↵ (s) ,

where N↵ is the normal to ↵ as a space curve.
(3) Let q (s) be a unit speed curve on a surface with normal N. Show that

g = 0 if and only if

det [q̇, q̈,N] = 0.

(4) Show that latitudes on a sphere have constant g.
(5) Let q (s) be a unit speed curve on a surface with normal N. Show that

d

ds

⇥

T S N
⇤

=
⇥

T S N
⇤

2

4

0 �g �n

g 0 �⌧g
n ⌧g 0

3

5 .

(6) Let q (s) be a unit speed curve on a surface with normal N. Show that
the space curvature  is related to the geodesic and normal curvatures as
follows

2 = 2
g + 2

n

and that the torsion is given by

⌧ = ⌧g +
g̇n � n̇g

2
g + 2

n

Hint: Start by showing that

q̈ = nN+ gS.

(7) For a curve on the unit sphere show that
(a) ⌧g = 0.
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(b) g = 0 if and only if it is a great circle.
(c) g is constant if and only if it is a circle.

(8) Let q (t) be a regular curve on a surface, with N being the normal to the
surface. Show that

n =
II (q̇, q̇)

I (q̇, q̇)
, g =

det (q̇, q̈,N)

(I (q̇, q̇))3/2
.

(9) Let q (u, v) be a parametrization such that guu = 1 and guv = 0. Prove
that the u-curves are unit speed with acceleration that is perpendicular
to the surface. The u-curves are given by q (u) = q (u, v) where v is fixed.

(10) Consider a surface of revolution

q (s, ✓) = (r (s) cos (✓) , r (s) sin (✓) , z (s)) ,

where (r (s) , 0, z (s)) is unit speed.
(a) Compute the second fundamental form.
(b) Compute g, n, ⌧g for the meridians q (s) = q (s, ✓). Conclude that

their acceleration is perpendicular to the surface
(c) Compute g, n, ⌧g for the latitudes q (✓) = q (s, ✓).

(11) Let M be a surface with normal N and X,Y 2 TpM . Show that if q (t)
and a curve with velocity X at t = 0 and Y (t) is an extension of the
vector Y to a vector field along q, then

II (X,Y ) = N · dY
dt

(0) .

(12) Let M be a surface given by an equation F (x, y, z) = R.
(a) If q (t) is a curve on M show that

q̈ ·rF = �q̇t

2

6

4

@2F
@x2

@2F
@y@x

@2F
@z@x

@2F
@x@y

@2F
@y2

@2F
@z@y

@2F
@x@z

@2F
@y@z

@2F
@z2

3

7

5

q̇

= �q̇t



@rF

@ (x, y, z)

�

q̇

(b) Show that

II (X,Y ) = �
Xt

h

@rF
@(x,y,z)

i

Y

|rF |

5.2. The Gauss and Weingarten Maps and Equations

In this section we will complete the collection of Gauss equations. What was
missing from those equations were the partial derivates of the normal. These extra
equations are also known as the Weingarten equations. To better understand them
we introduce the Weingarten map. As we shall see, the matrix of this map is
related to the second fundamental form in the same way the Christo↵el symbols of
the second kind are related to the symbols of the first kind.

We start by defining things abstractly and then present the matrix versions
afterwards.
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Definition 5.2.1. The Gauss map for a surface M with normal N is the map
N : M ! S2 (1) that takes each point to the chosen normal at that point. The
Weingarten map at a point p 2 M is the linear map L : TpM ! TpM defined as
the negative of the di↵erential of N:

L = �DN.

Remark 5.2.2. The definition of the Weingarten map requires some explana-
tion as the di↵erential should be a linear map

DN : TpM ! T
N(p)S

2 (1)

However, the normal vector to any point x 2 S2 (1) is simply N = ±x. As the
tangent space is the orthogonal complement to the normal vector it follows that

TpM = T
N(p)S

2 (1) .

For a parametrized surface this tells us.

Proposition 5.2.3. (The Weingarten Equations) For a parametrized surface
q (u, v) we have

�@N

@u
= L

✓

@q

@u

◆

,

�@N

@v
= L

✓

@q

@v

◆

.

More generally for a curve q (t) on the surface

�dN � q
dt

= L

✓

dq

dt

◆

.

Proof. The equations simply follow from the chain rule and the first two are
special cases of the last. If we write the curve q (t) = q (u (t) , v (t)), then

L

✓

dq

dt

◆

= �DN

✓

dq

dt

◆

= �dN � q
dt

= �
✓

@N

@u

du

dt
+

@N

@v

dv

dt

◆

.

This proves the claim ⇤

Next we show that the Weingarten map L is a self-adjoint map with respect to
the first fundamental form.

Proposition 5.2.4. The Weingarten map is abstractly related to the second
fundamental through the first fundamental form by the formula:

I (L (X) , Y ) = II (X,Y ) = I (X,L (Y ))

In particular, L is self-adjoint as II is symmetric.
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Proof. Since the second fundamental form is symmetric II (X,Y ) = II (Y,X)
it follows that we only need to show that I (L (X) , Y ) = II (X,Y ) as we then obtain

I (X,L (Y )) = I (L (Y ) , X)

= II (Y,X)

= II (X,Y ) .

Next we observe that it su�ces to prove that

II (X,X) = I (L (X) , X)

as polarization implies

II (X,Y ) =
1

2
(II (X + Y,X + Y )� II (X,X)� II (Y, Y ))

=
1

2
(I (L (X + Y ) , X + Y )� I (L (X) , X)� I (L (Y ) , Y ))

= I (L (X) , Y ) .

We let X = dq
dt and recall that

II (X,X) =
d2q

dt2
·N.

As dq
dt and N are perpendicular it follows that

0 =
d

dt

✓

dq

dt
·N

◆

=
d2q

dt2
·N+

dq

dt
· dN � q

dt
= II (X,X)�X · L (X)

= II (X,X)� I (L (X) , X) .

This proves the claim. ⇤

All in all this is still a bit abstract, but the Weingarten equations and the
relationship between the Weingarten map and the first and second fundamental
forms allow us to give explicit formulas for a parametrized surface.

Given a parametrized surface q (u, v) the entries in the matrix representation
of the Weingarten map are defined as

h

L
⇣

@q
@u

⌘

L
⇣

@q
@v

⌘ i

=
⇥

@q
@u

@q
@v

⇤

[L]

=
⇥

@q
@u

@q
@v

⇤



Lu
u Lu

v

Lv
u Lv

v

�

.

The matrix representation can be calculated as follows.

Proposition 5.2.5. The matrix representations of the Weingarten maps and
the second fundamental form satisfy:

[L] = [I]�1 [II]
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and

[II] = �
⇥

@N
@u

@N
@v

⇤t ⇥ @q
@u

@q
@v

⇤

= �


@N
@u · @q

@u
@N
@u · @q

@v
@N
@v · @q

@u
@N
@v · @q

@v

�

= �
⇥

@q
@u

@q
@v

⇤t ⇥ @N
@u

@N
@v

⇤

.

Proof. To show the formula for [II] use that N is perpendicular to @q
@w2

and
note that

Lw1w2 =
@2q

@w1@w2
·N

=

✓

@

@w1

✓

@q

@w2

◆◆

·N

=
@

@w1

✓

@q

@w2
·N

◆

� @q

@w2
· @N

@w1

= � @q

@w2
· @N

@w1
.

We then have that

[I]�1 [II] =
⇣

⇥

@q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤

⌘�1
⇥

@q
@u

@q
@v

⇤t ⇥ �@N
@u �@N

@v

⇤

=
⇣

⇥

@q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤

⌘�1
⇥

@q
@u

@q
@v

⇤t
h

L
⇣

@q
@u

⌘

L
⇣

@q
@v

⌘ i

=
⇣

⇥

@q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤

⌘�1
⇥

@q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤

[L]

= [L] .

⇤
Remark 5.2.6. It is important to realize that while L is self-adjoint its matrix

representation
[L] = [I]�1 [II]

need not be symmetric. In fact as [I] and [II] are symmetric it follows that

[L]t = [II] [I]�1

so [L] is only symmetric if [I] and [II] commute.

The Weingarten equations can now be written as

@N

@w
= �Lu

w

@q

@u
� Lv

w

@q

@v
= �L

✓

@q

@w

◆

.

Together the Gauss formulas and Weingarten equations tell us how the deriva-
tives of our basis @q

@u ,
@q
@v ,N relate back to the basis. They can be collected as

follows:

Corollary 5.2.7. (The Gauss and Weingarten Formulas)

@

@w

⇥

@q
@u

@q
@v N

⇤

=
⇥

@q
@u

@q
@v N

⇤

[Dw]

=
⇥

@q
@u

@q
@v N

⇤

2

4

�u
wu �u

wv �Lu
w

�v
wu �v

wv �Lv
w

Lwu Lwv 0

3

5 .
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Exercises.

(1) For a surface of revolution

q (t, ✓) = (r (t) cos (✓) , r (t) sin (✓) , z (t))

compute the first and second fundamental forms and the Weingarten map.
(2) Compute the matrix representation of the Weingarten map for a Monge

patch q (x, y) = (x, y, f (x, y)) with respect to the basis @q
@x ,

@q
@y .

(3) Show that if a surface satisfies II = ± 1
R I, then it is part of a sphere of

radius R. Hint: Show that N ± 1
Rq is constant and use that to find the

center of the sphere.
(4) Let M be a surface with normal N and X,Y 2 TpM . Show that if q (t)

and a curve with velocity X at t = 0 , then

II (X,Y ) = �Y · dN � q
dt

(0) .

(5) Show that for a curve on a surface the geodesic torsion satisfies

⌧g = II (T,S) .

5.3. The Gauss and Mean Curvatures

Definition 5.3.1. The Gauss curvature is defined as the determinant of the
Weingarten map

K = detL

and the mean curvature is related to the trace as follows

H =
1

2
trL

To calculate these quantities we have:

Proposition 5.3.2. The Gauss and mean curvatures of a parametrized surface
q (u, v) can be computed as

K =
det [II]

det [I]
=

LuuLvv � (Luv)
2

guugvv � (guv)
2

and

H =
1

2

gvvLuu + guuLvv � 2guvLuv

guugvv � (guv)
2 .

Proof. To calculate the Gauss and mean curvatures we use the formulas for
determinant and trace for a matrix representation:

K = det [L] = Lu
uL

v
v � Lv

uL
u
v

and

H =
1

2
tr [L] =

1

2
(Lu

u + Lv
v)

together with [L] = [I]�1 [II] (see proposition 5.2.5). The formula for K now follows
from standard determinant rules.

For H we just need to recall how the inverse of a matrix is computed


guu guv
gvu gvv

��1

=
1

guugvv � (guv)
2



gvv �guv
�gvu guu

�

to get the desired formula. ⇤
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The Gauss curvature can also be expressed more directly from the unit normal.

Proposition 5.3.3. (Gauss) The Gauss curvature satisfies

K =

�

@N
@u ⇥ @N

@v

�

·N
�

�

�

@q
@u ⇥ @q

@v

�

�

�

.

Proof. Simply use the Weingarten equations to calculate

@N

@u
⇥ @N

@v
=

✓

�Lu
u

@q

@u
� Lv

u

@q

@v

◆

⇥
✓

�Lu
v

@q

@u
� Lv

v

@q

@v

◆

= Lu
uL

v
v

@q

@u
⇥ @q

@v
+ Lv

uL
u
v

@q

@v
⇥ @q

@u

= (Lu
uL

v
v � Lv

uL
u
v )

@q

@u
⇥ @q

@v

= K

�

�

�

�

@q

@u
⇥ @q

@v

�

�

�

�

N.

⇤

Note that the denominator in

K =

�

@N
@u ⇥ @N

@v

�

·N
�

�

�

@q
@u ⇥ @q

@v

�

�

�

is already computed in terms of the first fundamental form
�

�

�

�

@q

@u
⇥ @q

@v

�

�

�

�

2

= guugvv � (guv)
2

and can also be expressed as the volume of a parallelepiped
�

�

�

�

@q

@u
⇥ @q

@v

�

�

�

�

·N.

The numerator is the signed volume of the parallelepiped @N
@u ,

@N
@v ,N corresponding

to the Gauss map N (u, v) : U ! S2 (1) ⇢ R3 of the surface. Thus it can be
computed from the first fundamental form of N (u, v). However, there is a sign
that depends on whether N points in the same direction as @N

@u ⇥ @N
@v . Recall from

curve theory that the tangent spherical image was also related to curvature in a
similar way. Here the formulas are a bit more complicated as we use arbitrary
parameters.

Definition 5.3.4. The third fundamental form III is defined as the first fun-
damental form for N

[III] =
⇥

@N
@u

@N
@v

⇤t ⇥ @N
@u

@N
@v

⇤

=



@N
@u · @N

@u
@N
@u · @N

@v
@N
@v · @N

@u
@N
@v · @N

@v

�

.

This certainly makes sense, but N might not be a genuine parametrization if
the Gauss curvature vanishes. Nevertheless we alway have the relationship

@N

@u
⇥ @N

@v
=

�

�

�

�

@N

@u
⇥ @N

@v

�

�

�

�

N.
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The three fundamental forms and two curvatures are related by a very interest-
ing formula which also shows that the third fundamental form is almost redundant.

Theorem 5.3.5. All three fundamental forms are related by

III� 2HII +KI = 0.

Proof. We first reduce this statement to the Cayley-Hamilton theorem for
the linear operator L. This relies on showing

I (L (X) , Y ) = II (X,Y ) ,

I
�

L2 (X) , Y
�

= III (X,Y ) ,

and then proving that any 2⇥ 2 matrix satisfies:

L2 � (tr (L))L+ det (L) I = 0,

where I is the identity matrix. This last step can be done by a straightforward
calculation for a 2⇥2-matrix. (Only in higher dimensions is a more advanced proof
necessary.)

We already proved that I (L (X) , Y ) = II (X,Y ), which in matrix form is equiv-
alent to saying [I] [L] = [II]. We similarly have from the Weingarten equations that

[III] =
h

L
⇣

@q
@u

⌘

L
⇣

@q
@v

⌘ it h

L
⇣

@q
@u

⌘

L
⇣

@q
@v

⌘ i

= [L]t
⇥

@q
@u

@q
@v

⇤t ⇥ @q
@u

@q
@v

⇤

[L]

= [L]t [I] [L]

= [II]t
⇣

[I]�1
⌘t

[I] [L]

= [II] [I]�1 [I] [L]

= [II] [L]

= [I] [L] [L]

= [I] [L]2

showing that I
�

L2 (X) , Y
�

= III (X,Y ) . ⇤
Definition 5.3.6. A surface is called minimal if its mean curvature vanishes.

Proposition 5.3.7. A minimal surface has conformal Gauss map.

Proof. Let q (u, v) be a parametrization of the surface, then N (u, v) is a
potential parametrization of the unit sphere via the Gauss map. The first funda-
mental form with respect to this parametrization is the third fundamental form.
Using H = 0 we obtain

[III] +K [I] = 0,

which implies that the Gauss map is conformal. ⇤
Example 5.3.8. Note that the Gauss map for the unit sphere centered at the

origin is simply the identity map on the sphere. Thus its Gauss map is an isometry
and in particular conformal. However, the sphere is not a minimal surface. More
generally, the Gauss map

N (q) = ±q� c

R
for a sphere of radius R centered at c is also conformal as its derivative is given by
DN = ± 1

RI, where I is the identity map/matrix.
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The name for minimal surfaces is partly justified by the next result. Meusnier
in 1785 was the first to consider such surfaces and he also indicated with a geometric
argument that their areas should be minimal. In fact Lagrange had already in 1761
come up with an (Euler-Lagrange) equation for surfaces that minimize area, but
it was not until the mid 19th century with Bonnet and Beltrami that this was
definitively connected to the condition that the mean curvature should vanish.

Theorem 5.3.9. A surface whose area is minimal among nearby surfaces is a
minimal surface.

Proof. We assume that the surface is given by a parametrization q (u, v) and
only consider nearby surfaces that are graphs over the given surface, i.e.,

q⇤ = q+ �N

for some function � (u, v). From such a surface we can then create a family of
surfaces

q✏ = q+ ✏�N

that interpolates between these two surfaces. To calculate the area density as a
function of ✏ we first note that

@q✏

@w
=

@q

@w
+ ✏

✓

@�

@w
N+ �

@N

@w

◆

.

Then the first fundamental form becomes

g✏ww = gww + 2✏�
@q

@w
· @N
@w

+ ✏2
 

✓

@�

@w

◆2

+ �2

�

�

�

�

@N

@w

�

�

�

�

2
!

= gww � 2✏�Lww + ✏2
 

✓

@�

@w

◆2

�K�2gww + 2H�2Lww

!

,

g✏uv = guv + ✏�

✓

@q

@u
· @N
@v

+
@q

@v
· @N
@u

◆

+ ✏2
✓

@�

@u
· @�
@v

+ �2 @N

@u
· @N
@v

◆

= guv � 2✏�Luv + ✏2
✓

@�

@u
· @�
@v

�K�2guv + 2H�2Luv

◆

,

and the square of the area density

g✏uug
✏
vv � (g✏uv)

2 = guugvv � (guv)
2 � 2✏ (guuLvv + gvvLuu � 2guvLuv) +O

�

✏2
�

=
⇣

guugvv � (guv)
2
⌘

(1� ✏�H) +O
�

✏2
�

.

This shows that if H 6= 0 somewhere then we can select � such that the area
density will decrease for nearby surfaces. ⇤
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Remark 5.3.10. Conversely note that when H = 0 everywhere, then the area
density is critical. The term that involves ✏2 has a coe�cient that looks like

guu

 

✓

@�

@v

◆2

� �2Kgvv

!

+ gvv

 

✓

@�

@u

◆2

� �2Kguu

!

�2guv

✓

@�

@u
· @�
@v

� �2Kguv

◆

+ 4�2
�

LuuLvv � L2
uv

�

=

�

�

�

�

�@�

@v

@q

@u
+

@q

@v

@�

@u

�

�

�

�

2

� 2�2K
�

guugvv � g2uv
�

+ 4�2
�

LuuLvv � L2
uv

�

=

�

�

�

�

�@�

@v

@q

@u
+

@q

@v

@�

@u

�

�

�

�

2

+ 2�2K
�

guugvv � g2uv
�

and it is not clear that this is positive. In fact minimal surfaces have K  0 so the
two terms compete.

Exercises.

(1) For a surface of revolution

q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t))

compute the first and second fundamental forms as well as the Gauss and
mean curvatures.

(2) Show that a surface is planar if and only if its Gauss and mean curvatures
vanish. Hint: In a parametrization the Gauss and mean curvatures vanish
if

LuuLvv � (Luv)
2 = 0,

gvvLuu + guuLvv � 2guvLuv = 0.

Combine this with

guugvv � (guv)
2 > 0

to reach a contradiction if the second fundamental form doesn’t vanish.
(3) Compute the second fundamental form of a tangent developable q (s, t) =

↵ (t) + sd↵
dt of a unit speed curve ↵ (t). Show that the mean curvature

vanishes if and only if ↵ is planar, and in that case the second fundamental
form vanishes.

(4) Let q (t) be a curve on a surface with normal N. Denote the Gauss image
of the curve by N (t) = N � q (t). Show that the velocities of these curves
are related by

�

�

�

�

dN

dt

�

�

�

�

2

� 2H
dN

dt
· dq
dt

+K

�

�

�

�

dq

dt

�

�

�

�

2

= 0.

(5) Let q (t) = q (u (t) , v (t)) be an asymptotic curve on a surface, i.e., n = 0.
(a) Show that K  0 along the curve.
(b) (Beltrami-Enneper) If ⌧ is the torsion of the curve as a space curve,

then
⌧2 = �K.

Hint: Use the previous exercise.
(6) Let q (u, v) be a parametrized surface with negative Gauss curvature.
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(a) Show that it can locally be reparametrized q (s, t) so that the param-
eter curves are asymptotic curves, i.e., the second fundamental form
looks like

[II] =



0 Lst

Lst 0

�

.

(b) Show that in this case

[III] = �K



gss �gst
�gst gtt

�

.

(7) (Meusnier, 1785) Show that the catenoid q (t, µ) = (cosh t cosµ, cosh t sinµ, t)
is minimal. Conversely, show that if a surface of revolution parametrized
as

q (t, µ) = (r (t) cosµ, r (t) sinµ, t)

is minimal, then r = a cosh t + b sinh t for constants a, b. Conclude that
b = 0 if r > 0 for all t 2 R.

(8) (Meusnier, 1785) Show that the helicoid

q (�, t) = (sinh� cos t, sinh� sin t, t)

is minimal.
(9) Show that a minimal surface satisfies K  0.

(10) Compute the Gauss curvatures of the generalized cones (section 4.1 exer-
cise 2), cylinders (section 4.1 exercise 1), and tangent developables (section
4.1 exercise 4). We shall show below that these are essentially the only
surfaces with vanishing Gauss curvature.

(11) Show that

@N

@u
⇥ @N

@v
= K

@q

@u
⇥ @q

@v
,

@q

@u
⇥ @N

@v
+

@N

@u
⇥ @q

@v
= �2H

@q

@u
⇥ @q

@v
,

and more generally that

@q

@u
⇥ @N

@w
= �Lv

w

@q

@u
⇥ @q

@v
,

@N

@w
⇥ @q

@v
= �Lu

w

@q

@u
⇥ @q

@v
.

(12) Compute the first and second fundamental forms as well as the Gauss and
mean curvatures for the conoid

q (s, t) = (sx (t) , sy (t) , z (t))

= (0, 0, z (t)) + s (x (t) , y (t) , 0)

when X = (x (t) , y (t) , 0) is a unit field.
(13) Let X,Y 2 TpM be an orthonormal basis for the tangent space at p to the

surface M . Prove that the mean and Gauss curvatures can be computed
as follows:

H =
1

2
(II (X,X) + II (Y, Y )) ,

K = II (X,X) II (Y, Y )� (II (X,Y ))2 .
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(14) Show that Enneper’s surface

q (u, v) =

✓

u� 1

3
u3 + uv2, v � 1

3
v3 + vu2, u2 � v2

◆

is minimal.
(15) Show that Scherk’s surface ez cosx = cos y is minimal.
(16) Consider a unit speed curve ↵ (s) : [0, L] ! R3 with non-vanishing curva-

ture and the tube of radius R around it

q (s,�) = ↵ (s) +R (N↵ cos�+B↵ sin�)

(see section 4.1 exercise 8 and section 4.4 exercise 15).
(a) Use Gauss’ formula for K to show that

K =
� cos�

R (1� R)
.

(b) Show that ˆ 2⇡

0

ˆ L

0
K
p

det [I]dsd� = 0

and ˆ 2⇡

0

ˆ L

0
|K|

p

det [I]dsd� = 4

ˆ b

a

ds.

(17) (Monge 1775) Consider a Monge patch z = F (x, y). Define the two
functions p = @F

@x and q = @F
@y .

(a) Show that the Gauss curvature vanishes if and only if

@2F

@x2

@2F

@y2
�
✓

@2F

@x@y

◆2

= 0.

(b) Assume that @2F
@x@y = 0 on an open set.

(i) Show that F = f (x) + h (y).
(ii) Show that the Gauss curvature vanishes if and only if f 00 = 0

or h00 = 0.
(iii) Show that if the Gauss curvature vanishes, then it is a ruled

surface.
(c) Assume that @2F

@x@y 6= 0 and that the Gauss curvature vanishes.

(i) Show that we can locally reparametrize the surface using the
reparametrization (u, q) = (x, q (x, y)).

(ii) Show that p = f (q) for some function f . Hint: In the (u, q)-
coordinates @p

@u = 0. When doing this calculation keep in mind
that y depends on u in(u, q)-coordinates as q depends on both
x and y.

(iii) Show in the same way that F (x, y)� (xp+ qy) = h (q).
(iv) Show that in the new parametrization:

y = �h0 (q)� uf 0 (q)

and

z = xp+ qy + h (q)

= u (f (q)� qf 0 (q)) + h (q)� qh0 (q) .
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(v) Show that this is a ruled surface.
(vi) Show that this ruled surface is a generalized cylinder when f 00

vanishes.
(vii) Show that it is a generalized cone when h00 = af 00 for some

constant a.
(viii) Show that otherwise it is a tangent developable by showing

that the lines in the ruling are all tangent to the curve that
corresponds to

u = �h00

f 00 .

5.4. Principal Curvatures

Definition 5.4.1. The principal curvatures at a point q on a surface are the
eigenvalues of the Weingarten map L : TqM ! TqM associated to that point. The
principal directions are the corresponding eigenvectors. We say that q is umbilic if
the principal curvatures coincide.

Definition 5.4.2. A curve on a surface with the property that its velocity is
always an eigenvector for the Weingarten map, i.e., a principal direction, is called
a line of curvature.

The fact that L is self-adjoint with respect to the first fundamental form guar-
antees that we can always find an orthonormal basis of principal directions and
that the principal curvatures are real. This is a nice and general theorem from lin-
ear algebra, variously called diagonalization of symmetric matrices or the spectral
theorem. Since the Weingarten map is a linear map on a two-dimensional vector
space we can give a direct proof that does not use to more general constructions
needed in higher dimensions.

Theorem 5.4.3. For a fixed point q 2 M, there exist orthonormal principal
directions E1, E2 2 TqM

L (E1) = 1E1,

L (E2) = 2E2.

Moreover, 1, 2 are both real.

Proof. The characteristic polynomial for L looks like

�2 � 2H�+K = 0.

The roots of this polynomial are real if and only if the discriminant is non-negative:

4H2 � 4K � 0, or

H2 � K.

If we select an orthonormal basis for TqM (it doesn’t have to be related to a
parametrization), then the matrix representation for L is symmetric

[L] =



a b
b d

�

.
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Thus

H =
a+ d

2
,

K = ad� b2.

This means we need to show that

ad� b2 
✓

a+ d

2

◆2

.

This follows directly from the trivial inequality:

�b2  a2 + d2

4
.

If the principal curvatures are equal, then all vectors are eigenvectors and so we
can certainly find an orthonormal basis that diagonalizes L. If the principal cur-
vatures are not equal, then the corresponding principal directions are forced to be
orthogonal:

1I (E1, E2) = I (L (E1) , E2) = I (E1, L (E2)) = 2I (E1, E2)

or

(1 � 2) I (E1, E2) = 0.

⇤

Remark 5.4.4. The height function that measures the distance from a point
on the surface to the tangent space TqM is given by

f (q) = (q� q) ·N (q) .

Its partial derivatives with respect to a parametrization of the surface are

@f

@w
=

@q

@w
·N (q) ,

@2f

@w1@w2
=

@2q

@w1@w2
·N (q) .

So f has a critical point at q, and the second derivative matrix at q is simply [II] .
The second derivative test then tells us something about how the surface is placed
in relation to TqM. Specifically we see that if both principal curvatures have the
same sign, or K > 0, then the surface must locally be on one side of the tangent
plane, while if the principal curvatures have opposite signs, or K < 0, then the
surface lies on both sides. In that case it’ll look like a saddle.

We can also relate the second fundamental form in general directions to the
principal curvatures.

Theorem 5.4.5. (Euler, 1760) Let X 2 TqM be a unit vector and 1, 2 the
principal curvatures, then

II (X,X) =
�

1 cos
2 �+ 2 sin

2 �
�

,

where � is the angle between X and the principal direction corresponding to 1.
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Proof. Simply select an orthonormal basis E1, E2 of principal directions and
use that

X = cos�E1 + sin�E2,

II (E1, E1) = 1,

II (E2, E2) = 2,

II (E1, E2) = 0 = II (E2, E1) .

⇤
As an important corollary we get a nice characterization of the principal cur-

vatures.

Corollary 5.4.6. Assume that the principal curvatures are ordered 1 � 2,
then

max
|X|=1

II (X,X) = 1,

min
|X|=1

II (X,X) = 2.

We can now give a rather surprising characterization of planes and spheres.

Theorem 5.4.7. (Meusnier, 1776) If a surface q has the property that 1 = 2

at all points, then  = 1 is constant and the surface is part of a plane or sphere.

Proof. Since the principal curvatures agree at all points it follows that

�@N

@w
= L

✓

@q

@w

◆

= 
@q

@w
.

By letting w = u, v and taking partial derivatives of this equation we obtain

� @2N

@u@v
=

@

@u

@q

@v
+ 

@2q

@u@v
,

� @2N

@v@u
=

@

@v

@q

@u
+ 

@2q

@v@u
.

As partial derivatives commute it follows that

@

@u

@q

@v
=

@

@v

@q

@u
.

Since @q
@u ,

@q
@v are linearly independent this forces @

@u = @
@v = 0. Thus  is constant.

Returning to the equation

�@N

@w
= 

@q

@w
we see that

@ (N+ q)

@w
= 0.

This implies that N + q is constant. When  = 0 this shows that N is constant
and consequently the surface lies in the plane orthogonal to N. When  does not
vanish we can assume that  = ± 1

R , R > 0. We then have that

±RN+ q = c

for some c 2 R3. This shows that

|q� c|2 = R2.
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Hence q lies on the sphere of radius R centered at c. ⇤

Exercises.

(1) Show that the principal curvatures for a parametrized surface are the roots
to the equation

det ([II]�  [I]) = 0

(2) Consider

z
�

x2 + y2
�

= 1x
2 + 2y

2

(a) Show that this defines a surface when x2 + y2 > 0.
(b) Show that it is a ruled surface where the lines go through the z-axis

and are perpendicular to the z-axis.
(c) Show that if a general surface has principal curvatures 1, 2 at

a point, then z corresponds to the possible values of the normal
curvature at that point.

(3) (Rodrigues) Show that a curve q (t) on a surface with normal N is a line
of curvature if and only if

� (t)
dq

dt
=

d (N � q)
dt

.

(4) Show that the principal curvatures are constant if and only if the Gauss
and mean curvatures are constant.

(5) Consider the pseudo-sphere

q =

✓

cosµ

cosh t
,
sinµ

cosh t
, t� tanh t

◆

.

This is a model for a surface with constant negative Gauss curvature.
Note that the surface

q =

✓

cosµ

cosh t
,
sinµ

cosh t
, tanh t

◆

is the sphere with a conformal (Mercator) parametrization.
(a) Compute the first and second fundamental forms
(b) Compute the principal curvatures, Gauss curvature, and mean cur-

vature.
(6) A ruled surface q (u, v) = ↵ (v)+uX (v) is called developable if all of the u-

curves q (u) = q (u, v) for fixed v are lines of curvature with  = 0. Show
that ruled surfaces that are developable have vanishing Gauss curvature.

(7) (Monge) Show that a curve q (t) on a surface with normal N is a line
of curvature if and only if the ruled surface generated by q and N is
developable.

(8) Show that if a surface has conformal Gauss map, then it is either minimal
or part of a sphere.

(9) Show that if III = �II for some function � on the surface, then either
K = 0 or the surface is part of a sphere.

(10) Show that all curves on a sphere or plane are lines of curvature. Use this
to show that if two spheres, a plane and a sphere, or two planes intersect
in a curve, then they intersect at a constant angles along this curve.
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(11) Consider a unit speed curve ↵ (s) : [0, L] ! R3 with non-vanishing curva-
ture and the tube of radius R around it

q (s,�) = ↵ (s) +R (N↵ cos�+B↵ sin�)

(see section 4.1 exercise 8 and section 4.4 exercise 15). Show that the prin-
cipal directions are �N↵ sin�+B↵ cos� and T↵ with principal curvatures
1/R and � cos�

1�R .
(12) Consider a parametrized surface q (t,�) where the s- and �-curves corre-

spond to the principal directions. Assume that the principal curvatures
are 2 < 1 and 1 = 1/R is constant.
(a) Consider c (t,�) = q (t,�) +RN (t,�) and show that

@c

@�
= 0,

@c

@t
6= 0.

(b) Conclude that q is a tube of radius R (see section 4.1 exercise 8).
(c) Show that a surface without umbilics where one of the principal cur-

vatures is constant is a tube.
(d) Is it necessary to assume that the surface has no umbilics?

(13) (Joachimsthal) Let q (t) be a curve that lies on two surfaces M1 and M2

that have normals N1 and N2 respectively. Define

✓ (t) = \ (N1 � q (t) ,N2 � q (t))

and assume that 0 < ✓ (t) < ⇡, in other words the surfaces are not tangent
to each other along the curve.
(a) Show that if q (t) is a line of curvature on both surfaces, then ✓ (t) is

constant.
(b) Show that if q (t) is a line of curvature on one of the surfaces and

✓ (t) is constant, then q (t) is also a line of curvature on the other
surface.

(14) Show that the geodesic torsion of a curve on a surface satisfies

⌧g = (2 � 1) sin� cos�,

where � is the angle between the tangent to the curve and the principal
direction corresponding to 1.

(15) (Rodrigues) Show that a unit speed curve on a surface is a line of curvature
if and only if its geodesic torsion vanishes.

(16) Show that the principal curvatures at a point are equal if and only if the
mean and Gauss curvatures at the point are related by H2 = K.

(17) Let q (u, v) be a parametrized surface where the principal curvatures never
coincide. Show that @q

@u and @q
@v are the principal directions if and only if

guv = 0 = Luv.
(18) Let q (u, v) be a parametrized surface and q✏ = q+✏N the parallel surface

at distance ✏ from q.
(a) Show that

@q✏

@w
=

@q

@w
+ ✏

@N

@w
= (I + ✏L)

✓

@q

@w

◆

,

where I is the identity map I (v) = v.
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(b) Show that q✏ is a parametrized surface if |✏| < min
n

1
|1| ,

1
|2|

o

and

that N is also the natural normal to q✏.
(c) Show that

L✏ = L � (I + ✏L)�1

by using that

L

✓

@q

@w

◆

=
@N

@w
= L✏

✓

@q✏

@w

◆

.

(d) Show that these surfaces all have the same principal directions and
that the principal curvatures satisfy

1

✏
i

=
i

1 + ✏i
.

(19) Let q (u, v) be a parametrized surface and q✏ = q+✏N the parallel surface
at distance ✏ from q.
(a) Show that

I✏ = I� 2✏II + ✏2III.

(b) Show that
II✏ = II� ✏III.

(c) Show that
III✏ = III.

(d) How do you reconcile this with the formula

L✏ = L � (I + ✏L)�1

from the previous exercise?
(e) Show that

K✏ =
K

1 + 2✏H + ✏2K
and

H✏ =
H � ✏K

1 + 2✏H + ✏2K
.

5.5. Ruled Surfaces

A ruled surface is parameterized by selecting a curve ↵ (v) and then considering
the surface one obtains by adding a line through each of the points on the curve. If
the directions of those lines are given byX (v), then the surface can be parametrized
by q (u, v) = ↵ (v) + uX (v). We can without loss of generality assume that X is
a unit field. The condition for obtaining a parametrized surface is that @q

@u = X

and @q
@v = d↵

dv +udX
dv are linearly independent. Even though we don’t always obtain

a surface for all parameter values it is important to consider the extended lines in
the rulings for all values of v.

Example 5.5.1. A generalized cylinder is a ruled surface where X is constant,
i.e., dX

dv = 0. This will be a parametrized surface everywhere if X is never tangent
to ↵.

Example 5.5.2. A generalized cone is a ruled surface where ↵ can be chosen
to be constant, i.e., d↵

dv = 0. This will clearly not be a parametrized surface when
u = 0.
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Example 5.5.3. A tangent developable, is a ruled surface where X is always
tangent to ↵, i.e., X and d↵

dv are always proportional. This is also not a surface
when u = 0. Note that generalized cones can be considered a special case of tangent
developables. It is not unusual to also assume that that a tangent developable has
the property that ↵ is regular so as to avoid this overlap in definitions.

One of our goals is to understand when we obtain a tangent developable as
that might not be obvious from a general parametrization.

An example of a cone that is not rotationally symmetric is the elliptic cone

x2

a2
+

y2

b2
= z2.

The elliptic hyperboloid

x2

a2
+

y2

b2
= z2 + 1

is an example of a surface that is ruled in two di↵erent ways, but which does not
have zero Gauss curvature. We can let

↵ (t) = (a cos (t) , b sin (t) , 0)

be the ellipse where z = 0. The fields generating the lines are given by

X =
d↵

dt
+ (0, 0,±1)

and it is not di�cult to check that

q (s, t) = ↵ (t) + s

✓

d↵

dt
+ (0, 0,±1)

◆

are both rulings of the elliptic hyperboloid.

Proposition 5.5.4. Ruled surfaces have non-positive Gauss curvature and the
Gauss curvature vanishes if and only if

✓

X ⇥ d↵

dv

◆

· dX
dv

= 0.

In particular, generalized cylinders, generalized cones, and tangent developables
have vanishing Gauss curvature.

Proof. Since @2
q

@u2 = 0 it follows that Luu = 0. Thus

K =
�L2

uv

guugvv � g2uv
 0.

Moreover, K vanishes precisely when

@2q

@u@v
=

dX

dv

is perpendicular to the normal. Since the normal is given by

N =
X ⇥

�

d↵
dv + udX

dv

�

�

�X ⇥
�

d↵
dv + udX

dv

�

�

�
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this translates to

0 =

✓

X ⇥
✓

d↵

dv
+ u

dX

dv

◆◆

· dX
dv

=

✓

X ⇥ d↵

dv

◆

· dX
dv

.

which is what we wanted to prove. ⇤

Definition 5.5.5. A ruled surface with the property that the normal is con-
stant in the direction of the ruling, i.e.,

@N

@u
= 0,

is called a developable or developable surface.

The main focus in this section will be to understand what exactly characterizes
developables and to narrow the types of surfaces with this property.

We start with a characterization in terms of Gauss curvature.

Lemma 5.5.6. (Monge, 1775) A surface with vanishing Gauss curvature and no
umbilics is a developable surface. Conversely any developable has vanishing Gauss
curvature.

Proof. First note that a developable has the property that the lines in the
ruling are lines of curvature and that the principal value vanishes in the direction
of the lines. The establishes the second claim and also guides us as to how to find
the lines in a ruling.

Assume now that the surface has zero Gauss curvature. We shall show that
the principal directions that correspond to the principal value 0 generate lines of
curvature that are straight lines. This will create a ruling and the normal is by
definition constant along these lines as they a lines of curvature for for the principal
value that vanishes.

Since the surface has no umbilics the two principal unit directions are well-
defined up to a choice of sign. In particular, we can find orthonormal vector fields
E1, E2 of principal directions. We can then use theorem 4.2.7 select a parametriza-
tion where @q

@u ,
@q
@v are also principal directions. This implies that guv = Luv = 0.

Using that the Gauss curvature vanishes further allows us to assume that

�@N

@u
= L

✓

@q

@u

◆

= 0,

�@N

@v
= L

✓

@q

@v

◆

= 
@q

@v
,  6= 0.

In particular,

@2N

@u@v
= 0.
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This shows that

@2q

@u2
· @q
@v

= �1 @
2q

@u2
· L

✓

@q

@v

◆

= ��1 @
2q

@u2
· @N
@v

= ��1 @

@u

✓

@q

@u
· @N
@v

◆

+ �1 @q

@u
· @2N

@v@u
= 0.

By assumption we also have
@2q

@u2
·N = 0.

Thus @2
q

@u2 must be parallel to @q
@u . This shows that the u-curves on the surface have

zero curvature as curves in R3. This shows that they are straight lines. ⇤

The next result shows that ruled surfaces admit a standard set of parameters.
The goal is show that developables are locally forced to be either a generalized
cylinder, generalized cone, or a tangent developable. It is always easy to recognize
generalized cylinders as that occurs precisely when X is constant. However, as we
already discussed, it is less obvious when the other two cases occur.

Proposition 5.5.7. A ruled surface q (u, v) = ↵ (v)+uX (v) can be reparametrized
as

q (s, v) = c (v) + sX (v) ,

where dc
dv ? dX

dv .
The ruled surface is a generalized cone if and only if c is constant. The ruled

surface is a tangent developable if and only if dc
dv and X are proportional at all

points v.

Proof. Note that no change in the parametrization is necessary if X is con-
stant. When dX

dv 6= 0 define

c = ↵�
d↵
dv · dX

dv
�

�

dX
dv

�

�

2 X

and

s = u+
d↵
dv · dX

dv
�

�

dX
dv

�

�

2 .

Then it is clear that q (u, v) = c (v) + sX (v) = q (s, v). Moreover as X is a unit
field it is perpendicular to its derivative so we have

dc

dv
· dX
dv

=

 

d↵

dv
� d

dv

 

d↵
dv · dX

dv
�

�

dX
dv

�

�

2

!

X �
 

d↵
dv · dX

dv
�

�

dX
dv

�

�

2

!

dX

dv

!

· dX
dv

=
d↵

dv
· dX
dv

�
 

d↵
dv · dX

dv
�

�

dX
dv

�

�

2

!

dX

dv
· dX
dv

=
d↵

dv
· dX
dv

�
✓

d↵

dv
· dX
dv

◆

= 0.
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It is clear that we obtain a generalized cone when c is constant and a tangent
developable if dc

dv and X are parallel to each other.
Conversely if the ruled surface q (u, v) is a generalized cone, then there is a

unique function u = u (v) such that q (u (v) , v) is constant. Thus

0 =
d↵

dv
+ u (v)

dX

dv
+

du (v)

dv
X.

If we multiply by dX
dv , then we obtain

u (v) = �
d↵
dv · dX

dv
�

�

dX
dv

�

�

2 .

This corresponds exactly to s = 0 in the parametrization q (s, v) = c (v) + sX (v).
So it follows that c (v) is constant.

When the ruled surface is a tangent developable it is possible to find u = u (v)
such that the curve � (v) = q (u (v) , v) is tangent to the extended lines in the ruling,
i.e., d�

dv and X are proportional. In particular,

0 =
d�

dv
· dX
dv

=

✓

d↵

dv
+ u (v)

dX

dv
+

du (v)

dv
X

◆

· dX
dv

=
d↵

dv
· dX
dv

+ u (v)

�

�

�

�

dX

dv

�

�

�

�

2

.

So again we obtain that u (v) corresponds exactly to s = 0, which forces � to be
c. ⇤

Theorem 5.5.8. (Monge, 1775) A developable surface is a generalized cylinder,
generalized cone, or a tangent developable at almost all points of the surface.

Proof. We can assume that the surface is given by

q (s, v) = c (v) + sX (v) ,

where dc
dv ? dX

dv . The Gauss curvature vanishes precisely when
✓

X ⇥ dc

dv

◆

· dX
dv

= 0.

If dX
dv = 0 on an interval, then the surface is a generalized cylinder. So we can

assume that dX
dv 6= 0. This implies that X and dX

dv are linearly independent as they
are orthogonal. The condition

✓

X ⇥ dc

dv

◆

· dX
dv

= 0

on the other hand implies that the three vectors are linearly dependent. We already
know that dc

dv ? dX
dv , so this forces

dc

dv
=

✓

dc

dv
·X

◆

X.

When dc
dv 6= 0 then X is tangent to c and so we have a tangent developable. On the

other hand, if dc
ds = 0 on an interval, then the surface must be a generalized cone

on that interval.
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Thus the surface is divided into regions each of which can be identified with
our three basic types of ruled surfaces and then glued together along lines that go
through parameter values where either dX

dv = 0 or dc
dv = 0. ⇤

There is also a similar and very interesting result for ruled minimal surfaces.

Theorem 5.5.9. (Catalan) Any ruled surface that is minimal is planar or a
helicoid at almost all points of the surface.

Proof. Assume that we have a parametrization q (s, v) = c (v)+sX (v) where
dc
dv · dX

dv = 0. In case the surface also has vanishing Gauss curvature it follows that
it is planar as the second fundamental form vanishes. Therefore, we can assume
that both c and X are regular curves and additionally that dc

dv is not parallel to X.
The mean curvature is given by the general formula

H =
Lssgvv � 2Lsvgsv + Lvvgss

2 (gssgvv � g2sv)
,

where

gss = 1,

gsv =
dc

dv
·X,

gvv =

�

�

�

�

dc

dv

�

�

�

�

2

+ s2,

N =
X ⇥

�

dc
dv + sdX

dv

�

�

�X ⇥
�

dc
dv + sdX

dv

�

�

�

,

Lss = 0,

Lsv = �dX

dv
·N,

Lvv = �
✓

d2c

dv2
+ s

d2X

dv2

◆

·N.

Thus H = 0 precisely when

�2

✓

dc

dv
·X

◆✓

dX

dv
·N

◆

= �
✓

d2c

dv2
+ s

d2X

dv2

◆

·N,

which implies

2

✓

dc

dv
·X

◆✓

dX

dv
·
✓

X ⇥
✓

dc

dv
+ s

dX

dv

◆◆◆

=

✓

d2c

dv2
+ s

d2X

dv2

◆

·
✓

X ⇥
✓

dc

dv
+ s

dX

dv

◆◆

.

The left hand side can be simplified

2

✓

dc

dv
·X

◆✓

dX

dv
·
✓

X ⇥
✓

dc

dv
+ s

dX

dv

◆◆◆

= 2

✓

dc

dv
·X

◆✓

dX

dv
·
✓

X ⇥ dc

dv

◆◆

.
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This shows that it is independent of s. The right hand side can be expanded in
terms of s as follows
✓

d2c

dv2
+ s

d2X

dv2

◆

·
✓

X ⇥
✓

dc

dv
+ s

dX

dv

◆◆

=
d2c

dv2
·
✓

dc

dv
⇥X

◆

+s

✓

d2c

dv2
·
✓

X ⇥ dX

dv

◆

+
d2X

dv2
·
✓

X ⇥ dc

dv

◆◆

+s2
d2X

dv2
·
✓

X ⇥ dX

dv

◆

.

This leads us to 3 identities depending on the powers of s. From the s2-term we
conclude

d2X

dv2
2 span

⇢

X,
dX

dv

�

.

At this point it is convenient to assume that v is the arclength parameter for X.
With that in mind we have

d2X

dv2
=

✓

d2X

dv2
·X

◆

X +

✓

d2X

dv2
· dX
dv

◆

dX

dv

= �
✓

dX

dv
· dX
dv

◆

X

= �X.

This implies that X is in fact a planar circle or radius 1. For simplicity let us
further assume that it is the unit circle in the (x, y)-plane, i.e.,

X (v) = (cos v, sin v, 0) .

From the s-term we obtain

0 =
d2c

dv2
·
✓

X ⇥ dX

dv

◆

+
d2X

dv2
·
✓

X ⇥ dc

dv

◆

=
d2c

dv2
·
✓

X ⇥ dX

dv

◆

�X ·
✓

X ⇥ dc

dv

◆

=
d2c

dv2
·
✓

X ⇥ dX

dv

◆

=
d2c

dv2
·

2

4

0
0
1

3

5

showing that d2c
dv2 also lies in the (x, y)-plane. In particular,

dc

dv
·

2

4

0
0
1

3

5 = h

is constant. Since dc
dv ? dX

dv we obtain

dc

dv
=

✓

dc

dv
·X

◆

X +

2

4

0
0
h

3

5



5.5. RULED SURFACES 128

and

dc

dv
⇥X =

2

4

0
0
h

3

5⇥X = h
dX

dv
.

This considerably simplifies the terms that are independent of s in the mean cur-
vature equation

2

✓

dc

dv
·X

◆✓

dX

dv
·
✓

X ⇥ dc

dv

◆◆

=
d2c

dv2
·
✓

X ⇥ dc

dv

◆

as we now obtain

2h
dc

dv
·X = h

d2c

dv2
· dX
dv

= �h
dc

dv
· d

2X

dv2

= h
dc

dv
·X.

When h = 0 the curve c also lies in the (x, y)-plane and the surface is planar.
Otherwise dc

dv ·X = 0 which implies that

dc

dv
=

✓

dc

dv
·X

◆

X +

2

4

0
0
h

3

5 =

2

4

0
0
h

3

5

and

c =

2

4

0
0

hv + v0

3

5

for a constant v0.
The surface is then given by

q (s, v) =

2

4

s cos v
s sin v
hv + v0

3

5 ,

which shows explicitly that it is a helicoid. ⇤

Exercises.

(1) Let q (s) be a unit speed asymptotic line (see section 5.1 exercise 1) of a
ruled surface q (u, v) = ↵ (v)+uX (v). Note that u-curves are asymptotic
lines.
(a) Show that

det
⇥

q̈, X, d↵
dv + udX

dv

⇤

= 0.

(b) Assume for the remainder of the exercise that K < 0. Show that
there is a unique asymptotic line through through every point that
is not tangent to X.

(c) Show that this asymptotic line can locally be reparametrized as

↵ (v) + u (v)X (v) ,
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where

du

dv
=

det
h

X, d↵
dv + u (v) dX

dv ,
d2↵
dv2 + u (v) d2X

dv2

i

2 det
⇥

d↵
dv , X, dX

dv

⇤ .

(2) Show that a generalized cylinder q (u, v) = ↵ (v) + uX where X is a fixed
unit vector admits a parametrization q (s, t) = c (t) + sX, where c is
parametrized by arclength and lies a plane orthogonal to X.

(3) Let q (u, v) be a parametrized surface surface where at each point q there is
a regular curve q (t) = q (u (t) , v (t)) with q (0) = q and q̈ (0) =

...
q (0) = 0

as a curve in R3. Show that q̇ (0) is a principal direction with principal
curvature 0.

(4) Consider a parameterized surface q (u, v). Show that the Gauss curvature
vanishes if and only if @N

@u ,
@N
@v are linearly dependent everywhere.

(5) Consider

q (u, v) =
�

u+ v, u2 + 2uv, u3 + 3u2v
�

.

(a) Determine when it defines a surface.
(b) Show that the Gauss curvature vanishes.
(c) What type of ruled surface is it?

(6) Consider the Monge patch

z =
n
X

k=2

(ax+ by)k + cx+ dy + f.

(a) Show that the Gauss curvature vanishes.
(b) Depending on the values of a and b determine the type of ruled

surface.
(7) Consider the equation

xy = (z � c)2 .

(a) Determine when it defines a surface.
(b) Show that the Gauss curvature vanishes.
(c) What type of ruled surface is it?

(8) Consider the equation

4
�

y � x2
� �

xz � y2
�

= (xy � z)2 .

(a) Determine when it defines a surface.
(b) Show that the Gauss curvature vanishes.
(c) What type of ruled surface is it?

(9) Show that a surface given by an equation

F (x, y, z) = R

has has vanishing Gauss curvature if and only if

det

2

6

6

6

4

@2F
@x2

@2F
@y@x

@2F
@z@x

@F
@x

@2F
@x@y

@2F
@y2

@2F
@z@y

@F
@y

@2F
@x@z

@2F
@y@z

@2F
@z2

@F
@z

@F
@x

@F
@y

@F
@z 0

3

7

7

7

5

= 0.
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(10) (Euler, 1775) Let ↵ (t) be a unit speed space curve with curvature  (t) >
0. Show that the tangent developable

q (s, t) = ↵ (t) + s
d↵

dt

admits Cartesian coordinates. Hint: There is a unit speed planar curve
� (t) whose curvature is  (t). Show that there is a natural isometry
between the part of the plane parametrized by

q⇤ (s, t) = � (t) + s
d�

dt

and the tangent developable q (s, t).
(11) Use the previous exercise to show that a surface with K = 0 and no

umbilics locally admits Cartesian coordinates at almost all points.
(12) Show that a ruled surface with constant and non-zero mean curvature is

a generalized cylinder.
(13) Show directly that if a minimal surface has vanishing Gauss curvature,

then it is part of a plane.
(14) Assume that we have a ruled surface

q (u, v) = ↵ (v) + uX (v)

where |X| = 1.
(a) Show that if we use

c = ↵+

✓

a�
ˆ

d↵

dv
·Xdv

◆

X

for some constant a, then

q (u, v) = c (v) + uX (v)

parametrizes the same surface and has the property that all v-curves
are orthogonal to X and thus to the lines in the ruling.

(b) Show that if dX
dv 6= 0, then we can reparametrize X by arclength and

thus obtain a parametrization

q (u, t) = c (t) + uX (t) ,

where the t-curves are orthogonal to the ruling and X is a unit field
parametrized by arclength.

(c) Show that if c is regular and has positive curvature and s denotes
the arclength parameter for c we obtain X (s) = cos (� (s))N +
sin (� (s))B.

(15) Assume that we have a minimal ruled surface

q (u, t) = c (t) + uX (t)

as in the previous exercise with t-curves perpendicular to X and X a unit
field parametrized by arclength. Reprove Catalan’s theorem using this
parametrization. Hint: One strategy is to first show that X is a unit
circle, then show that c̈ is proportional to X, and finally conclude that
the t-curves are all Bertrand mates to each other.
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(16) Consider the quartic equation with variable t:

x+ yt+ zt2 + t4 = 0

and discriminant:

D =

✓

x+
z2

12

◆3

� 27

✓

xz

6
� y2

16
� z3

216

◆2

.

Show that D = 0 corresponds to the tangent developable of the curve
�

�3t4, 8t3,�6t2
�

.
(17) Consider a family of planes in the (x, y, z)-space parametrized by t:

F (x, y, z, t) = a (t)x+ b (t) y + c (t) z + d (t) = 0.

An envelope to this family is a surface such that its tangents are precisely
the planes of this family.
(a) Show that an envelope exists and can be determined by the equations:

F = a (t)x+ b (t) y + c (t) z + d (t) = 0

@F

@t
= ȧ (t)x+ ḃ (t) y + ċ (t) z + ḋ (t) = 0

when


a b c
ȧ ḃ ċ

�

has rank 2. Hint: use t and one of the coordinates x, y, z as param-
eters. The parametrization might be singular for some parameter
values.

(b) Show that the envelope is a ruled surface.
(c) Show that the envelope is a generalized cylinder when the three func-

tions a, b, and c are linearly dependent.
(d) Show that the envelope is a generalized cone when the function d is

a linear combination of a, b, and c.
(e) Show that the envelope is a tangent developable when the Wronskian

det

2

6

6

4

a b c d
ȧ ḃ ċ ḋ
ä b̈ c̈ d̈
...
a

...
b

...
c

...
d

3

7

7

5

6= 0

Hint: Show that the equations:

F = a (t)x+ b (t) y + c (t) z + d (t) = 0

@F

@t
= ȧ (t)x+ ḃ (t) y + ċ (t) z + ḋ (t) = 0

@2F

@t2
= ä (t)x+ b̈ (t) y + c̈ (t) z + d̈ (t) = 0

determine the curve that generates the tangent developable.
(f) Show that for fixed (x0, y0, z0) the number of solutions or roots to the

equation F (x0, y0, z0, t) = 0 corresponds to the number of tangent
planes to the envelope that pass through (x0, y0, z0).
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(18) Let q (u, v) = ↵ (v)+uX (v) be a developable surface, i.e., the u-curves are
lines of curvature with  = 0. Show that there exist functions a (v) , b (v) , c (v) , and d (v)
such that the surface is an envelope of the planes

a (v)x+ b (v) y + c (v) z + d (v) = 0.



CHAPTER 6

Intrinsic Geometry

The goal in this chapter is to show that many of the the calculations we do
on a surface can be done intrinsically. This means that they can be done with-
out reference to the normal vector and thus are only allowed to depend on the
first fundamental form. The highlights are the Gauss equations, Codazzi-Mainardi
equations, and the Gauss-Bonnet theorem.

6.1. Calculating Christo↵el Symbols and The Gauss Curvature

We start by showing that the tangential components of the derivatives

@2q

@w1@w2

can be calculated intrinsically. For the Gauss formulas this amounts to showing
that the Christo↵el symbols can be calculated from the first fundamental form (see
section 4.6). In particular, this shows that they can be computed knowing only the
first derivatives of q (u, v) despite the fact that they are defined using the second
derivatives!

Proposition 6.1.1. The Christo↵el symbols satisfy

�uuu =
1

2

@guu
@u

,

�uvu =
1

2

@guu
@v

= �vuu,

�vvv =
1

2

@gvv
@v

,

�uvv =
1

2

@gvv
@u

= �vuv,

�uuv =
@guv
@u

� 1

2

@guu
@v

,

�vvu =
@guv
@v

� 1

2

@gvv
@u

.

Proof. We prove only two of these as the proofs are all similar. First use the
product rule to see

�uvu =
@2q

@u@v
· @q
@u

=

✓

@

@v

✓

@q

@u

◆◆

· @q
@u

=
1

2

@

@v

✓

@q

@u
· @q
@u

◆

=
1

2

@guu
@v

.
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Now use this together with the product rule to find

�uuv =
@2q

@u@u
· @q
@v

=

✓

@

@u

✓

@q

@u

◆◆

· @q
@v

=
@

@u

✓

@q

@u
· @q
@v

◆

�
✓

@q

@u
· @

@u

@q

@v

◆

=
@guv
@u

� @q

@u
· @2q

@u@v

=
@guv
@u

� 1

2

@guu
@v

.

A similar proof starts with the observation that we have 8 equations of the
form

@gw1w2

@w
=

@

@w

✓

@q

@w1
· @q

@w2

◆

= �ww2w1 + �ww1w2

The symmetry on the left hand side guv = gvu reduces this to only 6 equations.
However, on the right hand side there are also only 6 Christo↵el symbols due to
the symmetry

�uvw =
@2q

@u@v
· @q
@w

= �vuw.

More explicitly we have 4 equations that come in pairs:

@guu
@w

= �wuu + �wuu = 2�wuu,

@gvv
@w

= �wvv + �wvv = 2�wvv.

These give us 2 of the Christo↵el symbols. After using the symmetries �wuu = �uwu

and �wvv = �vwv we then obtain 2 more Christo↵el symbols. The last pair of
equations:

@guv
@w

= �wuv + �wvu

give us the last 2 Christo↵el symbols by noting that 2 of the 4 symbols involved
were computed from the first 4 equations. ⇤

Remark 6.1.2. There is a unified formula for all of these equations. It is
convenient to simplify notation by using i, j, k, l instead of u, v and also @w = @

@w .
The expression is a bit more complicated and is less useful for actual calculations:

�ijk =
1

2
(@igjk + @jgik � @kgij) .

The proposition can also be used to find the Christo↵el symbols of the second
kind. For example

�u
uv = guu�uvu + guv�uvv

=
1

2

✓

guu
@guu
@v

+ guv
@gvv
@u

◆

and for the general formula

�k
ij = gkl�ijl = gku�iju + gkv�ijv.
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While these formulas for the Christo↵el symbols can’t be made simpler as such,
it is possible to be a bit more e�cient when calculations are done. Specifically we
often do calculations in orthogonal coordinates, i.e., guv ⌘ 0. In such coordinates

guv = 0,

guu = (guu)
�1 ,

gvv = (gvv)
�1 ,

�uuu =
1

2

@guu
@u

,

�uvu =
1

2

@guu
@v

= �vuu,

�vvv =
1

2

@gvv
@v

,

�uvv =
1

2

@gvv
@u

= �vuv,

�uuv = �1

2

@guu
@v

,

�vvu = �1

2

@gvv
@u

,

and

�u
uu =

1

2
guu

@guu
@u

=
1

2

@ ln guu
@u

,

�v
uu = �1

2
gvv

@guu
@v

,

�v
vv =

1

2
gvv

@gvv
@v

=
1

2

@ ln gvv
@v

,

�u
vv = �1

2
guu

@gvv
@u

,

�u
uv =

1

2
guu

@guu
@v

=
1

2

@ ln guu
@v

,

�v
uv =

1

2
gvv

@gvv
@u

=
1

2

@ ln gvv
@u

.

Often there might be even more specific information. This could be that the
metric coe�cients only depend on one of the parameters, or that guu = 1. In such
circumstances it is quite manageable to calculate the Christo↵el symbols. What is
more, it is always possible to find parametrizations where guu ⌘ 1 and guv ⌘ 0 as
we shall see.

In a related vein we use our knowledge of Christo↵el symbols to prove Gauss’
amazing discovery that the Gauss curvature can be computed knowing only the
first fundamental form. Given the definition of K this is certainly a big surprise. A
di↵erent proof that uses our abstract framework will be given in section 6.4. Here
we use a more direct approach.

Theorem 6.1.3. (Theorema Egregium, Gauss 1827) The Gauss curvature can
be computed knowing only the first fundamental form.
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Proof. We start with the observation that

K = detL = det [I]�1 det [II] ,

det [I] = guugvv � (guv)
2 .

So we concentrate on

det [II] = det



Luu Luv

Lvu Lvv

�

= det

"

@2
q

@u2 ·N @2
q

@u@v ·N
@2

q

@v@u ·N @2
q

@v2 ·N

#

=
1

guugvv � (guv)
2 det

2

4

@2
q

@u2 ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@u@v ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@v@u ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@v2 ·
⇣

@q
@u ⇥ @q

@v

⌘

3

5 .

This allows us to consider

det

2

4

@2
q

@u2 ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@u@v ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@v@u ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@v2 ·
⇣

@q
@u ⇥ @q

@v

⌘

3

5 .

Here each entry in the matrix is a triple product and hence a determinant of a 3⇥3
matrix:

det
h

@2
q

@w1@w2

@q
@u

@q
@v

i

=
@2q

@w1@w2
·
✓

@q

@u
⇥ @q

@v

◆

.

With this observation and the fact that a matrix and its transpose have the same
determinant we can calculate the products that appear in our 2⇥ 2 determinant

✓

@2q

@u2
·
✓

@q

@u
⇥ @q

@v

◆◆✓

@2q

@v2
·
✓

@q

@u
⇥ @q

@v

◆◆

= det
h

@2
q

@u2
@q
@u

@q
@v

i

det
h

@2
q

@v2
@q
@u

@q
@v

i

= det
h

@2
q

@u2
@q
@u

@q
@v

it

det
h

@2
q

@v2
@q
@u

@q
@v

i

= det

✓

h

@2
q

@u2
@q
@u

@q
@v

it h
@2

q

@v2
@q
@u

@q
@v

i

◆

= det

2

6

4

@2
q

@u2 · @2
q

@v2
@q
@u · @2

q

@v2
@q
@v · @2

q

@v2

@2
q

@u2 · @q
@u

@q
@u · @q

@u
@q
@v · @q

@v
@2

q

@u2 · @q
@v

@q
@u · @q

@v
@q
@v · @q

@v

3

7

5

= det

2

4

@2
q

@u2 · @2
q

@v2 �vvu �vvv

�uuu guu guv
�uuv gvu gvv

3

5

=
@2q

@u2
· @

2q

@v2
det [I] + det

2

4

0 �vvu �vvv

�uuu guu guv
�uuv gvu gvv

3

5
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and similarly
✓

@2q

@u@v
·
✓

@q

@u
⇥ @q

@v

◆◆✓

@2q

@v@u
·
✓

@q

@u
⇥ @q

@v

◆◆

= det

2

6

4

@2
q

@u@v · @2
q

@u@v
@q
@u · @2

q

@u@v
@q
@v · @2

q

@u@v
@2

q

@u@v · @q
@u

@q
@u · @q

@u
@q
@v · @q

@v
@2

q

@u@v · @q
@v

@q
@u · @q

@v
@q
@v · @q

@v

3

7

5

= det

2

4

@2
q

@u@v · @2
q

@u@v �uvu �uvv

�uvu guu guv
�uvv gvu gvv

3

5

=
@2q

@u@v
· @2q

@u@v
det [I] + det

2

4

0 �uvu �uvv

�uvu guu guv
�uvv gvu gvv

3

5 .

We need to subtract these quantities but now only need to check the di↵erence

@2q

@u2
· @

2q

@v2
� @2q

@u@v
· @2q

@u@v

=
@

@v

✓

@2q

@u2
· @q
@v

◆

� @3q

@v@u2
· @q
@v

� @

@u

✓

@2q

@u@v
· @q
@v

◆

+
@3q

@2u@v
· @q
@v

=
@

@v
�uuv �

@

@u
�uvv

or equivalently

@2q

@u2
· @

2q

@v2
� @2q

@u@v
· @2q

@u@v

=
@

@u

✓

@2q

@v2
· @q
@u

◆

� @3q

@u@v2
· @q
@u

� @

@v

✓

@2q

@u@v
· @q
@u

◆

+
@3q

@2v@u
· @q
@u

=
@

@u
�vvu � @

@v
�uvu.

Thus

K =

det

2

4

@2
q

@u2 ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@u@v ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@v@u ·
⇣

@q
@u ⇥ @q

@v

⌘

@2
q

@v2 ·
⇣

@q
@u ⇥ @q

@v

⌘

3

5

(det [I])2

=

�

@
@v�uuv � @

@u�uvv

�

det [I]

+

det

2

4

0 �vvu �vvv

�uuu guu guv
�uuv gvu gvv

3

5� det

2

4

0 �uvu �uvv

�uvu guu guv
�uvv gvu gvv

3

5

(det [I])2
.

⇤
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Corollary 6.1.4. (Gauss, 1827) If a surface admits a Cartesian parametriza-
tion around every point, then the Gauss curvature vanishes.

Remark 6.1.5. The converse is also true and partly follows from Monge’s
classification of flat surfaces (see section 5.5). A more abstract proof will be given
later. The proof will also have the advantage of working for the generalized and
abstract surfaces that we discuss in the next section.

Exercises. In the following exercises calculate the Christo↵el symbols of both
kinds as well as the Gauss curvature. It is implicitly assumed that the functions and
constants are chosen so as to represent the first fundamental form of a parametrized
surface q (u, v). In the cases where you actually know the function q (u, v) try to
compute these quantities first using that knowledge and then afterwards only using
the first fundamental form given in the problem.

(1) Show directly from the formulas for the Christo↵el symbols in terms of
the first fundamental form that

@

@v
�uuv �

@

@u
�uvv =

@

@u
�vvu � @

@v
�uvu

and

@

@v
�uuv �

@

@u
�uvv = �1

2

@2guu
@v2

+
@2guv
@u@v

� 1

2

@2gvv
@u2

.

(2) (Oblique Cartesian coordinates) The first fundamental form is given by

[I] =



a b
b d

�

where a, b, d are constants with a, d > 0 and ad > b2.
(3) (Surface of revolution) The first fundamental form is given by

[I] =



1 0
0 r2

�

where r = r (u) > 0.
(4) (Polar and Fermi coordinates) The first fundamental form is given by

[I] =



1 0
0 r2

�

where r = r (u, v) > 0. Gauss showed that such coordinates exist around
any point in a surface with r denoting the “intrinsic” distance to the
point. Fermi created such coordinates in a neighborhood of a geodesic
with r denoting the “intrinsic” distance to the geodesic. The terminology
will be explained later.

(5) The first fundamental form is given by

[I] =



r2 0
0 r2

�

where r = r (u) > 0.
(6) (Isothermal coordinates) The first fundamental form is given by

[I] =



r2 0
0 r2

�

where r = r (u, v) > 0.
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(7) (Liouville surfaces) The first fundamental form is given by

[I] =



r2 0
0 r2

�

where r2 = f (u) + g (v) > 0.
(8) (Monge patch) The first fundamental form is given by

[I] =



1 + f2 fg
fg 1 + g2

�

where f = @F
@u , g = @F

@v and F = F (u, v).

(9) (Gauss) Show that if we define |g|2 = det [I], then

4 |g|4 K = guu

 

@guu
@v

@gvv
@v

� 2
@guv
@u

@gvv
@v

+

✓

@gvv
@u

◆2
!

+guv

✓

@guu
@u

@gvv
@v

� @gvv
@u

@guu
@v

� 2
@guu
@v

@guv
@v

� 2
@gvv
@u

@guv
@u

+ 4
@guv
@u

@guv
@v

◆

+gvv

 

@guu
@u

@gvv
@u

� 2
@guu
@u

@guv
@v

+

✓

@guu
@v

◆2
!

�2 |g|2
✓

@2guu
@v2

� 2
@2guv
@u@v

+
@2gvv
@u2

◆

.

(10) (Frobenius) Show that if we define |g|2 = det [I], then

K = � 1

4 |g|2
det

2

4

guu guv gvv
@guu

@u
@guv

@u
@gvv

@u
@guu

@v
@guv

@v
@gvv

@v

3

5

� 1

2 |g|

 

@

@u

 

@gvv

@u � @guv

@v

|g|

!

+
@

@v

 

@guu

@v � @guv

@u

|g|

!!

.

(11) (Liouville) Show that if we define |g|2 = det [I], then

K =
1

|g|

✓

@

@v

✓

|g|
guu

�v
uu

◆

� @

@u

✓

|g|
guu

�v
uv

◆◆

=
1

|g|

✓

@

@v

✓

|g|
gvv

�u
vv

◆

+
@

@u

✓

|g|
gvv

�u
uv

◆◆

.

6.2. Generalized and Abstract Surfaces

It is possible to work with generalized surfaces in Euclidean spaces of arbitrary
dimension: q (u, v) : U ! Rk for any k � 2. What changes is that we no longer have
a single normal vector N. In fact for k � 4 there will be a whole family of normal
vectors, not unlike what happened for space curves. What all of these surfaces do
have in common is that we can define the first fundamental form. Thus we can also
calculate the Christo↵el symbols of the first and second kind using the formulas in
terms of derivatives of g. This leads us to the possibility of an abstract definition
of a surface that is independent of a particular map into some coordinate space Rk.

One of the simplest examples of a generalized surface is the flat torus in R4. It
is parametrized by

q (u, v) = (cosu, sinu, cos v, sin v)
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and its first fundamental form is

I =



1 0
0 1

�

So this yields a Cartesian parametrization of the entire torus. This is why it is
called the flat torus. It is in fact not possible to have a flat torus in R3.

An abstract parametrized surface consists of a domain U ⇢ R2 and a first
fundamental form

[I] =



guu guv
guv gvv

�

,

where guu, gvv, and guv are functions on U . The inner product of vectors X =
(Xu, Xv) and Y = (Y u, Y v) thought of as having the same base point p 2 U is
defined as

I (X,Y ) =
⇥

Xu Xv
⇤



guu (p) guv (p)
gvu (p) gvv (p)

� 

Y u

Y v

�

.

For this to give us an inner product we also have to make sure that it is positive
definite:

0 < I (X,X)

=
⇥

Xu Xv
⇤



guu guv
guv gvv

� 

Xu

Xv

�

= XuXuguu + 2XuXvguv +XvXvgvv.

Proposition 6.2.1. I is positive definite if and only if guu + gvv and guugvv �
(guv)

2 are positive.

Proof. If I is positive definite, then it follows that guu and gvv are positive
by letting X = (1, 0) and (0, 1). Next select X =

�p
gvv,±

p
guu

�

to get

0 < I (X,X) = 2guugvv ± 2
p
guu

p
gvvguv.

Thus
±guv <

p
guu

p
gvv

showing that
guugvv > (guv)

2 .

To check that I is positive definite when guu + gvv, and guugvv � (guv)
2 are

positive we start by observing that

guugvv > g2uv � 0.

Thus guu and gvv have the same sign. As their sum is positive both terms are
positive. It then follows that

I (X,X) = XuXuguu + 2XuXvguv +XvXvgvv

� XuXuguu � 2 |Xu| |Xv|pguugvv +XvXvgvv

= (|Xu|pguu � |Xv|pgvv)
2

� 0.

Here is first inequality is in fact > unless Xu = 0 or Xv = 0. In case, say, Xu = 0
we obtain

I (X,X) = (Xv)2 gvv > 0

unless also Xv = 0. ⇤
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Example 6.2.2. The hyperbolic space H ⇢ R2,1 is defined as the imaginary
unit sphere with z > 0, specifically it is the rotationally symmetric surface

x2 + y2 � z2 = �1, z � 1

or equivalently the Monge patch

z =
p

1 + x2 + y2.

The metric on this surface, however, is inherited from a di↵erent inner product
structure on R3 which is why we use the notation R2,1. Specifically:

X · Y = XxY x +XyY y �XzY z.

The x- and y-coordinates are the “space” part and the z-coordinate the “time” part.
We say that a vector is space-like, null, or time-like if |X|2 = X · X is positive,
zero, or negative. Thus (x, y, 0) is space-like while (0, 0, z) is time-like. Null vectors
satisfy the equation

XxXx +XyXy �XzXz = 0.

This describes a cone. The two insides of this cone consists of the time-like vectors,
while the outside contains the space-like vectors.

Our surface H given by the equation

F (x, y, z) = x2 + y2 � z2 = �1, z � 1

therefore consists of time-like points. However, all of the tangent spaces turn out
to consist of time-like vectors. This means that we obtain a surface with a valid
first fundamental form. In the Monge patch representation we have

@z

@x
=

x
p

1 + x2 + y2
=

x

z
,
@z

@y
=

y
p

1 + x2 + y2
=

y

z
.

Thus the tangent space at q = (x, y, z) =
⇣

x, y,
p

1 + x2 + y2
⌘

is given by

TqH = span
n⇣

1, 0,
x

z

⌘

,
⇣

1, 0,
y

z

⌘o

=
n

Xx
⇣

1, 0,
x

z

⌘

+Xy
⇣

0, 1,
y

z

⌘

| Xx, Xy 2 R
o

and consequently

X ·X = (Xx)2 + (Xy)2 �
⇣

Xxx

z
+Xy y

z

⌘2

= (Xx)2
✓

1� x2

z2

◆

+ (Xy)2
✓

1� y2

z2

◆

�2XxXy xy

z2

= (Xx)2
1 + y2

z2
+ (Xy)2

1 + x2

z2
� 2XxXy xy

z2

=
1

z2

⇣

(Xx)2 + (Xy)2 + (yXx � xXy)2
⌘

.

This is clearly positive unless X = 0. The first fundamental form is
"

1� x2

z2 �xy
z2

�xy
z2 1� y2

z2

#

which is also easily checked to be positive using proposition 6.2.1.
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In order to find a nicer expression of the first fundamental form we switch to a
surface of revolution parametrization

q (�, µ) =

2

4

cosµ sinh�
sinµ sinh�

cosh�

3

5 , µ 2 R, � > 0,

where � = 0 corresponds to the point (0, 0, 1) which we can think of as a pole. In
this parametrization we obtain

@q

@�
=

2

4

cosµ cosh�
sinµ cosh�

sinh�

3

5 ,
@q

@µ
=

2

4

sinµ sinh�
� cosµ sinh�

0

3

5

which gives us the first fundamental form
"

@q
@� · @q

@�
@q
@� · @q

@µ
@q
@µ · @q

@�
@q
@µ · @q

@µ

#

=



1 0
0 sinh2 �

�

.

Remark 6.2.3. It is not possible for a surface of revolution to have this first
fundamental form in R3. But we shall see later that the pseudo-sphere from section
5.4 exercise 5 is a local Euclidean model that is locally isometric to H.

On the other hand a theorem of Hilbert (see theorem 6.4.6) shows that one
cannot represent the entire surface H in R3, i.e., there is no parametrization
q (x, y) : H ! R3 defined for all (x, y) 2 R2 such that

h

@q
@x

@q
@y

it h
@q
@x

@q
@y

i

=

"

@q
@x · @q

@x
@q
@x · @q

@y
@q
@y · @q

@x
@q
@y · @q

@y

#

=

"

1� x2

z2 �xy
z2

�xy
z2 1� y2

z2

#

.

Janet-Burstin-Cartan showed that if the metric coe�cients of an abstract sur-
face are analytic, then one can always locally represent the abstract surface in R3.
Nash showed that any abstract surface can be represented by a map q (u, v) : U !
Rk on the entire domain, but only at the expense of making k very large. Based in
part on Nash’s work Greene and Gromov both showed that one can always locally
represent an abstract surface in R5. An even more recent development by M. Khuri
in 2007 is that it is in fact possible to find an abstract surface that cannot be locally
realized as a surface in R3.

Definition 6.2.4. We say that a surface M ⇢ R2,1 is space-like if all tangent
vectors are space-like. This means that if we use the first fundamental form that
comes from the inner product in R2,1, then we obtain an abstract surface.

Finally we also have to define what we mean by an abstract surface. There
are many competing definitions. The more general and abstract ones unfortunately
also have a very steep learning curve before a metric can be introduced so we
stay with the more classical context. Essentially we define a surface, as was done
classically, as a set of points where we can use the language of first fundamental
form, convergence etc. This is generally too vague for modern mathematicians but
at least allows us to move on to the issues that are relevant in di↵erential geometry.
There are several other standard concepts included in this definition so as to have
them all in one place

Definition 6.2.5. A surface with a first fundamental form is a space M where
we can locally work as if it is an abstract parametrized surface, i.e., every point is
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included in a parametrization q : U ⇢ R2 ! M . When a point q 2 M is covered by
more than one parametrization, then they are pairwise reparametrizations of each
other near q and the first fundamental forms are the same via this reparametriza-
tion. Globally we are allowed to talk about convergence of sequences as we do in
R2. A sequence converges to q if eventually it lies in a parametrization around
q and converges to q in that parametrization. Moreover, if the sequence eventu-
ally lies in more than one parametrization then its limit will be q in all of these
parametrizations. This allows us to talk about continuous maps F : M ! Rk or
into F : Rl ! M . Such a map is smooth if it smooth within the given parametriza-
tions. Finally we want the surface to be path connected in the sense that any two
points are joined by a piecewise smooth curve.

A surface is said to be closed if it is compact, i.e., any sequence has a convergent
subsequence.

A surface M is said to be orientable if all the parametrizations can be chosen
so that the di↵erential of all the reparametrizations has positive determinant, e.g.,
if q (u, v) = q (u (s, t) , v (s, t)) = q (s, t), then

det



@u
@s

@u
@t

@v
@s

@v
@t

�

> 0, det



@s
@u

@s
@v

@t
@u

@t
@v

�

> 0.

Such a choice of parametrizations that cover all of M will be called an orientation
for M . Note that this tells us that if we have tangent vectors v, w 2 TpM that are
not proportional, then w either lies to the right or left of v.

The tangent space TqM at a point q 2 M in a parametrization is defined as
TqM = span {@uq, @vq}. In a di↵erent parametrization the two bases are related
by

⇥

@uq @vq
⇤

=
⇥

@sq @tq
⇤



@s
@u

@s
@v

@t
@u

@t
@v

�

,

⇥

@sq @tq
⇤

=
⇥

@uq @vq
⇤



@u
@s

@u
@t

@v
@s

@v
@t

�

.

A tangent vector X 2 TqM can thus be written

X = Xu@uq+Xv@vq

=
⇥

@uq @vq
⇤



Xu

Xv

�

=
⇥

@sq @tq
⇤



@s
@u

@s
@v

@t
@u

@t
@v

� 

Xu

Xv

�

=
⇥

@sq @tq
⇤



Xu @s
@u +Xv @s

@v

Xu @t
@u +Xv @t

@v

�

=

✓

Xu @s

@u
+Xv @s

@v

◆

@sq+

✓

Xu @t

@u
+Xv @t

@v

◆

@tq

= Xs@sq+Xt@tq.

A surface is said to be isometrically embedded in R3 if it can be represented
as a surface M ⇢ R3 in such a way that that the induced first fundamental
form agrees with the abstract one on M . Specifically, we seek a map F : M !
F (M) ⇢ R3 such that F is a di↵eomorphism from M to F (M) and IM (X,Y ) =
IF (M) (DF (X) , DF (Y )).
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A surface is said to be isometrically immersed in R3 if there is a map F : M !
R3 such that IM (X,Y ) = IF (M) (DF (X) , DF (Y )). In this case F will be a local
di↵eomorphism onto its image, but globally it might not be one-to-one (see also
4.1.5).

We define the Christo↵el symbols on abstract surfaces using the formulas

�ijk =
1

2
(@igjk + @jgik � @kgij) .

�k
ij = gkl�ijl.

When defined this way we also obtain the formula

@kgij = �kij + �kji

since

@kgij =
1

2
(@kgij + @igkj � @jgki) +

1

2
(@kgij + @jgki � @igkj) .

So this no longer follows from the product rule. Instead we prove this product rule
from our definition of the Christo↵el symbols.

Remark 6.2.6. In modern usage a surface does not necessarily come with a
first fundamental form. We could have called our surfaces Riemannian surfaces
(Riemannian manifolds are their higher dimensional analogues), but that too can
be confused with Riemann surfaces which are surfaces where the reparametrizations
are holomorphic, i.e., satisfy the Cauchy-Riemann equations.

Exercises.

(1) Show that the surfaces in R2,1 given by the equation

x2 + y2 � z2 = �R2

have constant Gauss curvature �R�2.
(2) Assume that guu = gvv = 1 on a domain U ⇢ R2. Show that the corre-

sponding first fundamental form represents an abstract surface if |guv| < 1
on U .

(3) Assume the first fundamental form is given by the conditions in the pre-
vious exercise and that guv = cos ✓, where ✓ : U ! R. Show that

�uvw = �uuu = �vvv = 0,

�uuv = �@✓

@u
sin ✓,

�vvu = �@✓

@v
sin ✓,

@2✓

@u@v
= �K sin ✓.

(4) Assume that a parametrized surface q : U ! Rn has a first fundamental

form where guu = gvv = 1 on U . Show that @2
q

@u@v is perpendicular to the
surface. Hint: Use the previous exercise.
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6.3. Acceleration

The goal here is to show that the tangential component of the acceleration of
a curve on a parametrized surface q (u, v) : U ! R3 can be calculated intrinsically.
The curve is parametrized in U as (u (t) , v (t)) and becomes a space curve q (t) =
q (u (t) , v (t)) that lies on our parametrized surface.

The velocity is

q̇ =
dq

dt
=

dq

dt
=

@q

@u

du

dt
+

@q

@v

dv

dt
=
⇥

@q
@u

@q
@v

⇤



du
dt
dv
dt

�

.

The acceleration can be calculated as if it were a space curve and we explored that
in chapter 5. Using the velocity representation we just gave and separating the
tangential and normal components of the acceleration we obtain:

q̈ = q̈I + q̈II

=
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t
q̈+ (q̈ ·N)N.

In chapter 5 we focused on the normal component. Here we shall mostly concentrate
on the tangential part.

Theorem 6.3.1. The acceleration can be calculated as

q̈ =
⇥

@q
@u

@q
@v N

⇤

2

4

d2u
dt2 + �u (q̇, q̇)
d2v
dt2 + �v (q̇, q̇)

II (q̇, q̇)

3

5

=

✓

d2u

dt2
+ �u (q̇, q̇)

◆

@q

@u
+

✓

d2v

dt2
+ �v (q̇, q̇)

◆

@q

@v
+NII (q̇, q̇) ,

where

�w (q̇, q̇) =
X

w1,w2=u,v

�w
w1w2

dw1

dt

dw2

dt
=
⇥

du
dt

dv
dt

⇤



�w
uu �w

uv

�w
vu �w

vv

� 

du
dt
dv
dt

�

.

Proof. We start from the formula for the velocity and take derivatives. This
clearly requires us to be able to calculate derivatives of the tangent fields @q

@u ,
@q
@v .

Fortunately the Gauss formulas tell us how that is done. This leads us to the
acceleration as follows

q̈ =
d

dt

✓

⇥

@q
@u

@q
@v

⇤



du
dt
dv
dt

�◆

=
⇥

@q
@u

@q
@v

⇤

"

d2u
dt2
d2v
dt2

#

+

✓

d

dt

⇥

@q
@u

@q
@v

⇤

◆ 

du
dt
dv
dt

�

which after using the chain rule

d

dt
=

du

dt

@

@u
+

dv

dt

@

@v
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becomes

q̈ =
⇥

@q
@u

@q
@v

⇤

"

d2u
dt2
d2v
dt2

#

+
du

dt

✓

@

@u

⇥

@q
@u

@q
@v

⇤

◆ 

du
dt
dv
dt

�

+
dv

dt

✓

@

@v

⇥

@q
@u

@q
@v

⇤

◆ 

du
dt
dv
dt

�

.

The Gauss formulas help us with the last two terms

✓

@

@w

⇥

@q
@u

@q
@v

⇤

◆ 

du
dt
dv
dt

�

=
⇥

@q
@u

@q
@v N

⇤

2

4

�u
wu �u

wv

�v
wu �v

wv

Lwu Lwv

3

5



du
dt
dv
dt

�

=
@q

@u

⇥

�u
wu �u

wv

⇤



du
dt
dv
dt

�

+
@q

@v

⇥

�v
wu �v

wv

⇤



du
dt
dv
dt

�

+N
⇥

Lwu Lwv

⇤



du
dt
dv
dt

�

which after further rearranging allows us to conclude

q̈ =
⇥

@q
@u

@q
@v

⇤

"

d2u
dt2
d2v
dt2

#

+
@q

@u

⇥

du
dt

dv
dt

⇤



�u
uu �u

uv

�u
vu �u

vv

� 

du
dt
dv
dt

�

+
@q

@v

⇥

du
dt

dv
dt

⇤



�v
uu �v

vu

�v
vu �v

vv

� 

du
dt
dv
dt

�

+N
⇥

du
dt

dv
dt

⇤



Luu Luv

Lvu Lvv

� 

du
dt
dv
dt

�

=
⇥

@q
@u

@q
@v N

⇤

2

4

d2u
dt2 + �u (q̇, q̇)
d2v
dt2 + �v (q̇, q̇)

II (q̇, q̇)

3

5 .
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Alternately the whole calculation could have been done using summations

q̈ =
d2q

dt2

=
@q

@u

d2u

dt2
+

@q

@v

d2v

dt2

+

✓

@2q

@u2

du

dt
+

@2q

@u@v

dv

dt

◆

du

dt
+

✓

@2q

@u@v

du

dt
+

@2q

@v2
dv

dt

◆

dv

dt

=
@q

@u

d2u

dt2
+

@q

@v

d2v

dt2
+

X

w1,w2=u,v

@2q

@w1@w2

dw1

dt

dw2

dt

=
@q

@u

 

d2u

dt2
+

X

w1,w2=u,v

�u
w1w2

dw1

dt

dw2

dt

!

+
@q

@v

 

d2v

dt2
+

X

w1,w2=u,v

�v
w1w2

dw1

dt

dw2

dt

!

+N

 

X

w1,w2=u,v

Lw1w2

dw1

dt

dw2

dt

!

=
@q

@u

✓

d2u

dt2
+ �u (q̇, q̇)

◆

+
@q

@v

✓

d2v

dt2
+ �v (q̇, q̇)

◆

+NII (q̇, q̇) .

⇤

Note that we have again shown

Corollary 6.3.2. (Euler, 1760 and Meusnier, 1776) The normal component
of the acceleration satisfies

(q̈ ·N)N = q̈II = NII (q̇, q̇) .

In particular, two curves with the same velocity at a point have the same normal
acceleration components.

The tangential component is more complicated

⇥

@q
@u

@q
@v

⇤

[I]
⇥

@q
@u

@q
@v

⇤t
q̈ = q̈I =

@q

@u

✓

d2u

dt2
+ �u (q̇, q̇)

◆

+
@q

@v

✓

d2v

dt2
+ �v (q̇, q̇)

◆

.

But it seems to be a more genuine acceleration as it includes second derivatives. It
actually tells us what acceleration we feel on the surface. Note that we have now
proved that the tangential acceleration only depends on the first fundamental form.

Remark 6.3.3. We can also consider space-like surfaces q (u, v) : U ! R2,1.
These also have a normal N, but it has the property that |N|2 = N · N = �1 as
well as the usual conditions: N · @q@u = 0 = N · @q@v . However, N cannot be calculated

as easily from the standard vector calculus cross product @q
@u ⇥ @q

@v . The projection
formulas will look a little di↵erent. If we focus on a curve q (t) in this surface we
still have

q̇ =
dq

dt
=

dq

dt
=

@q

@u

du

dt
+

@q

@v

dv

dt
=
⇥

@q
@u

@q
@v

⇤



du
dt
dv
dt

�
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since this doesn’t depend on any geometric structure. The acceleration however,
now decomposes as

q̈ = q̈I + q̈II

=
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t
q̈� (q̈ ·N)N,

where q̈I is tangent to the surface and q̈II proportional toN. Here all inner products

@q

@u
· q̈, @q

@v
· q̈, N · q̈

are the R2,1 inner product. The tangential part of the acceleration can also be
calculated intrinsically with the same formula as above:

q̈I =
⇥

@q
@u

@q
@v

⇤

[I]�1 ⇥ @q
@u

@q
@v

⇤t
q̈ =

@q

@u

✓

d2u

dt2
+ �u (q̇, q̇)

◆

+
@q

@v

✓

d2v

dt2
+ �v (q̇, q̇)

◆

.

Exercises.

(1) Assume that a unit speed curve satisfies an equation F (u, v) = R on a
parameterized surface q (u, v). If we use @wFw = @F

@w show that

@uFu̇+ @vF v̇ = 0.

(a) Show that

q̇ = u̇
@q

@u
+ v̇

@q

@v

=
±1p

guu@vF@vF � 2guv@uF@vF + gvv@uF@uF

✓

�@vF
@q

@u
+ @uF

@q

@v

◆

.

This means that the unit tangent can be calculated without reference
to the parametrization of the curve.

(b) Show that if we use this formula for the velocity, then the geodesic
curvature can be computed as

g =

@
@u

⇣

q̇ · @q
@v

⌘

� @
@v

⇣

q̇ · @q
@u

⌘

p

det [I]
.

(c) Generalize this to the situation where a curve satisfies a di↵erential
relation

Pu̇+Qv̇ = 0,

where P = P (u, v) and Q = Q (u, v).
(2) Define the Hessian of a function on a surface by

Hessf (X,Y ) = I (DXrf, Y ) .

Show that the entries in the matrix [Hessf ] defined by

Hessf (X,Y ) =
⇥

Xu Xv
⇤

[Hessf ]



Y u

Y v

�

are given as

@2
ijf +

⇥

@uf @vf
⇤



�u
ij

�v
ij

�

.

Further relate these entries to the dot products

@irf · @jq.
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6.4. The Gauss and Codazzi Equations

The goal in this section is to establish the classical Gauss formula and the ac-
companying Codaazi equations from the Gauss formulas and Weingarten equations.
The Codazzi equations were historically first discovered by K.M. Peterson in 1853,
then rediscovered by G. Mainardi in 1856, and then finally by D. Codazzi in 1867.

Recall from sections 4.6 and 5.2 the Gauss formulas and Weingarten equations
in combined form:

@

@w

⇥

@q
@u

@q
@v N

⇤

=
⇥

@q
@u

@q
@v N

⇤

[Dw] .

Taking one more derivative on both sides yields

@2

@u@v

⇥

@q
@u

@q
@v N

⇤

=

✓

@

@u

⇥

@q
@u

@q
@v N

⇤

◆

[Dv]

+
⇥

@q
@u

@q
@v N

⇤

✓

@

@u
[Dv]

◆

=
⇥

@q
@u

@q
@v N

⇤

[Du] [Dv]

+
⇥

@q
@u

@q
@v N

⇤

✓

@

@u
[Dv]

◆

and similarly

@2

@v@u

⇥

@q
@u

@q
@v N

⇤

=
⇥

@q
@u

@q
@v N

⇤

✓

[Dv] [Du] +
@

@v
[Du]

◆

.

Now using that

@2

@u@v

⇥

@q
@u

@q
@v N

⇤

=
@2

@v@u

⇥

@q
@u

@q
@v N

⇤

we obtain after writing out the entries in the matrices
2

4

@u�u
vu @u�u

vv �@uLu
v

@u�v
vu @u�v

vv �@uLv
v

@uLvu @uLvv 0

3

5+

2

4

�u
uu �u

uv �Lu
u

�v
uu �v

uv �Lv
u

Luu Luv 0

3

5

2

4

�u
vu �u

vv �Lu
v

�v
vu �v

vv �Lv
v

Lvu Lvv 0

3

5

=

2

4

@v�u
uu @v�u

uv �@vLu
u

@v�v
uu @v�v

uv �@vLv
u

@vLuu @vLuv 0

3

5+

2

4

�u
vu �u

vv �Lu
v

�v
vu �v

vv �Lv
v

Lvu Lvv 0

3

5

2

4

�u
uu �u

uv �Lu
u

�v
uu �v

uv �Lv
u

Luu Luv 0

3

5 .

If we restrict attention to the the general terms of the entries in the first two columns
and rows we obtain 4 equations for the partial derivatives of �k

ij where each i, j, k

can be u, v. If we also write @w = @
@w we obtain

@i�
l
jk +

⇥

�l
iu �l

iv �Ll
i

⇤

2

4

�u
jk

�v
jk

Ljk

3

5 = @j�
l
ik +

⇥

�l
ju �l

jv �Ll
j

⇤

2

4

�u
ik

�v
ik

Lik

3

5

which can further be rearranged by isolating �s on one side:

@i�
l
jk � @j�

l
ik +

⇥

�l
iu �l

iv

⇤



�u
jk

�v
jk

�

�
⇥

�l
ju �l

jv

⇤



�u
ik

�v
ik

�

= Ll
iLjk � Ll

jLik.

These are called theGauss Equations. Note that we only established these equations
when i = u and j = v. Clearly they also hold when u = j and v = i as both sides
just change sign. They also hold trivially when i = j as both sides vanish in that
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case. This means that the 4 original equations can be expanded to 16 equations
where the 4 indices i, j, k, l can be both u, v.

The Riemann curvature tensor is defined as the left hand side of the Gauss
equations

Rl
ijk = @i�

l
jk � @j�

l
ik +

⇥

�l
iu �l

iv

⇤



�u
jk

�v
jk

�

�
⇥

�l
ju �l

jv

⇤



�u
ik

�v
ik

�

.

It is clearly an object that can be calculated directly from the first fundamental
form, although it is certainly not always easy to do so. We just discussed that if
i 6= j, then

Rl
ijk = �Rl

jik,

and
Rl

iik = 0.

More explicitly the skew-symmetry can be spelled out

Ru
uvu = �Ru

vuu,

Rv
uvu = �Rv

vuu,

Ru
uvv = �Ru

vuv,

Rv
uvv = �Rv

vuv.

A slightly less obvious formula is the Bianchi identity

Rl
ijk +Rl

kij +Rl
jki = 0.

It too follows from the above definition, but with more calculations. Unfortunately
it doesn’t reduce our job of computing curvatures. The final reduction comes about
by constructing

Rijkl = Ru
ijkgul +Rv

ijkgvl
and showing that

Rijkl = �Rijlk.

This means that the 4 possibly nontrivial curvatures are related by

Ruvvu = Rvuuv = �Ruvuv = �Rvuvu.

All of the curvatures of both types turn out to be related to an old friend.

Theorem 6.4.1. (Theorema Egregium) The Gauss curvature can be computed
knowing only the first fundamental form

K =
Ru

uvv

gvv
=

Rv
vuu

guu

= �Rv
uvv

gvu
= �Ru

vuu

gvu

=
Ruvvu

det [I]
.

Proof. We know that

K = Lu
uL

v
v � Lu

vL
v
u

and


Lu
u Lu

v

Lv
u Lv

v

�

=



guu guv

gvu gvv

� 

Luu Luv

Lvu Lvv

�

,

[L] = [I]�1 [II] .
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Now let u = i = l and v = j = k in the Gauss equation. We take the strange
route of calculating so that we end up with second fundamental form terms. This
is because [II] is always symmetric, while [L] might not be symmetric. Thus several
steps are somewhat simplified.

Ru
uvv = Lu

uLvv � Lu
vLuv

= (guuLuu + guvLvu)Lvv � (guuLuv + guvLvv)Luv

= guu (LuuLvv � LuvLuv)

= guu det [II]

= guu det [I] detL

= gvv detL

= gvvK.

The second equality follows by a similar calculation. For the third (and in a similar
way fourth) the Gauss equations can again be used to calculate

Rv
uvv = Lv

uLvv � Lv
vLuv

= (gvuLuu + gvvLvu)Lvv � (gvuLuv + gvvLvv)Luv

= gvu (LuuLvv � LuvLuv)

= �gvuK.

Finally note that

Ruvvu = Ru
uvvguu +Rv

uvvgvu

= Kgvvguu +Rv
uvvgvu

= K (gvvguu � guvgvu)

= K det [I] .

⇤

Corollary 6.4.2. If an abstract surface has constant Gauss curvature K, then
the Riemann curvature tensor is given by

Rl
ijk = K

�

�ligjk � �ljgik
�

.

Proof. It is easy to check that both sides vanish when for the same indices.
For the other possibilities of the indices this follows from theorem 6.4.1. ⇤

The other entries in the matrices above reduce to the Codazzi Equations

@iLjk +
⇥

Liu Liv 0
⇤

2

4

�u
jk

�v
jk

Ljk

3

5 = @jLik +
⇥

Lju Ljv 0
⇤

2

4

�u
ik

�v
ik

Lik

3

5

or rearranged

@iLjk � @jLik =
⇥

Lju Ljv

⇤



�u
ik

�v
ik

�

�
⇥

Liu Liv

⇤



�u
jk

�v
jk

�

.

Note again that while we only established these for u = i and j = v that they also
hold when u, v are switched and that both sides vanish when i = j.

We are now ready to present the fundamental theorem of surface theory. It is
analogous to theorem 2.2.2 for planar curves.
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Theorem 6.4.3. (Fundamental Theorem of Surface Theory, Bonnet, 1848)
A surface is uniquely determined by its first and second fundamental forms if its
position and tangent space space are known at just one point. Conversely any set
of abstract first and second fundamental forms that are related by the Gauss and
Codazzi equations are locally the first and second fundamental forms of a surface.

Proof. We start by observing that the matrices [Dw] can be defined as long
as we are given [I] and [II]. So we seek solutions to a rather big system

@q

@u
= U,

@q

@v
= V,

@

@u

⇥

U V N
⇤

=
⇥

U V N
⇤

[Du] ,

@

@v

⇥

U V N
⇤

=
⇥

U V N
⇤

[Dv] ,

with some specific initial conditions

q (0, 0) = q0 2 R3,

U (0, 0) = U0 2 R3,

V (0, 0) = V0 2 R3,

N (0, 0) = N0 2 R3,

where we additionally require that

U0 · U0 = guu (0, 0) ,

U0 · V0 = guv (0, 0) ,

V0 · V0 = gvv (0, 0) ,

N0 =
U0 ⇥ V0

|U0 ⇥ V0|
.

It is clear that this big system has a unique solution given the initial values.
Conversely to solve it we must check that the necessary integrability conditions are
satisfied. We can separate the problem into first solving

@

@u

⇥

U V N
⇤

=
⇥

U V N
⇤

[Du] ,

@

@v

⇥

U V N
⇤

=
⇥

U V N
⇤

[Dv] .

Here the integrability conditions are satisfied as we assumed that

[Du] [Dv] +
@

@u
[Dv] = [Dv] [Du] +

@

@v
[Du] .

Having solved this system with the given initial values it remains to find the
surface by solving

@q

@u
= U,

@q

@v
= V.
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Here the right hand side does not depend on q so the integrability conditions are
simply

@U

@v
=

@V

@u
.

However, we know that

@U

@v
=

⇥

U V N
⇤

2

4

�u
vu

�v
vu

Lvu

3

5 ,

@V

@u
=

⇥

U V N
⇤

2

4

�u
uv

�v
uv

Luv

3

5 ,

where the right-hand sides are equal as Luv = Lvu and �w
uv = �w

vu.
Having solved the equations it then remains to show that the surface we have

constructed has the correct first and second fundamental forms. This will of course
depend on the extra conditions that we imposed:

U0 · U0 = guu (0, 0) ,

U0 · V0 = guv (0, 0) ,

V0 · V0 = gvv (0, 0) ,

N0 =
U0 ⇥ V0

|U0 ⇥ V0|
.

In fact they show that at (0, 0) the surface has the correct first fundamental form
and normal vector. More generally consider the 3⇥ 3 matrix of inner products

⇥

U V N
⇤t ⇥

U V N
⇤

,

where the block consisting of
⇥

U V
⇤t ⇥

U V
⇤

corresponds to the first fundamental form of the surface we have constructed. The
derivative of this 3⇥ 3 matrix satisfies

@

@w

⇣

⇥

U V N
⇤t ⇥

U V N
⇤

⌘

=

✓

@

@w

⇥

U V N
⇤

◆t
⇥

U V N
⇤

+
⇥

U V N
⇤t @

@w

⇥

U V N
⇤

=
�⇥

U V N
⇤

[Dw]
�t ⇥

U V N
⇤

+
⇥

U V N
⇤t ⇥

U V N
⇤

[Dw]

= [Dw]
t ⇥ U V N

⇤t ⇥
U V N

⇤

+
⇥

U V N
⇤t ⇥

U V N
⇤

[Dw] .

This is a di↵erential equation of the type

@X

@w
= [Dw]

t X +X [Dw] ,

where X is a 3⇥ 3 matrix. Now

X =

2

4

guu guv 0
gvu gvv 0
0 0 1

3

5

also satisfies this equation as we constructed [Dw] directly from the given first and
second fundamental forms. However, these two solutions have the same initial value
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at (0, 0) so they must be equal. This shows that our surface has the correct first
fundamental form and also that N is a unit normal to the surface. This in turn
implies that we also obtain the correct second fundamental form since we now also
know that

⇥

U V N
⇤t @

@w

⇥

U V N
⇤

=
⇥

U V N
⇤t ⇥

U V N
⇤

[Dw] ,

where the right hand side is now known and the left hand side contains all of
the terms we need for calculating the second fundamental form of the constructed
surface. ⇤

This theorem allows us to give a complete local characterization of abstract
surfaces with constant non-negative Gauss curvature. In fact such surfaces are
forced to be locally isometric to the plane or a sphere.

Theorem 6.4.4. An abstract surface of constant Gauss curvature K � 0, can
locally be represented as part of a plane when K = 0 and part of a sphere of radius
1/

p
K when K > 0.

Proof. We are given I and have to guess II. We use II =
p
KI, i.e., Li

j =
p
K�ij

and Lij =
p
Kgij . This allows us to calculate [Di] in a specific parametrization.

We are then left with the goal of checking the integrability conditions, i.e., the
Gauss and Codazzi equations. The Codazzi equations are obviously satisfied when
II = 0, and follow from the formula for the Christo↵el symbols when K > 0. More
precisely we start with the right hand side of the Codazzi equations and use the
intrinsic formulas for the Christo↵el symbols from remark 6.1.2 to show that they
hold:

p
K
⇥

gju gjv
⇤



�u
ik

�v
ik

�

�
p
K
⇥

giu giv
⇤



�u
jk

�v
jk

�

=
p
K
⇥

gju gjv
⇤



�u
ik

�v
ik

�

�
p
K
⇥

giu giv
⇤



�u
jk

�v
jk

�

=
p
K (�ikj � �jki)

=

p
K

2
((@igkj + @kgij � @jgik)� (@jgik + @kgji � @igjk))

=

p
K

2
((@igkj � @jgik)� (@jgik � @igjk))

=
p
K (@igkj � @jgik)

=
p
K@igjk �R@jgik.

Our assumptions about the the second fundamental form imply

Ll
iLjk � Ll

jLik = K�ligjk �K�ljgik

and corollary 6.4.2 shows that this gives us the Gauss equations:

Rl
ijk = Ll

iLjk � Ll
jLik.

Now that we have a local representation of the abstract surface as a parametrized
surface in R3 with II =

p
KI we can use theorem 5.4.7 to finish the proof. ⇤
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Remark 6.4.5. It is possible to develop a theory for space-like surfaces in
R2,1 that mirrors the theory for surfaces in R3. This includes new versions of the
Gauss and Codazzi equations that also lead to exact analogies of theorems 6.4.3
and 6.4.4. Thus abstract surfaces of constant negative curvature �R�2 can locally
be represented as part of the surface in R2,1 given by the equation

x2 + y2 � z2 = �R2.

We end this long section with a profound theorem that relates to the concepts
discussed here. In essence it shows that while it is occasionally possible to choose
a second fundamental form locally so that it satisfies the Gauss and Codazzi equa-
tions, it might not be possible to extend it to be defined on the entire abstract
surface. The result also indicates that in order to characterize hyperbolic space
in a way that is similar to theorem 6.4.4 it is most convenient to use R2,1 as the
ambient space.

Theorem 6.4.6. (Hilbert, 1901) It is not possible to select a second fundamental
form II on all of hyperbolic space H such that I and II satisfy the Gauss and Codazzi
equations.

Proof. We argue by contradiction and assume that such a second fundamental
form exists. The Gauss equations imply that at each point there is a positive
and negative principal direction for II. Let the positive principal curvature be
 : H ! (0,1) and the negative �1/. Since  > 0 we can find a unique smooth
function ✓ : H ! (0, ⇡/2) such that

cos2 ✓ =
1

1 + 2
, sin2 ✓ =

2

1 + 2
.

Fix a parametrization (x, y) of H, e.g., the one that makes hyperbolic space a
Monge patch. At (0, 0) make a choice of orthonormal principal directions E1, E2.
Extend this choice to be consistent along the x-axis, and then finally along vertical
lines to obtain a consistent choice on all of H. Next consider the two vector fields
P = cos ✓E1 and Q = sin ✓E2. We claim that there is a global parametrization
where these are the coordinate vector fields. This would follow directly from the
global version of theorem A.5.3 if we could check the integrability conditions

@P

@x
Qx +

@P

@y
Qy =

@Q

@x
P x +

@Q

@y
P y

and find M,C such that
q

(P x)2 + (P y)2,
q

(Qx)2 + (Qy)2  M + C
p

x2 + y2.

Note that in this case P,Q are independent of (u, v). To prove the bounds for P,Q
we show that a unit vector field X in the hyperbolic metric satisfies these bounds.
From example 6.2.2 we have that

1 = X ·X

=
1

z2

⇣

(Xx)2 + (Xy)2 + (yXx � xXy)2
⌘

.

Since z2 = 1 + x2 + y2 this shows that

(Xx)2 + (Xy)2  1 + x2 + y2

which implies our claim.
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The integrability conditions are a consequence of the Codazzi equations. We
do the calculation by an indirect method where we show that there are local
parametrizations q (u, v) of H where @uq = cos ✓E1 and @vq = sin ✓E2.

By appealing to remark 4.2.8 we can for any q 2 H find a local parametrization
q (u, v) with q (0, 0) = q, where the parameter curves are lines of curvature and

@uq (u, 0) = cos ✓ (u, 0)E1 (u, 0) ,

@vq (0, v) = sin ✓ (0, v)E2 (0, v) .

The Codazzi equations for such a local parametrization is (see section 6.4 exercise
4 below)

@

@v
=

1

2

✓

� 1


� 

◆

@ ln guu
@v

,

@�1

@u
=

1

2

✓

+
1



◆

@ ln gvv
@u

.

This shows that

� 2

1 + 2

@

@v
=

@ ln guu
@v

,

2�1

1 + �2

@�1

@u
=

@ ln gvv
@u

.

Consequently,

guu =
f (u)

1 + 2
, gvv =

2h (v)

1 + 2
.

Evaluating at (u, 0) gives us f = 1 and and evaluating at (0, v) that h = 1. This
tells us that

guu = cos2 ✓, gvv = sin2 ✓, guv = 0,

and
Luu = sin ✓ cos ✓, Lvv = sin ✓ cos ✓, Luv = 0.

This gives us the desired local parametrization and we conclude that there is a
global parametrization with the same properties.

If we switch coordinates to s = u + v and t = u � v, then gss = 1, gtt = 1,
gst = cos (2✓), Lss = Ltt = 0, and Lst = sin (2✓). The formula for the Gauss
curvature in such coordinates reduce to the formula

2@2
st✓ = �K sin (2✓) = sin (2✓) ,

where 2✓ 2 (0,⇡). In particular, @2
st✓ > 0. This shows that t 7! @s✓ (s, t) is strictly

increasing. Integrating @s✓ (s, t) over an interval s 2 [a, b] then shows that for c < d
we have

✓ (b, c)� ✓ (a, c) < ✓ (b, d)� ✓ (a, d) .

Now assume that a, c are chosen so that @s✓ (a, c) 6= 0. Assume that @s✓ (a, c) > 0
and select b > a so that @s✓ (s, c) > 0 for all s 2 [a, b]. It follows that @s✓ (s, t) > 0
for all (s, t) 2 [a, b]⇥ [c,1). Finally fix a < a1 < b1 < b and ✏ > 0 so that

✓ (b, c)� ✓ (b1, c) > ✏, ✓ (a1, c)� ✓ (a, c) > ✏.

Then
✓ (b, t)� ✓ (b1, t) > ✏, ✓ (a1, t)� ✓ (a, t) > ✏

for all t > c. In particular,

✓ (b1, t) <
⇡
2 � ✏, ✓ (a1, t) > ✏.
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As s 7! ✓ (s, t) is increasing for s 2 [a, b] and t � c, this implies that

✏ < ✓ (s, t) < ⇡
2 � ✏

for all (s, t) 2 [a1, b1] ⇥ [c,1). In particular, sin 2✓ > sin ✏ for all (s, t) 2 [a1, b1] ⇥
[c,1). This shows that

(✓ (b1, t)� ✓ (a1, t))|t=T
t=c =

ˆ T

c

ˆ b1

a1

@st✓dsdt

=
1

2

ˆ T

c

ˆ b1

a1

sin 2✓dsdt

� 1

2

ˆ T

c

ˆ b1

a1

sin ✏dsdt

=
1

2
(T � c) (b1 � a1) sin ✏.

However, the left hand side is bounded by ⇡ so we conclude that

T < c+
2⇡

(b1 � a1) sin ✏
.

This contradicts that the inequality holds for all T > 0.
When @s✓ (a, c) < 0, can redefine s = �u � v and t = v � u so that we get

@s✓ (�a,�c) > 0 with this new choice of s. ⇤
Corollary 6.4.7. There is no Riemannian immersion from hyperbolic space

H to R3.

Exercises.

(1) We saw above that all of the Gauss equations reduced to just one relevant
equation. Reduce all of the 8 Codazzi equations

@iLjk � @jLik =
⇥

Lju Ljv

⇤



�u
ik

�v
ik

�

�
⇥

Liu Liv

⇤



�u
jk

�v
jk

�

to the following two equations

@Lvu

@u
� @Luu

@v
+
⇥

Luu Luv

⇤



�u
vu

�v
vu

�

�
⇥

Lvu Lvv

⇤



�u
uu

�v
uu

�

= 0,

@Lvv

@u
� @Luv

@v
+
⇥

Luu Luv

⇤



�u
vv

�v
vv

�

�
⇥

Lvu Lvv

⇤



�u
uv

�v
uv

�

= 0

(2) Show that having zero Gauss curvature is the integrability condition for
admitting Cartesian coordinates on an abstract surface. Hint: Think of
U, V as 2-dimensional vectors and consider the system

@w
⇥

U V
⇤

=
⇥

U V
⇤



�u
wu �u

wv

�v
wu �v

wv

�

,

@uq = U,

@vq = V.

These are simply the Gauss equations with the last columns and rows
erased. Show that the integrability equations for U, V are K = 0. Then
use the last equations to find q : U ! R2 after having checked the inte-
grability conditions are satisfied. Finally, show that (x, y) = q (u, v) is a
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Cartesian parametrization provided the correct initial conditions for U, V
have be specified.

(3) Use the Codazzi equations to show that if the principal curvatures 1 = 2

are equal on a surface, then they are constant. Hint: In this case Lij =
gij for some function .

(4) If the principal curvatures 1 and 2 are not equal on some part of
the surface, then we can use theorem 4.2.7 to construct an orthogonal
parametrization where the tangent fields are principal directions or said
di↵erently the coordinate curves are lines of curvature:

L

✓

@q

@u

◆

= 1
@q

@u
,

L

✓

@q

@v

◆

= 2
@q

@v
.

Show that in this case the Codazzi equations can be written as

@1

@v
=

1

2
(2 � 1)

@ ln guu
@v

,

@2

@u
=

1

2
(1 � 2)

@ ln gvv
@u

.

(5) (Hilbert, 1901) The goal is to show: If there is a point p on a surface,
where K is positive, 1 has a maximum, and 2 a minimum, then the
principal curvatures are equal and constant. We assume otherwise:

sup1 = 1 (p) > 2 (p) = inf 2,

and appeal to exercise 4 for a coordinate system around p where the
coordinate curves are lines of curvature.
(a) Show that at p

@1

@u
=

@1

@v
= 0,

@21

@v2
 0,

@2

@u
=

@2

@v
= 0,

@22

@u2
� 0.

(b) Using the Codazzi equations from the previous exercise to show that
at p

@ ln guu
@v

= 0 =
@ ln gvv
@u

and after di↵erentiation also at p that

@2 ln guu
@v2

� 0,
@2 ln gvv
@u2

� 0.

(c) Next show that at p

K = �1

2

✓

1

gvv

@2 ln guu
@v2

+
1

guu

@2 ln gvv
@u2

◆

 0.

This contradicts our assumption about the Gauss curvature.
(d) Show that the principal curvatures are equal and constant.

(6) Show that a surface with constant principal curvatures must be part of a
plane, sphere, or right circular cylinder. Note that the two former cases
happen when the principal curvatures are equal.
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(7) Let q (u, v) be a parametrized surface in R3. Assume E1 and E2 are
tangent vector fields forming an orthonormal basis for the tangent space
everywhere and

E1 ⇥ E2 = N =
@q
@u ⇥ @q

@v
�

�

�

@q
@u ⇥ @q

@v

�

�

�

.

(a) Show that

@

@w

⇥

E1 E2 N
⇤

=
⇥

E1 E2 N
⇤

[Dw] ,

[Dw] =

2

4

0 ��w ��w1

�w 0 ��w2

�w1 �w2 0

3

5 ,

where

�w =
@E1

@w
· E2 = �@E2

@w
· E1,

�w1 =
@E1

@w
·N = �I

✓

@N

@w
,E1

◆

,

�w2 =
@E2

@w
·N = �I

✓

@N

@w
,E2

◆

.

(b) Show that

�w1 = II (@wq, E1) = I (@wq, L (E1)) ,

�w2 = II (@wq, E2) = I (@wq, L (E2)) .

(c) Use the Weingarten equations and [L] as the matrix of the Wein-
garten map with respect to E1, E2 to show that

[L]
⇥

E1 E2

⇤t ⇥ @q
@u

@q
@v

⇤

=



�u1 �v1

�u2 �v2

�

and
K
p

det [I] = �u1�v2 � �u2�v1.

(d) Show that the integrability conditions

@

@u
[Dv]�

@

@v
[Du] + [Du] [Dv]� [Dv] [Du] = 0

can be reduced to the three equations:

@�v

@u
� @�u

@v
= �u2�v1 � �v2�u1,

@�v1

@u
� @�u1

@v
= �v2�u � �u2�v,

@�v2

@u
� @�u2

@v
= ��v1�u + �u1�v.

(e) Show that

@�v

@u
� @�u

@v
= �u2�v1 � �v2�u1

corresponds to the Gauss equation.
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(f) Show that

@�v1

@u
� @�u1

@v
= �v2�u � �u2�v,

@�v2

@u
� @�u2

@v
= ��v1�u + �u1�v

correspond to the Codazzi equations.
(8) Consider potential surfaces q (u, v) where

[I] =



�2 0
0 �2

�

, [II] =



�2 0

0 ��2



�

.

(a) Show that
K = �1

and
� ln� = �2.

(b) Show that if we choose

� =
1

a (u2 + v2) + buu+ bvv + c
,

where a, bu, bv, c are constants such that

4ac� b2u � b2v = �1,

then the first fundamental form

[I] =



�2 0
0 �2

�

has K = �1. It can in fact be shown that there are no other possi-
bilities for � given that K = �1.

(c) Show that we only obtain a surface in space when a = 0 and either
bu = 0 or bv = 0.

(d) Show that the pseudo-sphere (see section 5.4 exercise 5) is an example
of such a surface with � = 1

v , v > 0.
(e) When � = 1

v show that 2 + 1 = ev2 for some constant e > 0 and
conclude that  is not defined for all v.

6.5. Gauss-Bonnet

Inspired by the idea that the integral of the curvature of a planar curve is
related to how the tangent moves we can try to prove a similar result on surfaces.
First we point out that we cannot expect the same theorem to hold. Consider the
equator on a sphere. This curve has acceleration normal to it self and lies in the
(x, y)-plane, in particular, the acceleration is also normal to the sphere and so has
no geodesic curvature. On the other hand the tangent field clearly turns around
360 degrees.

Throughout this section we assume that a parametrized surface is given:

q (u, v) : (au, bu)⇥ (av, bv) ! R3

where the domain is a rectangle. The key is that the domain should not have any
holes in it. We further assume that we have a smaller domain

R ⇢ (au, bu)⇥ (av, bv)
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that is bounded by a piecewise smooth curve

(u (s) , v (s)) : [0, L] ! (au, bu)⇥ (av, bv)

running counter clockwise in the plane and such that q (s) == q (u (s) , v (s)) is
unit speed.

Integration of functions on the surface is done by defining a suitable integral
using the parametrization. To make this invariant under parametrizations we define

ˆ
q(R)

fdA =

ˆ
R

f (u, v)
p

det [I]dudv =

ˆ
R

f (u, v)

�

�

�

�

@q

@u
⇥ @q

@v

�

�

�

�

dudv.

This ensures that if we use a di↵erent parametrization (s, t) where q (Q) = q (R) ,
then ˆ

R

f (u, v)
p

det [I]dudv =

ˆ
Q

f (s, t)
p

det [I]dsdt.

We start by calculating the geodesic curvature of q assuming further that the
parametrization gives a geodesic coordinate system

[I] =



1 0
0 r2

�

.

The existence of such coordinate systems will be established in proposition 7.4.1.

Lemma 6.5.1. Let ✓ be the angle between q and the u-curves, then

g =
d✓

ds
+

@r

@u

1

r
sin ✓.

Proof. We start by pointing out that the velocity is

dq

ds
=

du

ds

@q

@u
+

dv

ds

@q

@v

= cos ✓
@q

@u
+

1

r
sin ✓

@q

@v
.

The natural unit normal field to q in the surface is then given by

S = � sin ✓
@q

@u
+

1

r
cos ✓

@q

@v
.

The geodesic curvature is then given by

g = I
�

S, q̈I
�

= S ·
✓✓

d2u

ds2
+ �u

✓

dq

ds
,
dq

ds

◆◆

@q

@u
+

✓

d2v

ds2
+ �v

✓

dq

ds
,
dq

ds

◆◆

@q

@v

◆

= � sin ✓

✓

d2u

ds2
+ �u

✓

dq

ds
,
dq

ds

◆◆

+ r2
1

r
cos ✓

✓

d2v

ds2
+ �v

✓

dq

ds
,
dq

ds

◆◆

= � sin ✓

✓

d2u

ds2
+ �u

✓

dq

ds
,
dq

ds

◆◆

+ r cos ✓

✓

d2v

ds2
+ �v

✓

dq

ds
,
dq

ds

◆◆

.
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We further have

d2u

ds2
=

d cos ✓

ds
= � sin ✓

d✓

ds
,

d2v

ds2
=

d 1
r sin ✓

ds

=
�1

r2
dr

ds
sin ✓ +

1

r
cos ✓

d✓

ds

=
�1

r2

✓

@r

@u

du

ds
+

@r

@v

dv

ds

◆

sin ✓ +
1

r
cos ✓

d✓

ds

=
�1

r2
@r

@u
cos ✓ sin ✓ +

�1

r3
@r

@v
sin2 ✓ +

1

r
cos ✓

d✓

ds
.

And the Christo↵el symbols are

�u

✓

dq

ds
,
dq

ds

◆

= �u
vv

✓

dv

ds

◆2

= �r
@r

@u

1

r2
sin2 ✓

=
�1

r

@r

@u
sin2 ✓,

�v

✓

dq

ds
,
dq

ds

◆

= 2�v
uv

du

ds

dv

ds
+ �v

vv

✓

dv

ds

◆2

=
2

r

@r

@u

du

ds

dv

ds
+

1

r

@r

@v

✓

dv

ds

◆2

=
2

r2
@r

@u
sin ✓ cos ✓ +

1

r3
@r

@v
sin2 ✓.

Thus

g = � sin ✓

✓

� sin ✓
d✓

ds
� 1

r

@r

@u
sin2 ✓

◆

+ r cos ✓

✓

1

r
cos ✓

d✓

ds
+

1

r2
@r

@u
sin ✓ cos ✓

◆

=
d✓

ds
+

1

r

@r

@u
sin3 ✓ +

1

r

@r

@u
sin ✓ cos2 ✓

=
d✓

ds
+

@r

@u

1

r
sin ✓.

⇤

We first prove the local Gauss-Bonnet theorem. It is stated in the way that
Gauss and Bonnet proved it. Gauss considered regions bounded by geodesics thus
eliminating the geodesic curvature, while Bonnet presented the version given below.

Theorem 6.5.2. (Gauss, 1825 and Bonnet, 1848) Assume as in the above
lemma that the parametrization gives a geodesic coordinate system. Let ✓i be the
exterior angles at the points where q has vertices, then

ˆ
q(R)

KdA+

ˆ L

0
gds = 2⇡ �

X

✓i.
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Proof. We have thatˆ
q(R)

KdA =

ˆ
R

K
p

det [I]dudv

= �
ˆ
R

@2r
@u2

r
rdudv

= �
ˆ
R

@2r

@u2
dudv.

The last integral can be turned into a line integral if we use Green’s theoremˆ
R

@2r

@u2
dudv =

ˆ
@R

@r

@u
dv.

This line integral can now be recognized as one of the terms in the formula for the
geodesic curvature

ˆ
@R

@r

@u
dv =

ˆ L

0

@r

@u

dv

ds
ds

=

ˆ L

0

@r

@u

1

r
sin ✓ds

=

ˆ L

0

✓

g �
d✓

ds

◆

ds

=

ˆ L

0
gds�

ˆ L

0

d✓

ds
ds.

Thus we obtainˆ
q(R)

KdA+

ˆ L

0
gds = �

ˆ
R

@2r

@u2
dudv +

ˆ
@R

@r

@u
dv +

ˆ L

0

d✓

ds
ds

=

ˆ L

0

d✓

ds
ds.

Finally we must show that
ˆ L

0

d✓

ds
ds+

X

✓i = 2⇡.

For a planar simple closed curve this is a consequence of knowing that the rotation
index must be 1 for such curves if they are parametrized to run counterclockwise
(see theorem 2.4.5 and section 2.4 exercise 3). In this case we still know that the
right hand side must be a multiple of 2⇡. The trick now is to compute the right
hand side for each of the abstract metrics

[I✏] =



1 0
0 1� ✏+ ✏r2

�

.

For each ✏ 2 [0, 1] this defines a metric on (au, bu)⇥ (av, bv) and the rotation index
for our curve has to be a multiple 2⇡. It is easy to see that the angles ✓✏ between
the curve and the u-curves is continuous in ✏. Thus the right hand side also varies
continuously. However, as it is always a multiple of 2⇡ and is 2⇡ in case ✏ = 0 it
follows that it is always 2⇡. ⇤
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Clearly there are subtle things about the regions R we are allowed to use. Aside
from the topological restriction on R there is also an orientation choice (counter
clockwise) for @R in Green’s theorem. If we reverse that orientation there is a sign
change, and the geodesic curvature also changes sign when we run backwards.

We used rather special coordinates as well, but it is possible to extend the proof
to work for all coordinate systems. The same strategy even works, but is compli-
cated by the nasty formula we have for the Gauss curvature in general coordinates.
However, if we used a conformal or isothermal parametrization then the argument
about the winding is much simpler as angles would be the same in the plane and
on the surface. Thus the winding number is clearly 1.

Using Cartan’s approach with selecting orthonormal frames rather than special
coordinates makes for a fairly simple proof that works within all coordinate systems.
This is exploited in an exercise below, but to keep things in line with what we
have already covered we still restrict attention to how this works in relation to a
parametrization.

Let us now return to our examples from above. Without geodesic curvature
and exterior angles we expect to end up with the formulaˆ

q(R)
KdA = 2⇡.

But there has to be a region R bounding the closed geodesic. On the sphere we
can clearly use the upper hemisphere. As K = 1 we end up with the well known
fact that the upper hemisphere has area 2⇡. On the cylinder, however, there is no
reasonable region bounding the closed geodesics despite the fact that we have a valid
geodesic coordinate system. The issue is that the bounding curve cannot be set up
to be a closed curve in a parametrization where there is a rectangle containing the
curve.

It is possible to modify the Gauss-Bonnet formula so that more general regions
can be used in the statement, but it requires topological information about the
region R. This will be studied in detail later and also in some interesting cases in
the exercises below.

Another very important observation about our proof is that it only referred to
quantities related to the first fundamental form. In fact, the result holds without
further ado for generalized surfaces and abstract surfaces as well, again with the
proviso of working within coordinates and regions without holes.

It is, however, possible to also get the second fundamental form into the picture
if we recall that

K

�

�

�

�

@q

@u
⇥ @q

@v

�

�

�

�

=

✓

@N

@u
⇥ @N

@v

◆

·N = ±
�

�

�

�

@N

@u
⇥ @N

@v

�

�

�

�

.

Thus
´
R
KdA also measures the signed area of the spherical image traced by the

normal vector, or the image of the Gauss map.

Exercises.

(1) Consider a surface of revolution and two latitudes q1 and q2 on it. These
curves bound a band or annular region q (R) . By subdividing the region
and using proper orientations and parametrizations on the curves show
that ˆ

q(R)
KdA =

ˆ
q1

gds1 �
ˆ
q2

gds2.
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(2) Generalize the previous exercise to regions that are bounded both on the
inside and outside by smooth (or even piecewise smooth) closed curves.

(3) Consider a geodesic triangle inside a parametrization with interior angles
↵,�, �. Show thatˆ

q(R)
KdA = ↵+ � + � � ⇡.

(4) Show that a closed surface with � > 0 must have a point with K > 0.
(5) Let q (u, v) be a parametrized surface without special assumptions about

the parametrization. Create tangent vector fields E1 and E2 forming
an orthonormal basis for the tangent space everywhere with the further
property that E1 is proportional to the first tangent field @q

@u and

E1 ⇥ E2 = N =
@q
@u ⇥ @q

@v
�

�

�

@q
@u ⇥ @q

@v

�

�

�

.

(a) Use section 6.4 exercise 7 to conclude thatˆ
q(R)

KdA = �
ˆ
R

✓

@�v

@u
� @�u

@v

◆

dudv

= �
ˆ
q

�udu+ �vdv.

(b) Finally prove the Gauss-Bonnet theorem by establishingˆ
q

�udu+ �vdv =

ˆ ✓

kg �
d✓

ds

◆

ds,

where ✓ is the angle with E1 or @q
@u . To aid the last calculation show

that

dq

ds
= cos ✓E1 + sin ✓E2,

S = � sin ✓E1 + cos ✓E2,

d2q

ds2
= S

d✓

ds
� sin ✓ (cos ✓�u + sin ✓�v)E1

+cos ✓ (cos ✓�u + sin ✓�v)E2 + aN,

where the coe�cient a in front of N is irrelevant for computing the
inner product with S and hence the geodesic curvature.

6.6. Topology of Surfaces

So far we have only worked with the geometry of surfaces. When studying
the global behavior of closed surfaces there are also some interesting numerical
topological concepts that are important in our geometric understanding of these
surfaces.

Definition 6.6.1. A polygon, or n-gon is a piecewise smooth simple closed
curve inside a rectangular parameterization as in the previous section. The number
n = 0, 1, 2, ... refers to the number of points where the curve is not di↵erentiable.
We call these points vertices of the closed curve and the connecting arcs the edges.
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Remark 6.6.2. The edges will not include the two boundary points, thus they
are simple smooth curves defined on an open interval. A 0-gon is a smooth simple
closed curve, it has 0 vertices and 0 edges. A 1-gon is a loop with one vertex and
one edge etc. The inside is well defined by the Jordan curve theorem (see theorem
2.3.3) and is called the face. Thus the face of an n-gon, n > 0, has a boundary
that consists of n vertices and n edges, each of the edges in turn has two vertices
as boundary points. In the special case of a 0-gon the boundary is a smooth circle.
Note that the inside of a circle or regular n-gon in the plane is homeomorphic to
an open disc. Thus any face is homeomorphic to an open disc.

Definition 6.6.3. A polygonal subdivision of an abstract surface is a disjoint
decomposition of the surface into faces and their boundaries. More specifically, if
a point lies inside a face, then it cannot be in any other face or on the boundary
of any face. If a point is a vertex for one face, then it cannot lie on an edge of any
other face, but it can be a vertex for several other faces.

Remark 6.6.4. If a point lies on an edge of one face, then it can only lie on
edges of other faces. In fact it can only lie on the edge for one other face since
such a point will have a neighborhood that is homeomorphic to a disc; if 3 or more
faces meet in a common edge, no point on that edge has a neighborhood that is
homeomorphic to a disc.

Definition 6.6.5. A triangulation is a polygonal subdivision into triangles (3-
gons) with the added condition that two faces can have at most one edge in common.
Note that one can subdivide the sphere into two triangles as in a triangular pillow,
but this is not a triangulation. The tetrahedron is a triangulation of the sphere
and in fact the triangulation with the smallest number of vertices, edges and faces.

In any given concrete situation it is not hard to find a triangulation, but for an
abstract surface this is much less easy to see. We will take it for granted that our
surfaces have polygonal subdivisions and triangulations. A polygonal subdivision
in fact creates a triangulation if we add a vertex in each face and connect it to the
vertices of the face with edges. A polygonal subdivision can be created using some
of the geometric developments in the next chapter. One has to find a finite covering
of small sets Bj that have boundaries with positive geodesic curvature. These form
a big Venn-type subdivision of the surface. If the sets are chosen appropriately this
will also be a polygonal subdivision.

Definition 6.6.6. The Euler characteristic of a polygonal subdivision is de-
fined as the alternating sum: � = V � E + F where F is the number of faces and
E, V the number of edges and vertices not counted with multiplicity.

Example 6.6.7. If we take a smooth simple closed curve on a sphere then we
obtain a polygonal subdivision where F = 2, E = 0, and V = 0. If we triangulate
the sphere using the tetrahedron then F = 4, E = 6, and V = 4. In either case
� = 2.

We will first use geometry to show that the Euler characteristic is a numerical
topological invariant of the surface. Below we indicate how closed oriented surfaces
are classified and how the Euler characteristic is constrained to be  2.

Theorem 6.6.8. Let M be an oriented closed surface, thenˆ
M

KdA = 2⇡�,
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for any polygonal subdivision of M . In particular, � does not depend on the polyg-
onal subdivision.

Proof. The orientation is used so that integration has a consistent sign when
we switch parametrizations.

We consider a polygonal subdivision with F polygons. Each nj-gon is denoted
by Pj . The local version of Gauss-Bonnet for each polygon can be written:

ˆ
P j

KdA = �
ˆ Lj

0
gds+ 2⇡ �

nj
X

ij=1

✓ij

= �
ˆ Lj

0
gds+ 2⇡ � ⇡nj +

nj
X

ij=1

↵ij ,

where ↵ij is the interior angle. The global formula is now gotten by adding up
these contributions. When doing this it is important to orient each polygon so that
the winding number is 1. Each edge occurs in exactly two adjacent polygons, but
the edge will have the opposite orientation in each of the polygons when we insist
that they both have winding number 1. Thus the geodesic curvature changes sign
and those terms cancel each other in the sum.ˆ

M

KdA =
F
X

j=1

ˆ
Pj

KdA

= 2⇡F �
F
X

j=1

⇡nj +
F
X

j=1

nj
X

ij=1

↵ij

= 2⇡ (F � E + V ) .

Here the last equality follows from the fact that at each vertex the interior angles
add up to 2⇡, while n1 + · · ·+ nF = 2E since each edge gets counted twice in that
sum.

This shows that F � E + V does not depend on what subdivision we picked.
Given that information we observe that

´
M

KdA does not vary if we change the
first fundamental form on a given abstract surface as we can always use the same
subdivision regardless of what the first fundamental form is. ⇤

Definition 6.6.9. The genus g of an orientable closed surface is the maximum
number of disjoint simple closed curves whose complement is connected. Orientabil-
ity is used to guarantee that any simple closed curve has a well-defined right and
and left hand side, i.e., it locally divides the surface in two. Globally, the comple-
ment might still be connected. Note that the Jordan curve theorem implies that
g = 0 for the sphere.

Using g surgeries (see proof below) one can obtain a closed surface with g = 0.
We shall be concerned with the opposite question: What can we say about a closed
oriented surface with g = 0 and more generally about a surface with genus g?

It is easy to construct surfaces of genus g by adding g handles to a sphere. The
next theorem explains why there are no other orientable surfaces.

Theorem 6.6.10. An oriented surface with genus g has � = 2 � 2g and is a
sphere with g handles attached.
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Proof. We will fix a triangulation for a closed oriented surface. A simple cycle
in a triangulation is a simple closed loop of edges, i.e. each vertex and edge only
appears once as we run around in the loop. We can then redefine the genus as the
maximum number of simple cycles whose complement is connected.

Surgery for a triangulation is defined by cutting along a simple cycle whose
complement is connected and adding two pyramids to create a new surface with a
triangulation. This reduces the genus and increases � by 2. The latter is because
the simple cycle has the same number of edges and vertices and thus does not
contribute to �. For each pyramid we add the same number of faces and edges
and 1 vertex. Thus � is increased by 1 for each of the two pyramids. Now g such
surgeries will result in a triangulated surface with g = 0 where � has been reduced
by 2g. In case we have a triangulated surface with g = 0 it is believable that it
must be a sphere and we will give the proof below. If we reverse the surgeries, then
we are adding handles to the sphere. Thus showing that the original surface was a
sphere with g handles.

Recall that faces and edges do not include their boundary points. Consider a
collection of faces, edges, and vertices whose union is homeomorphic to an open
disc and has � = V �E + F = 1. The boundary consists of the edges and vertices
that meet the faces in the collection, but are excluded from being part of the union.
Since the collection is an open set it can’t contain a vertex without also including
all edges and faces that have the vertex on their boundaries. However, it is possible
for it to contain two adjacent faces without the common edge. In particular, such
a collection could contain all faces in the triangulation and still have nonempty
boundary. Note that in defining � for such a collection we only count the vertices
and edges included, not the remaining vertices and edges that meet the faces, those
are included in the boundary. The simplest example of such a collection is a single
face.

The claim is that any surface contains a collection that forms an open disc with
� = 1; includes all faces in the triangulation; and such that the boundary graph is
connected and has no branches, i.e., there are no vertices that are met by just one
edge.

Consider any collection whose union is an open disc with � = 1 and whose
boundary is connected.

Faces outside this collection that meet the boundary either do so in one, two, or
three edges. Regardless of which situation occurs we can add the face and exactly
one of the edges that is also an edge for a face in the collection. This keeps the
properties that the collection forms an open disc with � = 1. To be specific, note
that the open half-disc

H =
n

(x, y) 2 (�1, 0)⇥ R |
p

x2 + y2 < 1
o

and when with a wedge added

H [ {(x, y) 2 [0, 1]⇥ R | |y| < a (1� x) , 0 < a  1}
are both homeomorphic to open discs. Note that the boundary still has all of the
original vertices, one edge is deleted, and the other two edges and vertex of the
added face are added. Thus the boundary stays connected. Now continue this
process until all faces in the triangulation of the surface have been included.

Next we eliminate branches from the boundary. If the boundary contains a ver-
tex that is met by exactly one edge, then add the vertex and edge to the collection.



6.7. CLOSED AND CONVEX SURFACES 169

This keeps the properties that the collection forms an open disc with � = 1. To be

specific, note that all of the open sets
n

(x, y) 2 R2 |
p

x2 + y2 < 1, x � a > �1
o

are homeomorphic to open discs. When we delete a vertex and edge, we are essen-
tially just increasing a. Clearly the boundary stays connected. Continue this until
there are no branches on the boundary.

We can now characterize the sphere as the only surface with g = 0. In this
case the boundary of the open disc with � = 1 that includes all faces can’t contain
any simple cycles since the complement of the boundary is the open disc and hence
connected. If there are no branches, then it can only be a single vertex. This
implies that � = 2 and that the surface is a sphere. ⇤

Exercises.

(1) Show that for a triangulation of a closed surface we have:
(a) E 

�

V
2

�

,

(b) E 
�

F
2

�

,
(c) 2E = 3F ,
(d) E = 3 (V � �),
(e) F � V ,
(f) V � 1

2

�

7 +
p
1 + 48g

�

,
(g) When g = 0 show that at least one vertex has degree  5. The degree

of a vertex is the number of edges that meet the vertex.
(h) When g � 1 show that at least one vertex has degree 1

2

�

7 +
p
1 + 48g

�

�
1.
The number 1

2

�

7 +
p
1 + 48g

�

is also known as the coloring number of
the of the surface. The fact that any map on a surface can be colored with
at most that many colors is the famous 4-coloring conjecture/theorem for
the sphere. Heawood established the result for surfaces of genus g � 1
by showing that (h) holds. The same method shows that (g) implies that
maps on the sphere can be 6 colored. Heawood also showed that maps on
the sphere can be 5 colored. It was not until 1968 that Ringel and Youngs
showed that this is the correct coloring number when g � 1. The 4 color
problem (g = 0) was solved by Appel and Haken in 1977.

6.7. Closed and Convex Surfaces

Proposition 6.7.1. A closed surface M ⇢ R3 has the property that the Gauss
map is onto. There are no closed space-like surfaces M ⇢ R2,1.

Proof. The proof in either case consider f (p) = p · n for a fixed n 2 R3. At
a maximum point this vector will be the normal vector.

In the case of M ⇢ R2,1 it follows that there will be both time-like and space-
like normal vectors. That’s impossible if all tangent spaces are space-like as that
forces the normals to be time-like. ⇤

Proposition 6.7.2. A closed surface M ⇢ R3 has points where both principal
curvatures are positive.

Proof. Consider f (p) = |p|2. Take a maximum and show that both principal
curvatures are bigger than 1/|p| at such points (see also 2.5.3.) ⇤

Abstract surface with g = 0 also has points with K > 0 by G-B.
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Theorem 6.7.3. (Liebmann, 1900) If M ⇢ R3 is closed and has constant
Gauss curvature, then it is a constant curvature sphere.

Proof. First note that the surface must has positive curvature. Next observe
that since the surface is closed and K = 1 ·2 is constant. It follows that when 1

has a minimum, then 2 has a maximum. Hilbert’s lemma (see section 6.4 exercise
5) then tells us that the principal curvatures must be equal and constant. ⇤

Theorem 6.7.4. If M ⇢ R3 is closed and has constant mean curvature, then
it is a constant curvature sphere.

Proof. Same proof as above. ⇤
Theorem 6.7.5. (Hadamard, 1897) Let M ⇢ R3 be a closed surface with K >

0, then the Gauss map is a di↵eomorphism and M is convex.

Proof. First observe that N : M ! S2 (1) is has nonsingular di↵erential
everywhere as detDN = K > 0. The global Gauss-Bonnet theorem tells us that

0 <

ˆ
M

KdA = 2⇡� (M) .

This implies that � (M) = 2.
Show N is onto by above proposition
Show N is one-to-one by contradiction as otherwise we can find a small open

set O ⇢ M such that N is onto when restricted to M �O. This implies

4⇡ =

ˆ
M�O

KdA+

ˆ
O

KdA = 4⇡ +

ˆ
O

KdA > 4⇡.

Consider the signed height function to the tangent plane at a point p 2 M :

f (x) = (x� p) ·Np

This has exactly two critical points where Nx = ±Np. These correspond to the
maximum and minimum. Assume p is the minimum. Then f (x) > 0 for all
x 6= p. ⇤

Theorem 6.7.6. Any two simple closed geodesics on a closed surface with K >
0 intersect.

Proof. If they don’t intersect then there is an annular region with K > 0
where the boundary curves have no geodesic curvature. This violates G-B. See also
theorem 7.8.4 for a di↵erent proof. ⇤

Remark 6.7.7. One can reprove the results in this section for isometric im-
mersions F : M ! R3 when M is oriented. In particular, it will follow that all such
immersions are embeddings when K > 0.



CHAPTER 7

Geodesics and Metric Geometry

This chapter covers the basics of geodesics and their properties as shortest
curves. We also give models for constant curvature spaces and calculate the geodesics
in these models. We discuss isometries and the local/global classification of sur-
faces with constant Gauss curvature. The chapter ends with a treatment of a few
classical comparison theorems. Virtually all results have analogues for higher di-
mensional Riemannian manifolds, but certain proofs are a bit easier for surfaces.
It will be noted that there is no mention of parallel translation although we do in-
troduce second partial derivatives for 2-parameter maps in to an abstract surface.
This is more or less in line with the classical treatment as parallel translation was
not introduced until the early part of the 20th century. It also eases the treatment
quite a bit.

Throughout we study abstract surfaces, but note that many calculations are
much easier if we think of the surfaces as sitting in R3.

7.1. Geodesics

Definition 7.1.1. A curve q on a surfaceM is called a geodesic if the tangential
part of the acceleration vanishes q̈I = 0, or specifically

d2u

dt2
+ �u (q̇, q̇) = 0,

d2v

dt2
+ �v (q̇, q̇) = 0.

When M ⇢ R3 this is equivalent to saying that q̈ is normal to the surface or that
q̈ = q̈II = NII (q̇, q̇).

Proposition 7.1.2. A geodesic has constant speed.

Proof. Let q (t) be a geodesic. We compute the derivative of the square of
the speed:

d

dt
I (q̇, q̇) =

d

dt
(q̇ · q̇) = 2q̈ · q̇ = 2II (q̇, q̇)N · q̇ = 0

since N and q̇ are perpendicular. Thus q has constant speed.
There is also a purely intrinsic proof that works for abstract surfaces. Since it

is convenient to do this proof in a more general context it will be delayed until the
end of the next section. ⇤

Next we address existence of geodesics.

Theorem 7.1.3. Given a point p = q (u0, v0) and a tangent vector V =
V u @q

@u (u0, v0)+V v @q
@v (u0, v0) 2 TpM there is a unique geodesic q (t) = q (u (t) , v (t))
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defined on some small interval t 2 (�", ") with the initial values

q (0) = p,

q̇ (0) = V.

Proof. The existence and uniqueness part is a very general statement about
solutions to di↵erential equations (see theorem A.5.1). In this case we note that in
the (u, v) parameters we must solve a system of second order equations

d2u

dt2
= �

⇥

du
dt

dv
dt

⇤



�u
uu �u

uv

�u
vu �u

vv

� 

du
dt
dv
dt

�

,

d2v

dt2
= �

⇥

du
dt

dv
dt

⇤



�v
uu �v

uv

�v
vu �v

vv

� 

du
dt
dv
dt

�

,

with the initial values

(u (0) , v (0)) = (u0, v0) ,

(u̇ (0) , v̇ (0)) = (V u, V v) .

As long as the Christo↵el symbols are su�ciently smooth there is a unique solution
to such a system of equations given the initial values. The domain (�", ") on which
such a solution exists is quite hard to determine. It’ll depend on the domain of
parameters U , the initial values, and Christo↵el symbols. ⇤

This theorem allows us to find all geodesics on spheres and in the plane without
calculation.

Example 7.1.4. In R2 straight lines q (t) = p+ vt are clearly geodesics. Since
these solve all possible initial problems there are no other geodesics.

Example 7.1.5. On S2 we claim that the great circles

q (t) = q cos (|v| t) + v

|v| sin (|v| t) ,

q 2 S2,

q · v = 0

are geodesics. Note that this is a curve on S2, and that q (0) = q, q̇ (0) = v. The
acceleration as computed in R3 is given by

q̈ (t) = �q |v|2 cos (|v| t)� v |v| sin (|v| t) = � |v|2 q (t)

and is consequently normal to the sphere. In particular q̈I = 0. This means that
we have also solved all initial value problems on the sphere.

Depending on our parametrization (u, v)-geodesics can be pictured in many
ways. We’ll study a few models or parametrizations of the sphere where geodesics
take on some familiar shapes and can be described directly by equations rather
than in parametrized form.

Unit Sphere Model: Consider the sphere where great circles and hence
geodesics are described by the two equations:

ax+ by + cz = 0,

x2 + y2 + z2 = 1.

Given a specific geodesic q (t) = q cos (|v| t)+ v
|v| sin (|v| t) we can use (a, b, c) = q⇥v.
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Elliptic Model: If we use the Monge patch
�

u, v,
p
1� u2 � v2

�

on the upper
hemisphere, i.e., project to the (x, y)-plane along the z-axis, then the equations of
the geodesics become

�

a2 + c2
�

u2 + 2abuv +
�

b2 + c2
�

v2 = c2.

These are the equations of ellipses whose axes go through the origin and are in-
scribed in the unit circle. This is how you draw great circles on the sphere!

Beltrami Model: If we use the parametrization

1p
1 + u2 + v2

(u, v, 1)

on the upper hemisphere, i.e., x
z = u, y

z = v, then these equations simply become
straight lines in (u, v) coordinates:

au+ bv + c = 0.

This reparametrization was also discussed in section 4.5 exercise 8, where it was
called the Beltrami projection. It is simply the projection of the upper hemisphere
along radial lines to the tangent plane {z = 1} at the North pole.

Conformal Model: The radial projection that was used for the Beltrami
model is an example of a perspective projection, i.e., a projection along radial lines
from a point to a plane that does not pass through this point. The stereographic
parametrization from section 4.5 exercise 5 is projection along lines through (0, 0, 1)
to the (x, y)-plane. In this model the upper hemisphere is parametrized as

q+ (x, y) =
1

1 + u2 + v2
�

2u, 2v, u2 + v2 � 1
�

.

One can show that this is a conformal or isothermal parametrization. The geodesics
are either straight lines through the origin:

au+ bv = 0

or when c 6= 0 we can normalize so that c = 1 in which case the geodesics become
circles

(u+ a)2 + (v + b)2 = 1 + a2 + b2.

Next we consider hyperbolic space.
Imaginary Unit Sphere Model: We defined hyperbolic space H ⇢ R2,1 in

example 6.2.2 as the the imaginary unit sphere with z > 0, specifically it is the
rotationally symmetric surface

x2 + y2 � z2 = �1, z � 1

with a metric that is inherited from the space-time inner product structure. Observe
that the tangent space can be characterized as

TqM =
�

v 2 R2,1 | v · q = 0
 

.

This means that the normal is be given by N (q) = q. In analogy with the sphere
we consider the curves

q (t) = q cosh (|v| t) + v

|v| sinh (|v| t) ,

q 2 H,

v 2 TqH.
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Since q · v = 0 this is a curve on H with q (0) = q, q̇ (0) = v. Note also that it lies
in the plane spanned by q and v.

The acceleration as computed in R2,1 is given by

q̈ (t) = q |v|2 cosh (|v| t) + v |v| sinh (|v| t) = |v|2 q (t) .

In particular, it has no tangential component and thus has vanishing intrinsic ac-
celeration (see also remark 6.3.3).

If we use (a, b, c) = q ⇥ v, then we also obtain the equation form:

ax+ by + cz = 0,

x2 + y2 � z2 = �1, z � 1.

Note that for these planes to intersect the surface it is necessary to assume that:

c2 < a2 + b2.

Hyperbolic Model: This is the orthogonal projection onto the (x, y)-plane.
The parametrization is a Monge patch and is given by

�

u, v,
p
1 + u2 + v2

�

. The
geodesics will be straight lines through the origin when c = 0 and hyperbolas whose
asymptotes are lines through the origin when 0 < c2 < a2 + b2:

�

a2 � c2
�

u2 + 2abuv +
�

b2 � c2
�

v2 = c2.

Recall that the level sets to quadratic equations:

↵x2 + 2�xy + �y2 = R2

are ellipses centered at the origin when ↵���2 > 0 and hyperbolas with asymptotes
that pass through the origin when ↵� � �2 < 0.

Beltrami Model: The Beltrami model comes from a perspective projection
along radial lines through the origin to the plane z = 1. It gives us the parametriza-
tion

1p
1� u2 � v2

(u, v, 1) , u2 + v2 < 1.

And the geodesics are straight lines:

au+ bv + c = 0.

Conformal Models: Stereographic projection along radial lines through (0, 0, 1)
to the (x, y)-plane gives the Poincaré model. The parametrization is given by:

1

1� u2 � v2
�

2u, 2v,�
�

1 + u2 + v2
��

, u2 + v2 < 1.

It is also called the unit disc model since the open disc is the domain for the
parameters. One can show that this parametrization is conformal or isothermal.
The geodesics are either straight lines through the origin

au+ bv = 0

or when c 6= 0 and we scale so that c = 1 circles centered outside the unit disc:

(u� a)2 + (v � b)2 = a2 + b2 � 1, a2 + b2 > 1.
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The upper half plane model comes from a conformal transformation of the the
upper half plane to the unit disc (see section 4.5 exercise 6). This map is given by

F (x, y) =
1

x2 + (y + 1)2
�

2x, 1� x2 � y2
�

.

The geodesics will again be lines and circles but F does not necessarily take lines
to lines. The lines are all vertical:

x = 0, when c = 0, b = 0,

or

x = 1/a, when c = 1, b = �1,

and the circles have centers along the x-axis

⇣

x� a

b

⌘2
+ y2 = 1 +

a2

b2
, when c = 0,

or
✓

x� a

b+ 1

◆2

+ y2 =
a2 + b2 � 1

(b+ 1)2
, when c = 1.

It is interesting to note that for the sphere only the unit sphere model actually
covers the entire sphere. In contrast, all of the models for hyperbolic space are
equivalent in the sense that they are models for all of hyperbolic space, not just
part of it.

Definition 7.1.6. An abstract surface is said to be geodesically complete if all
geodesics exist for all time t 2 R. It is said to be geodesically complete at a point,
if all geodesics through that point are defined for all time.

Example 7.1.7. The unit sphere, all of the above models for hyperbolic space,
and all planes are geodesically complete.

As we have seen, it is often simpler to find the unparametrized form of the
geodesics, i.e., in a given parametrization they are easier to find as an equation or
as functions u (v) or v (u) . There is in fact a tricky characterization of geodesics
that does not refer to the arc-length parameter. The idea is that a regular curve
can be reparametrized to be a geodesic if and only if its tangential acceleration q̈I

is tangent to the curve.

Lemma 7.1.8. A regular curve q (t) = q (u (t) , v (t)) can be reparametrized as
a geodesic if and only if

dv

dt

✓

d2u

dt2
+ �u (q̇, q̇)

◆

=
du

dt

✓

d2v

dt2
+ �v (q̇, q̇)

◆

.

Proof. First observe that this formula holds i↵ � (t) q̇ (t) = q̈I (t) for some
function �.



7.1. GEODESICS 176

If we reparametrize the curve, then the velocity satisfies: q̇ (t) = ds
dt q̇ (s). For

the acceleration we calculate in coordinates:

d2u

dt2
+ �u (q̇, q̇) =

d2s

dt2
du

ds
+

✓

ds

dt

◆2 d2u

ds2
+ �u

✓

ds

dt

dq

ds
,
ds

dt

dq

ds

◆

=
d2s

dt2
du

ds
+

✓

ds

dt

◆2 d2u

ds2
+

✓

ds

dt

◆2

�u

✓

dq

ds
,
dq

ds

◆

=
d2s

dt2
du

ds
+

✓

ds

dt

◆2✓d2u

ds2
+ �u

✓

dq

ds
,
dq

ds

◆◆

.

Similarly

d2v

dt2
+ �v (q̇, q̇) =

d2s

dt2
dv

ds
+

✓

ds

dt

◆2✓d2v

ds2
+ �v

✓

dq

ds
,
dq

ds

◆◆

.

It follows that

q̈I (t) =
d2s

dt2
q̇ (s) +

✓

ds

dt

◆2

q̈I (s) .

This shows first of all that, if q (s) is a geodesic, then q̈I (t) = d2s
dt2 q̇ (s) as

claimed. Conversely assume that � (t) q̇ (t) = q̈I (t). Then

� (s)
ds

dt
q̇ (s) =

d2s

dt2
q̇ (s) +

✓

ds

dt

◆2

q̈I (s) .

So q̈I (s) = µ (s) q̇ (s) for some function µ. If we assume that s is the arclength
parameter, then we also know that

0 = I
�

q̈I (s) , q̇ (s)
�

= µ (s) .

This shows that q̈I (s) = 0. ⇤
Exercises.

(1) Let q (t) be a unit speed curve on a surface with normal N. Show that it
is a geodesic if and only if

det [q̇, q̈,N] = 0.

(2) Let q (t) be a unit speed curve on a surface. Show that

|g| =
�

�q̈I
�

� .

(3) Consider a unit speed curve q (t) on a surface of revolution

q (u, µ) = (r (u) cosµ, r (u) sinµ, z (u)) ,

where the profile curve (r (u) , z (u)) is unit speed. Let ✓ (t) denote the
angle with the meridians.
(a) (Clairaut) Show that r sin ✓ is constant along q (t) if it is a geodesic.
(b) We say that q (t) is a loxodrome if ✓ is constant. Show that if all

geodesics are loxodromes then the surface is a cylinder.
(4) Let q (t) be a unit speed geodesic on a surface in space. Show that

0 = g,

 = n,

⌧ = ⌧g,
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where  and ⌧ are the curvature and torsion of q (t) as a space curve.
(5) Show that in the conformal model of the unit sphere the geodesics that

pass through (u, v) = (1, 0) all have center on the v-axis. Show that all
initial value problems can be solved.

(6) Show that if a unit speed curve on a surface also lies in a plane that is
perpendicular to the surface, then it is a geodesic.

(7) Show that geodesics satisfy a second order equation of the type

d2v

du2
= A

✓

dv

du

◆3

+B

✓

dv

du

◆2

+ C
dv

du
+D

and calculate the functionsA,B,C,D in terms of the appropriate Christof-
fel symbols and metric coe�cients.

(8) (Beltrami) Assume that q (u, v) is a parametrized surface with the prop-
erty that all geodesics are lines in the domain U , i.e.,

au+ bv + c = 0, (a, b) 6= (0, 0) .

(a) Show that

�v
uu = �u

vv = 0,

�u
uu = 2�v

uv,

�v
vv = 2�u

uv.

Hint: Use lemma 7.1.8 and parametrize the curve by u or v.
(b) Use the Gauss equations

gvvK = Ru
uvv,

guuK = Rv
vuu,

gvuK = �Rv
uvv,

gvuK = �Ru
vuu,

together with the definitions of Rl
ijk to show that

0 =
⇥

@K
@v �@K

@u

⇤



guu guv
gvu gvv

�

.

(c) Conclude that the Gauss curvature is constant.

7.2. Mixed Partials

We need to generalize the intrinsic acceleration to also include mixed partial
derivatives. The formulas obtained in section 6.3 will guide us.

Instead of just having a curve q (t) = q (u (t) , v (t)) within a parametrization
we assume that we have a family of curves q (s, t) = q (u (s, t) , v (s, t)) such that
for each s there is a curve parametrized by t. We shall generally assume that
(s, t) 2 (�✏, ✏) ⇥ [a, b]. In this case such a family of curves is called a variation
of the base curve q (t) = q (0, t). Note that q (s, t) does not have to be a valid
parametrization of the surface.

To ease the notation we will use the conventions qw (s, t) = w (s, t) so that we

can write @sqw = @w
@s , @t@sq

w = @2w
@t@s , etc, and also use @t@sqi with i in place of w.
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We also define

�w (X,Y ) =
X

i,j=u,v

�w
ijX

iY j =
⇥

Xu Xv
⇤



�w
uu �w

uv

�w
vu �w

vv

� 

Y u

Y v

�

.

Keeping t or s fixed we already have that

✓

@2q

@s2

◆I

(s, t) =
�

@2
su+ �u (@sq, @sq)

�

@uq+
�

@2
sv + �v (@sq, @sq)

�

@vq

=
X

i=u,v

�

@2
sq

i + �i (@sq, @sq)
�

@iq.

and
✓

@2q

@t2

◆I

(s, t) =
X

i=u,v

�

@2
t q

i + �i (@tq, @tq)
�

@iq.

Moreover, when the surface lies in R3, then these intrinsic second partials are in
fact the tangential components of the second partials in R3.

The intrinsic mixed partial is similarly defined as

✓

@2q

@s@t

◆I

(s, t) =
X

i=u,v

�

@s@tq
i + �i (@sq, @tq)

�

@iq.

This mixed partial also commutes commutes since

@2w

@s@t
=

@2w

@t@s

and

�w

✓

@q

@s
,
@q

@t

◆

= �w

✓

@q

@t
,
@q

@s

◆

.

We can also show that all possible product formulas for taking derivatives hold:

@sI (@sq, @tq) = I
⇣

�

@2
sq
�I
, @tq

⌘

+ I
⇣

@sq, (@s@tq)
I
⌘

,

@sI (@tq, @tq) = 2I
⇣

@tq, (@s@tq)
I
⌘

,

@sI (@sq, @sq) = 2I
⇣

�

@2
sq
�I
, @sq

⌘

,

@tI (@sq, @tq) = I
⇣

(@t@sq)
I , @tq

⌘

+ I
⇣

@sq,
�

@2
t q
�I
⌘

,

@tI (@sq, @sq) = 2I
⇣

@sq, (@t@sq)
I
⌘

,

@tI (@tq, @tq) = 2I
⇣

@tq,
�

@2
t q
�I
⌘

.

The proofs are all similar so we concentrate on the first. The essential idea is that
we have the product formula

@sgij = �sij + �sji

directly from the abstract definition of the Christo↵el symbols as in section 6.2.
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@sI (@sq, @tq)

= @s
�

gij@sq
i@tq

j
�

= @s (gij) @sq
i@tq

j + gij@
2
sq

i@tq
j + gij@sq

i@s@tq
j

= (@kgij) @sq
k@sq

i@tq
j + gij@

2
sq

i@tq
j + gij@sq

i@s@tq
j

= (�kij + �kji) @sq
k@sq

i@tq
j + gij@

2
sq

i@tq
j + gij@sq

i@s@tq
j

= �kij@sq
k@sq

i@tq
j + gij@

2
sq

i@tq
j

+@sq
i�kji@sq

k@tq
j + gij@sq

i@s@tq
j

= glj�
l
ki@sq

k@sq
i@tq

j + gij@
2
sq

i@tq
j

+gil@sq
i�l

kj@sq
k@tq

j + gij@sq
i@s@tq

j

= gij�
i
kl@sq

k@sq
l@tq

j + gij@
2
sq

i@tq
j

+gij@sq
i�j

kl@sq
k@tq

l + gij@sq
i@s@tq

j

= gij
�

�i (@sq, @sq) + @2
sq

i
�

@tq
j

+gij@sq
i
⇣

�j
kl@sq

k@tq
l + @s@tq

j
⌘

= I
⇣

�

@2
sq
�I
, @tq

⌘

+ I
⇣

@sq, (@s@tq)
I
⌘

.

Finally we should also justify why these second partial derivatives do not de-
pend on the initial (u, v)-parametrization. This could be done via a notationally
nasty change of parameters or by a more general formula that doesn’t depend a
parametrization. This general formula, however, also has a defect in that it involves
a new variable r so that w = w (r, s, t):

2I
⇣

(@s@tq)
I , @rq

⌘

= @sI (@tq, @rq) + @tI (@sq, @rq)� @rI (@sq, @tq) .

Here the right hand side can be calculated independently of a (u, v)-parametrization.
Since we can think of the r-variable as being anything we please, this implicitly cal-
culates (@s@tq)

I. The proof of this identity comes from from using the product rule
on each on the terms on the right hand side and using that the intrinsic mixed
partials commute:

@sI (@tq, @rq) + @tI (@sq, @rq)� @rI (@sq, @tq)

= I
⇣

(@s@tq)
I , @rq

⌘

+ I
⇣

@tq, (@s@rq)
I
⌘

+I
⇣

(@t@sq)
I , @rq

⌘

+ I
⇣

@sq, (@t@rq)
I
⌘

�
⇣

I
⇣

(@r@sq)
I , @tq

⌘

+ I
⇣

@sq, (@r@tq)
I
⌘⌘

= 2I
⇣

(@s@tq)
I , @rq

⌘

.

Proposition 7.2.1. Let q (t) be a curve on a surface M . q has constant speed
if and only if its intrinsic acceleration is perpendicular to the speed.

Proof. The proof is now a simple calculation using the product rule for in-
trinsic second derivatives:

d

dt
I (q̇, q̇) = 2I

�

q̈I, q̇
�

.



7.3. SHORTEST CURVES 180

⇤

7.3. Shortest Curves

The goal is to show that the shortest curves are geodesics.
In the last section we considered variations q (s, t) = q (u (s, t) , v (s, t)) where

(s, t) 2 (�✏, ✏)⇥ [a, b]. The variational field of q (t) = q (0, t) is given by the tangent
vectors V (t) = @q

@s (0, t) along the curve. The first proposition shows that any such
field V (t) 2 T

q(t)M comes from a variation.

Proposition 7.3.1. For any curve q (t), t 2 [a, b] and tangent field V (t) 2
T
q(t)M , there is a variation whose variational field is V (t).

Proof. For each V (t) let s 7! q (s, t) be the unique geodesic with q (0, t) =
q (t) and @q

@s (0, t) = V (t). The fact that [a, b] is compact shows that we can find
✏ > 0 so that q (s, t) is defined on (�✏, ✏)⇥ [a, b].

The fact that the geodesics depend smoothly on the initial values shows that
the variation is a smooth as q (t) and V (t). In particular, if q (t) is only piecewise
smooth, then the variation will also consist of piecewise smooth curves that break
at exactly the same points. ⇤

Definition 7.3.2. The length of a curve is defined as

L (q) =

ˆ b

a

|q̇| dt

and the (kinetic) energy as

E (q) =
1

2

ˆ b

a

|q̇|2 dt.

We know that the length of a curve does not change if we parametrize it. This
is very far from true for the energy. You might even have noticed this yourself in
terms of gas consumption when driving. Stop and go city driving consumes far
more gas, than the more steady driving on an empty stretch of road on the country
side. On the other hand this feature of the energy has the advantage that minima
or stationary points for the energy functional come with a fixed parametrization.

Lemma 7.3.3 (First Variation Formula). Consider a smooth variation q (s, t),
(s, t) 2 (�✏, ✏)⇥ [0, 1], with base curve q (t) = q (0, t), then

d

ds

1

2

ˆ 1

0
I (q̇, q̇) dt = I (@sq, @tq)|10 �

ˆ 1

0
I
�

@sq, q̈
I
�

dt.

If 0 = a0 < a1 < · · · < an = 1 and the variation is smooth when restricted to
(�✏, ✏)⇥ [ai�1, ai], then

d

ds

1

2

ˆ 1

0
I (q̇, q̇) dt =

n
X

i=1

I (@sq, @tq)|ai

ai�1
�
ˆ 1

0
I
�

@sq, q̈
I
�

dt.

Proof. The calculation is straightforward in the smooth case:
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d

ds

1

2

ˆ 1

0
I (q̇, q̇) dt =

ˆ 1

0
I
⇣

(@s@tq)
I , @tq

⌘

dt

=

ˆ 1

0

⇣

@tI (@sq, @tq)� I
⇣

@sq,
�

@2
t q
�I
⌘⌘

dt

= I (@sq, @tq)|10 �
ˆ 1

0
I
⇣

@sq,
�

@2
t q
�I
⌘

dt

= I (@sq, @tq)|10 �
ˆ 1

0
I
�

@sq, q̈
I
�

dt.

When the variation is only piecewise smooth, then we can break it up into
smooth parts and add the contributions. ⇤

We define ⌦p,q as the space of piecewise smooth curves between points p, q 2 M
parametrized on [0, 1].

Theorem 7.3.4. If a piecewise curve on a surface is stationary for the energy
functional on ⌦p,q, then it is a geodesic.

Proof. We consider a piecewise smooth variation q (s, t) where the base curve
q (t) = q (0, t) corresponds to s = 0. For simplicity assume that there is only one
break point at a. Computing the energy of the curves t ! q (s, t) gives a function
of s. The derivative with respect to s can be calculated as

d

ds

1

2

ˆ 1

0
I (q̇, q̇) dt = I (@sq, @tq)|a0 + I (@sq, @tq)|1a �

ˆ 1

0
I
�

@sq, q̈
I
�

dt.

When all the curves lie in ⌦p,q they have the same end points at t = 0, 1, i.e.,
q (s, 0) = p and q (s, 1) = q for all s. Such a variation is also called a proper
variation. Thus, @q

@s (0, t) = 0 at t = 0, 1 and the formula simplifies to

d

ds

1

2

ˆ 1

0
I (q̇, q̇) dt = I

✓

@sq (a) ,
@q

@t�
(a)� @t+q

@t+
(a)

◆

�
ˆ 1

0
I
�

@sq, q̈
I
�

dt.

By assumption s = 0 is a stationary point for 1
2

´ 1
0 I (q̇, q̇) dt so

0 = I

✓

@sq (a) ,
@q

@t�
(a)� @q

@t+
(a)

◆

�
ˆ 1

0
I
�

@sq, q̈
I
�

dt.

First select the variation so that @sq (0, t) is proportional to the tangential
acceleration q̈I, i.e., @sq (0, t) = µ (t) q̈I, where µ (a) = 0. Then we obtain

0 = �
ˆ 1

0
µ (t)

�

�q̈I
�

�

2
dt.

Since µ can be chosen to be positive on (0, a) [ (a, 1) this shows that q̈I = 0 on
(0, a) [ (a, 1). This shows that each of the two parts of q (t) on [0, a] and [a, 1] are
geodesics.

Next select a variation where

@sq (0, a) =
@q

@t�
(a)� @q

@t+
(a) .

In this case

0 = I

✓

@sq (a) ,
@q

@t�
(a)� @q

@t+
(a)

◆

= I

✓

@q

@t�
(a)� @q

@t+
(a) ,

@q

@t�
(a)� @q

@t+
(a)

◆
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so it follows that
@q

@t�
(a) =

@q

@t+
(a) .

Uniqueness of geodesics, then shows that the two parts of q (t) fit together to form
a smooth geodesic on [0, 1].

Finally any curve of minimal energy is necessarily stationary since the derivative
always vanishes at a minimum for a function. ⇤

Now that we have identified the minima for the energy functional we show that
they are also minima for the length functional.

Lemma 7.3.5. A minimum for the energy functional is also a minimum for the
length functional.

Proof. We start by observing that the Cauchy-Schwarz inequality for the
inner product of functions defined by

(f, g) =

ˆ b

a

f (t) g (t) dt

implies that:

ˆ b

a

|q̇| dt 

sˆ b

a

12dt

sˆ b

a

|q̇|2 dt =
p
b� a

sˆ b

a

|q̇|2 dt,

where equality occurs if |q̇| is constant multiple of 1, i.e., q has constant speed.
When the right hand side is minimized we just saw that q has zero acceleration
and consequently constant speed. Let qmin be a minimum for the energy in ⌦p,q

and q any other curve in ⌦p,q. We further assume that q has constant speed as
reparametrizing the curve won’t change its length. We now have

ˆ 1

0
|q̇min| dt 

sˆ 1

0
|q̇min|2 dt



sˆ 1

0
|q̇|2 dt

=

ˆ 1

0
|q̇| dt

which shows the claim. ⇤
Corollary 7.3.6. If a piecewise smooth curve has constant speed and is a

minimum for the length functional, then it is a minimum for the energy and a
geodesic.

Proof. If qmin is a constant speed minimum for the length functional and
q 2 ⌦p,q, then ˆ 1

0
|q̇min|2 dt =

✓ˆ 1

0
|q̇min| dt

◆2


✓ˆ 1

0
|q̇| dt

◆2


ˆ 1

0
|q̇|2 dt.
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This shows that qmin also minimizes the energy functional and by theorem 7.3.4
that it must be a geodesic. ⇤

Remark 7.3.7. Note that minima for the length functional are not forced to
be geodesics unless they are assumed to have constant speed!

7.4. Short Geodesics

We start by introducing geodesic coordinates along a curve. We then proceed
to do the same construction around a point. This construction is similar but com-
plicated by the fact that our base curve is a fixed point. In Euclidean space this
corresponds to the singularity at the origin when switching from Cartesian to polar
coordinates.

Proposition 7.4.1. Every surface admits geodesic coordinates around every
point.

Proof. Start by choosing a unit speed curve q (v), v 2 [a, b] such that the
specified point q = q (v0) for some v0 2 (a, b). Next select a consistent choice
of unit normal vector S (v) to this curve inside the surface as a variational field.
Then let u 7! q (u, v) be the unique unit speed geodesic with q (0, v) = q (v) and
@uq (0, v) = S (v) to obtain a variation on (�✏, ✏)⇥ [a, b].

Since u 7! q (u, v) is unit speed we have I (@uq, @uq) = 1. Next consider the
inner product I (@uq, @vq). Since @uq (0, v) = S (v) is perpendicular to @vq (0, v) =
@vq (v) this inner product vanishes for all parameters (0, v). If we di↵erentiate the
inner product with respect to u and use the product rule twice we obtain

@uI (@uq, @vq) = I
⇣

�

@2
uq
�I
, @vq

⌘

+ I
⇣

@uq, (@u@vq)
I
⌘

= I
⇣

@uq, (@u@vq)
I
⌘

= I
⇣

@uq, (@v@uq)
I
⌘

=
1

2

⇣

I
⇣

@uq, (@v@uq)
I
⌘

+ I
⇣

(@v@uq)
I , @uq

⌘⌘

=
1

2
(@vI (@uq, @uq))

=
1

2
(@v1)

= 0.

This shows that I (@uq, @vq) is constant along u-curves and vanishes at u = 0. Thus
it vanishes everywhere.

Finally define gvv = I (@vq, @vq). It now just remains to note that gvv (0, v) = 1
and gvv (u, v) is continuous. Thus we can, after possibly decreasing ✏, assume
that gvv > 0 on all of the region (�✏, ✏) ⇥ [a, b]. This shows that the velocity
fields @uq and @vq never vanish and are always orthogonal. Thus they give the
desired parametrization. We can then further restrict the domain around (0, v0)
if we wish to obtain a coordinate system where the parametrization is a local
di↵eomorphism. ⇤

We now fix a point p 2 M . For a tangent vector X 2 TpM , let qX be the
unique geodesic with q (0) = p and q̇(0) = X, and [0, bX) the non-negative part
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of the maximal interval on which q is defined. Notice that uniqueness of geodesics
implies the homogeneity property : q↵X(t) = qX(↵t) for all ↵ > 0 and t < b↵X . In
particular, b↵X = ↵�1bX . Let Op ⇢ TpM be the set of vectors X such that 1 < bX .
In other words qX(t) is defined on [0, 1].

Definition 7.4.2. The exponential map at p, expp : Op ! M , is defined by

expp(X) = qX(1).

The homogeneity property qX(t) = qtX(1) shows that expp (tX) = qX (t).
Therefore, it is natural to think of expp(X) in a polar coordinate representation,

where from p one goes “distance” |X| in the direction of X
|X| . This gives the point

expp(X), since q X
|X|

(|X|) = qX(1).

It is an important property that expp is in fact a local di↵eomorphism around
0 2 TpM .

Proposition 7.4.3. For each p 2 M there exists ✏ > 0 so that B (0, ✏) ⇢ Op ⇢
TpM and the di↵erential D expp is nonsingular at the origin. Consequently, expp
is a local di↵eomorphism.

Proof. By theorem A.5.1 there exists ✏ > 0 such that qX(t) is defined on
[0, 2✏) for all unit vectors X 2 TpM . The homogeneity then shows that B (0, ✏) ⇢
Op.That the di↵erential is non-singular also follows from the homogeneity property
of geodesics. For a fixed vector X 2 TpM we just saw that

expp (tX) = qX (t)

and thus
�

D expp
�

(X) =
d

dt
|t=0 expp (tX)

= q̇X (0)

= X.

This shows that the di↵erential is the identity map and in particular non-singular.
The second statement follows from the inverse function theorem. ⇤

We can now introduce Gauss’s version of geodesic polar coordinates.

Lemma 7.4.4 (Gauss Lemma). Around any point p 2 M it is possible to intro-
duce polar geodesic coordinate parameters q (r, ✓) where the r-parameter curves are
the unit speed geodesics emanating from p and

[I] =



1 0
0 g✓✓

�

.

Proof. Pick ✏ > 0 such that expp : B(0, ") ! B = expp (B(0, ")) is a di↵eo-
morphism. Then r(q) = | exp�1

p (q)| is well-defined for all q 2 B. Note that r is
simply the Euclidean distance function from the origin on B(0, ") ⇢ TpM in expo-
nential coordinates. This function can be continuously extended to B̄ by defining
r (@B) = ". Select an orthonormal basis E1, E2 for TpM and introduce Cartesian
coordinates (x, y) on TpM . These parameters are then also used on B via the
exponential map q (x, y) = expp (xE1 + yE2). We define the polar coordinates by

x = r cos ✓, y = r sin ✓
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and note that

r =
p

x2 + y2,

@rq =
x

r
@xq+

y

r
@yq,

@✓q = �y@xq+ x@yq.

Observe that @rq is not defined at p, while @✓q is defined on all of B even though the
angle ✓ is not. We now need to check what the first fundamental form looks like in
polar coordinates. First note that the r-parameter curves by definition have velocity
@rq. On the other hand via the exponential map they correspond to unit speed
radial lines rX, where |X| = 1. This means that they are of the form expp (rX) =
qX (r) and are unit speed geodesics. This shows that grr = I (@rq, @rq) = 1. To
show that gr✓ = 0 we first calculate its derivative

@rI (@rq, @✓q) = I
⇣

�

@2
rq
�I
, @✓q

⌘

+ I
⇣

@rq, (@r@✓q)
I
⌘

= 0 + I
⇣

@rq, (@✓@rq)
I
⌘

=
1

2
@✓I (@rq, @rq)

= 0.

Thus I (@rq, @✓q) is constant along geodesics emanating from p. To show that it
vanishes it is tempting to simply evaluate at p since @✓q vanishes there. However,
@rq is undefined so we use a limit argument. First observe that

|I (@rq, @✓q)|  |@rq| |@✓q|
= |@✓q|
 |x| |@yq|+ |y| |@xq|
 r (|@xq|+ |@yq|) .

Continuity of D expp shows that @xq, @yq are bounded near p. Thus I (@rq, @✓q) !
0 as r ! 0. This forces I (@rq, @✓q) = 0.

Finally we can just define g✓✓ = I (@✓q, @✓q) and note that it is positive as @✓q
only vanishes at p. ⇤

Theorem 7.4.5. Let M be a surface, p 2 M, and " > 0 chosen such that

expp : B (0, ") ! B ⇢ M

is a di↵eomorphism onto its image B ⇢ M . It follows that the geodesic qX (t) =
expp(tX), t 2 [0, 1] is the one and only minimal geodesic in M from p to q =
expp X.

Proof. The proof is analogous to the specific situation on the round sphere
covered in example 1.2.9.

To see that qX (t) is the one and only shortest curve in M , we must show
that any other curve from p to q has length > |X|. Suppose we have a curve
q : [0, b] ! M from p to q. If a 2 [0, b] is the largest value so that q (a) = p, then
q|[a,b] is a shorter curve from p to q. Next let b0 2 (a, b) be the first value for which
q(t0) /2 B if such points exist, otherwise b0 = b. The curve q|(a,b0) now lies entirely
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in B � {p} and is shorter than the original curve. Its length is easily estimated
from below

L
�

q|(a,b0)
�

=

ˆ b0

a

|q̇| dt

=

ˆ b0

a

|@rq| · |q̇| dt

�
ˆ b0

a

I (@rq, q̇) dt

=

ˆ b0

a

I

✓

@rq,
dr (q (t))

dt
@rq+

d✓ (q (t))

dt
@✓q

◆

dt

=

ˆ b0

a

dr (q (t))

dt
dt

= r (q (b0))� r (q (a))

= r (q (b0)) ,

where we used that r(p) = 0. If q (b0) 2 @B, then q is not a segment from p to q
as it has length � " > |X|. If b = b0, then L

�

q|(a,b)
�

� r (q (b)) = |X| and equality
can only hold if q̇ (t) is proportional to @rq for all t 2 (a, b]. This shows the short
geodesic is a minimal geodesic and that any other curve of the same length must
be a reparametrization of this short geodesic. ⇤

7.5. Distance and Completeness

Definition 7.5.1. The distance between two points in a surface M is defined
by attempting to minimize the length of curves between the points:

|pq| = inf {L (q) | q 2 ⌦pq} .

This distance satisfies the usual properties of a distance:

(1) |pq| > 0 unless p = q,
(2) |pq| = |qp|,
(3) |pq|  |px|+ |xq|.

2 and 3 are also immediate from the definition. It is also clear that |pq| � 0. Finally,
if |pq| = 0, then q 2 B = expp (B (0, ✏)) as in theorem 7.4.5. In this case |pq| is a
minimum realized by the short geodesic in B joining p and q. Thus p = q.

Definition 7.5.2. We define the open ball, closed ball and distance sphere
around a point p 2 M as:

B (p, r) = {x 2 M | |px| < r} ,
B̄ (p, r) = {x 2 M | |px|  r} ,
S (p, r) = {x 2 M | |px| = r} .

The next corollary is almost an immediate consequence of theorem 7.4.5 and
its proof now that we have introduced the concept of distance.

Corollary 7.5.3. If p 2 M and " > 0 is such that expp : B (0, ") ! B is
defined and a di↵eomorphism, then for each �  ",

expp(B(0, �)) = B(p, �),
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and for each � < ✏

expp(B̄(0, �)) = B̄(p, �).

In particular, it follows that pi ! p if and only if |ppi| ! 0.

Proof. We first have to show that B (p, ") = B.We already have B ⇢ B (p, ") .
Conversely if q 2 B (p, "), then it is joined to p by a curve q (t) 2 ⌦pq of length < ".
The proof of theorem 7.4.5 now shows that any curve starting at p that leaves B
has length � ✏. This means that q (t) lies in O and q 2 O. This argument can now
be repeated for each � < ✏. This in turn also shows that expp(B̄(0, �)) = B̄(p, �)
when � < ✏.

Finally, note that by our definition of convergence any sequence pi that con-
verges to p eventually must lie within the exponential parametrization of B (p, �).
The same clearly also holds if |ppi| ! 0. Since this is true for all � > 0 the claim
follows. ⇤

We are now ready to connect the concept of geodesic completeness with the
existence of shortest curves on a larger scale.

Theorem 7.5.4. (Hopf-Rinow, 1931) If a surface M is geodesically complete
at p, then any point q 2 M is joined to p by a minimal geodesic of length |pq|.

Proof. Consider p, q and choose ✏ > 0 such that any point in B̄ (p, ✏) can be
joined to p by a unique minimal geodesic (see corollary 7.5.3). This shows that
B̄ (p, ✏) is homeomorphic to a disc with boundary S (p, ✏). In particular S (p, ✏)
is compact. This shows that there exists a q0 2 S (p, ✏) closest to q. For this
q0 we claim that |pq0| + |q0q| = |pq|. Otherwise there would be a unit speed
curve � 2 ⌦p,q with L(�) < |pq0| + |q0q|. Choose t so that � (t) 2 S (p, ✏). Since
t + |� (t) q|  L(�) < |pq0| + |q0q| it follows that |� (t) q| < |q0q| contradicting the
choice of q0. Now let q (t) be the unit speed geodesic with q (0) = p, q (✏) = q0,
and

A = {t 2 [0, |pq|] | |pq| = t+ |q (t) q|} .

Clearly 0 2 A. Also ✏ 2 A since q (✏) = q0. Note that if t 2 A, then

|pq| = t+ |q (t) q| � |pq (t)|+ |q (t) q| � |pq| ,

which implies that t = |pq (t)|. We first claim that if t0 2 A, then [0, t0] ⇢ A. Let
t < t0 and note that

|pq|  |pq (t)|+ |q (t) q|
 |pq (t)|+ |q (t)q (t0)|+ |q (t0) q|
 t+ t0 � t+ |q (t0) q|
 t0 + |q (t0) q|
= |pq| .

This implies that |pq (t)| + |q (t) q| = |pq| and t = |pq (t)|, showing together that
t 2 A.

Since t 7! |q (t) q| is continuous it follows that A is closed.
Finally if t0 2 A, then t0 + � 2 A for su�ciently small � > 0. Select � > 0 so

that any point in B̄ (q (t0) , �) can be joined to q (t0) by a minimal geodesic. Then
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select q1 2 S (q (t0) , �) closest to q. We now have

|pq| = t0 + |q (t0) q|
= t0 + |q (t0) q1|+ |q1q|
= t0 + � + |q1q|
� |pq1|+ |q1q|
� |pq| .

It follows that |pq1| = t0 + � from which we conclude that the piecewise smooth
geodesic that goes from p to q (t0) and then from q (t0) to q1 has length |pq1|.
Consequently it is a smooth geodesic and q1 = q (t0 + �). It then follows from
|pq| = t0 + � + |q1q| that q (t0 + �) 2 A. ⇤

This in turns shows that several di↵erent completeness criteria are all equiva-
lent.

Theorem 7.5.5. (Hopf-Rinow, 1931) The following statements are equivalent
for a surface M :

(1) M is geodesically complete, i.e., all geodesics are defined for all time.
(2) M is geodesically complete at p, i.e., all geodesics through p are defined

for all time.
(3) M satisfies the Heine-Borel property, i.e., every closed bounded set is com-

pact.
(4) M is metrically complete.

Proof. (1))(2) is trivial. (3))(4) follows from the fact that Cauchy se-
quences are bounded.

For (4))(1): If we have a unit speed geodesic q : [0, b) ! M , then |q (t)q (s)| 
|t� s|. So if b < 1, it follows that |q (t)q (s)| ! 0 as t, s ! b. This shows that q (t)
is a Cauchy sequence as t ! b and by (4) must converge to a point p. In particular,
q (t) lies in a compact set B̄ (p, �) as t ! b. The derivative is also bounded, so it
follows from theorem A.5.1 that starting at any time t0 where q (t0) 2 B̄ (p, �) the
geodesic exists on an interval (�✏+ t0, t0 + ✏) where ✏ is independent of t0. When
t0 + ✏ > b we’ll have found an extension of the geodesic. This shows that the any
geodesic must be defined on [0,1).

Finally the traditionally di�cult part (2))(3) is an easy consequence of the-
orem 7.5.4. We show that expp

�

B̄ (0, r)
�

= B̄ (p, r) for all r > 0. It is clear

that any point in expp
�

B̄ (0, r)
�

is joined to p by a geodesic of length  r. Thus

expp
�

B̄ (0, r)
�

⇢ B̄ (p, r). Conversely we just proved in theorem 7.5.4 that any
point in B̄ (p, r) is joined to p by a geodesic of length  r. But any such geodesic
is of the form qX (t) with qX (0) = p, t 2 [0, 1], and |X|  r. This shows that
qX (1) 2 expp

�

B̄ (0, r)
�

. We now have that all of the closed balls B̄ (p, r) are com-
pact as they are the image of a closed ball in R2. Since any bounded subset of M
lies in such a ball B̄ (p, r) the Heine-Borel property follows. ⇤

7.6. Isometries

So far we’ve mostly discussed how quantities remain invariant if we change
parameters at a given point. Here we shall exploit more systematically what isome-
tries can do to help us with finding and calculating geometric invariants. Recall
that an isometry is simply a map that preserves the first fundamental forms. Thus
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isometries preserve all intrinsic notions. Isometries are also often referred to as
symmetries, especially when they are maps from a surface to it self.

Corollary 7.6.1. An isometry maps geodesics to geodesics, preserves Gauss
curvature, and preserves the length of curves.

Proof. Let q (t) be a geodesic and F an isometry. The geodesic equation
depends only on the first fundamental form. By definition isometries preserve the
first fundamental form, thus F (q (t)) must also be a geodesic.

Next assume that F is an isometry such that F (p) = q. Again F preserves the
first fundamental form so the Gauss curvatures must again be the same.

Finally when q (t) is a curve we have

L (F � q) =

ˆ b

a

�

�

�

�

d

dt
(F (q (t)))

�

�

�

�

dt

=

ˆ b

a

|DF (q̇ (t))| dt

=

ˆ b

a

|q̇ (t)| dt

= L (q) .

⇤

Corollary 7.6.2. An isometry is distance decreasing. Moreover, if it is a
bijection then it is distance preserving.

Proof. Since isometries preserve length of curves it is clear from the defini-
tion of distance that they are distance decreasing. In case F is also a bijection it
follows that F�1 exists and is also an isometry. Thus both F and F�1 are distance
decreasing. This shows that they are distance preserving. ⇤

Basic examples of isometries are rotations around the z axis for surfaces of
revolution around the z axis, or mirror symmetries in meridians on a surface of
revolution. The sphere has an even larger number of isometries as it is a surface of
revolution around any line through the origin. The plane also has rotational and
mirror symmetries, but in addition translations.

It is possible to construct isometries that do not preserve the second fundamen-
tal form. The simplest example is to imagine a flat tarp or blanket, here all points
have vanishing second fundamental form and also there are isometries between all
points. Now lift one side of the tarp. Part of it will still be flat on the ground,
while the part that’s lifted o↵ the ground is curved. The first fundamental form
has not changed but the curved part will now have nonzero entries in the second
fundamental form.

It is not always possible to directly determine all isometries. But as with
geodesics there are some uniqueness results that will help.

Theorem 7.6.3. If F and G are isometries that satisfy F (p) = G (p) and
DF (p) = DG (p), then F = G in a neighborhood of p.

Proof. We just saw that isometries preserve geodesics. So if q (t) is a geodesic
with q (0) = p, then F (q (t)) and G (q (t)) are both geodesics. Moreover they have
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the same initial values

F (q (0)) = F (p) ,

G (q (0)) = G (p) ,

d

dt
F (q (t)) |t=0 = DF (q̇ (0)) ,

d

dt
G (q (t)) |t=0 = DG (q̇ (0)) .

This means that F (q (t)) = G (q (t)) . By varying the initial velocity of q̇ (0) we
can reach all points in a neighborhood of p. ⇤

Often the best method for finding isometries is to make educated guesses based
on what the metric looks like. One general guideline for creating isometries is
the observation that if the first fundamental form doesn’t depend on a specific
variable such as v, then translations in that variable will generate isometries. This
is exemplified by surfaces of revolution where the metric doesn’t depend on µ.
Translations in µ are the same as rotations by a fixed angle and we know that such
transformations are isometries. Note that reflections in such a parameter where v
is mapped to v0 � v will also be isometries in such a case.

Example 7.6.4. The linear orthogonal transformations O (3) of R3 preserve the
spheres centered at the origin. Moreover, with these transformations it is possible
to solve all possible initial value problems as in theorem 7.6.3. To see this last
statement we concentrate on the unit sphere. An orthonormal basis e1, e2 for
TpS2 will give us an orthonormal basis e1, e2, p for R3. Let f1, f2, q be another
orthonormal basis, i.e., f1, f2 is an orthonormal basis for TqS2. We then have two
orthogonal matrices

⇥

f1 f2 q
⇤

,
⇥

e1 e2 p
⇤

2 O (3) .

We define O 2 O (3) by

O =
⇥

f1 f2 q
⇤ ⇥

e1 e2 p
⇤�1

.

Thus
⇥

O (e1) O (e2) O (p)
⇤

= O
⇥

e1 e2 p
⇤

=
⇥

f1 f2 q
⇤ ⇥

e1 e2 p
⇤�1 ⇥

e1 e2 p
⇤

=
⇥

f1 f2 q
⇤

.

In other words O (p) = q, O (e1) = f1, and O (e2) = f2. This shows that we can
solve all initial value problems.

Example 7.6.5. The isometries of R2 are all of the form F (x) = Ox + q,
where O 2 O (2) represents the di↵erential O = DF (0) and q 2 R2 the initial point
q = F (0). Theorem 7.6.3 again shows that there are no more isometries.

Example 7.6.6. The linear transformations that preserve the space-time inner
product on R2,1 are denoted O (2, 1). They are characterized by being of the form
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O =
⇥

e1 e2 e3
⇤

, where ei ·ej = 0 when i 6= j, |e1|2 = |e2|2 = 1, and |e3|2 = �1.
Note that

O

2

4

x
y
z

3

5 = xe1 + ye2 + ze3

and that

|xe1 + ye2 + ze3|2 = x2 + y2 � z2.

This means that these transformations preserve the two sheeted hyperboloid x2 +
y2 � z2 = �1. Any given O either preserves each of the two sheets or flips the two
sheets. The first case happens when O preserves H and the set of these transfor-
mations is denoted O+ (2, 1). We can determine when O 2 O+ (2, 1) by checking
that the 33 entry in O is positive as that means that (0, 0, 1) is mapped to a point
in H. The key observation is that any orthonormal basis e1, e2 for TpH will give us
an element

⇥

e1 e2 p
⇤

2 O+ (2, 1). Consequently, we can, as in the sphere case,
create the desired transformation using

O =
⇥

f1 f2 q
⇤ ⇥

e1 e2 p
⇤�1

.

Here is a slightly more surprising relationship between geodesics and isometries.

Theorem 7.6.7. Let F be a nontrivial isometry and q (t) a unit speed curve
such that F (q (t)) = q (t) for all t, then q (t) is a geodesic.

Proof. Since F is an isometry and it preserves q we must also have that it
preserves its velocity and tangential acceleration

DF (q̇ (t)) = q̇ (t) ,

DF
�

q̈I (t)
�

= q̈I (t) .

As q is unit speed we have q̇ · q̈I = 0. If q̈I (t) 6= 0, then DF preserves q (t) as well
as the basis q̇ (t) , q̈I (t) for the tangent space at q (t) . By the uniqueness result
above this shows that F is the identity map as that map is always an isometry that
fixes any point and basis. But this contradicts that F is nontrivial. ⇤

Note that circles in the plane are preserved by rotations, but they are not fixed,
nor are they geodesics. The picture we should have in mind for such an isometry
and geodesic is a mirror symmetry in a line, or a mirror symmetry in a great circle
on the sphere.

7.7. Constant Curvature

We’ve already seen many models of surfaces with constant curvature and in
some cases we explicitly showed how they could be reparametrized to be isometric.
This is no accident and can be done more abstractly. The goal will be to give a
canonical local structure for surfaces with constant Gauss curvature. This will be
done in the form of a canonical parametrization.

Theorem 7.7.1. (Gauss, 1827) If an abstract surface has vanishing Gauss
curvature, then it admits Cartesian coordinates.
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Proof. We use geodesic coordinates along a unit speed geodesic as in propo-
sition 7.4.1. Thus v 7! q (0, v) is a unit speed geodesic and all of the u-curves are
unit speed geodesics. The first fundamental form is

[I] =



1 0
0 gvv

�

.

Assuming K = 0, the formula for the Gauss curvature

K = �
@2
u
p
gvvp

gvv

shows that
p

gvv (u, v) =
p

gvv (0, v) + u · (@u
p
gvv) (0, v) .

We also have the initial condition:

p

gvv (0, v) =

�

�

�

�

@q

@v

�

�

�

�

= 1.

The explicit form in u, v parameters for the curve is simply q (t) = q (0, t) so all
second derivatives vanish and the velocity is pointing in the v direction. Thus the
geodesic equations tell us

0 = 0 +
⇥

0 1
⇤



�u
uu �u

uv

�u
vu �u

vv

� 

0
1

�

= �u
vv (0, v)

= �vvu (0, v)

= (@u
p
gvv) (0, v) .

This shows that
p

gvv (u, v) = 1 and hence that we have Cartesian coordinates in
a neighborhood of a geodesic. ⇤

Theorem 7.7.2. (Minding, 1839) If two abstract surfaces have constant Gauss
curvature K, then they are locally isometric to each other.

Proof. It su�ces to show that if a surface has constant curvature K, then it
has a parametrization around every point where the first fundamental form only
depends on K.

As before we fix a geodesic coordinate system q (u, v) where all u-curves are
unit speed geodesics and q (0, v) is a unit speed geodesic. The first fundamental
form is

[I] =



1 0
0 gvv

�

,

where as in the proof above:
p

gvv (0, v) = 1,

(@u
p
gvv) (0, v) = 0,

and

K = �
@2
u
p
gvvp

gvv
.
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The last equation dictates how
p
gvv changes along u curves and the two previous

equations are the initial values. When K = 0 we saw that
p
gvv = 1, otherwise

p

gvv (u, v) =

(

cos
⇣p

Ku
⌘

, K > 0,

cosh
�p

�Ku
�

, K < 0.

⇤

Theorem 7.7.3. Any complete simply connected surface M with constant cur-
vature k is bijectively isometric to S2

k.

Proof. We know from theorem 7.7.2 that given x 2 M su�ciently small balls
B (x, r) ⇢ M are isometric to balls B (x̄, r) ⇢ S2

k. Furthermore, if q 2 B (x, r),
q̄ 2 S2

k, and L : TqM ! Tq̄S2
k is a linear isometry, then there is a unique bijective

isometry F : B (x, r) ! B (F (x) , r) ⇢ S2
k, where F (q) = q̄ and DF |q = L. Note

that when k  0, all metric balls in S2
k are convex, while when k > 0 we need their

radius to be < ⇡
2
p
k
for this to be true. For the remainder of the proof assume that

all metric balls are chosen to be isometric to convex balls in the space form. So for
small radii the metrics balls are either disjoint or have connected intersection.

The construction of F : M ! S2
k proceeds basically in the same way one does

analytic continuation on simply connected domains. Fix base points p 2 M, p̄ 2 S2
k

and a linear isometry L : TpM ! Tp̄S2
k. Next, let x 2 M be an arbitrary point.

If c 2 ⌦p,x is a curve from p to x in M , then we can cover c by a string of balls
B (pi, r), i = 0, ..., k, where p = p0, x = pk, and B (pi�1, r) \ B (pi, r) 6= ;. Define
F0 : B (p0, r) ! S2

k so that F (p) = p̄ and DF0|p0 = L. Then define Fi : B (pi, r) !
S2
k successively to make it agree with Fi�1 on B (pi�1, r)\B (pi, r) (this just requires

their values and di↵erentials agree at one point). Define a function G : ⌦p,x ! S2
k

by G (c) = Fk (x). We have to check that it is well-defined in the sense that it
doesn’t depend on our specific way of covering the curve. This is easily done by
selecting a di↵erent covering and then showing that the set of values in [0, 1] where
the two choices agree is both open and closed.

If c̄ 2 ⌦p,x is su�ciently close to c, then it lies inside a fixed covering of c,
but then it is clear that G (c) = G (c̄). This implies that G is locally constant. In
particular, G has the same value on all curves in ⌦p,x that are homotopic to each
other. Simple-connectivity simply means that all curves are homotopic to each
other so G is constant on ⌦p,x. This means that F (x) becomes well-defined and a
Riemannian isometry.

If M is geodesically complete at a point p, then any point x 2 M lies on a unit
speed geodesic q (t) : [0,1) ! M so that q (0) = p. The map F will take this to a
unit speed geodesic from p̄. Now any point in S2

k lies on a unit speed geodesic that
starts at p̄, so this shows that F is onto.

If F (x) = F (y), then we have two unit speed geodesics emanating from p̄ that
intersect at F (x) = F (y). When k  0 this is impossible unless the geodesics
agree. Thus F is both onto and one-to-one when k  0.

In case k > 0 two unit speed geodesics in S2
k that start at p̄ can only intersect

at the antipodal point �p̄. So if we have two di↵erent unit speed geodesics q1,q2 :
[0,1) ! M with qi (0) = p. Then F � qi (t) are di↵erent unit speed geodesics
emanating from p̄ that intersect when t = n⇡/

p
k, n = 1, 2, 3.... In particular,

F : B (p, ⇡/
p
k) ! S2

k � {�p̄} is one-to-one and F (S (p, ⇡/
p
k)) = {�p̄}. Then

F�1 : S2
k � {�p̄} ! B (p, ⇡/

p
k) is a well-defined isometry that maps points close
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to p̄ to points that are close to S (p, ⇡/
p
k). Since points that are close to p̄ are also

close to each other it must follow that S (p, ⇡/
p
k) consists of a single point q. This

shows that all geodesics that start at p go through q. We can then conclude that
B̄ (p, ⇡/

p
k) = M and that F : M ! S2

k is one-to-one. ⇤

7.8. Comparison Results

In this section we prove several classical results for surfaces where the Gauss
curvature is either bounded from below or above. Such results are often referred to
as comparison results since they are obtained by a comparison with a corresponding
constant curvature geometry.

We start by analyzing the second derivative of energy for some very specific
variations.

Lemma 7.8.1. (Jacobi, 1842) Let q (u, v) be geodesic coordinates where all u-
curves are geodesics along a unit speed geodesic q (0, v). Consider a variation:
u = su (t) and v = t, i.e., q (s, t) = q (su (t) , t), then

d2E

ds2
|s=0 =

ˆ b

a

�

u̇2 �Ku2
�

dt.

Proof. We write the velocity out in coordinates

@q

@t
= su̇@uq+ @vq

and obtain

I

✓

@q

@t
,
@q

@t

◆

= s2u̇2 + gvv.

For fixed s the energy of t 7! q (su (t) , t) is given by

E (s) =
1

2

ˆ b

a

�

s2u̇2 + gvv
�

dt,

Keeping in mind that gvv = gvv (su (t) , t) the derivatives are easily calculated:

dE

ds
=

ˆ b

a

✓

su̇2 +
1

2
u@ugvv

◆

dt,

d2E

ds2
=

ˆ b

a

✓

u̇2 +
1

2
u2@2

ugvv

◆

dt.

This is related to the Gauss curvature through the formula

K = �1

2

 

@2
ugvv
gvv

�
✓

@ugvv
gvv

◆2
!

.
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Since q (0, v) is a unit speed curve we have gvv (0, v) = 1. The derivative is calcu-
lated as follows

@ugvv = 2I
⇣

(@u@vq)
I , @vq

⌘

= 2I
⇣

(@v@uq)
I , @vq

⌘

= 2@vI (@uq, @vq)� 2I
⇣

@uq,
�

@2
vq
�I
⌘

= 2@vguv � 2I
⇣

@uq,
�

@2
vq
�I
⌘

= �2I
⇣

@uq,
�

@2
vq
�I
⌘

.

This vanishes when u = 0 since q (0, v) is a geodesic. The result now follows. ⇤

Corollary 7.8.2. (Bonnet, 1855) If K � R�2 > 0, then no geodesic of length
> ⇡R is minimal.

Proof. We can assume that the geodesic doesn’t intersect itself (if it does
it is clearly not minimal) and construct geodesic coordinates where q (0, v) is the
given geodesic parametrized by arclength on [0, L]. Then select a variation as in
lemma 7.8.1 of the form u (t) = sin (t⇡/L). This will yield a proper variation with
the second derivative of energy satisfying

d2E

ds2
|s=0 =

ˆ L

0

�

u̇2 �Ku2
�

dt


ˆ L

0

✓

⇣⇡

L

⌘2
cos2 (t⇡/L)�R�2 sin2 (t⇡/L)

◆

dt

=
⇣⇡

L

⌘2
ˆ L

0
cos2 (t⇡/L) dt�R�2

ˆ L

0
sin2 (t⇡/L) dt

=

✓

⇣⇡

L

⌘2
�R�2

◆

L

2
.

This is strictly negative when L > ⇡R showing that the geodesic is a local maximum
for the energy. Since the variation is fixed at the end points there will be nearby
curves of strictly smaller energy with the same end points. Corollary 7.3.6 then
shows that it can’t be a minimum for the length functional. ⇤

Corollary 7.8.3. (Hopf-Rinow, 1931) If a complete surface satisfies K �
R�2 > 0, then all distances are  ⇡R and must in particular be a closed surface.

Theorem 7.8.4. If a closed surface has positive curvature, then any two closed
geodesics intersect.

Proof. Assume otherwise and obtain a shortest geodesic between the two
closed geodesics. This geodesic is perpendicular to both of the closed geodesics. In
particular if we let it be the q (0, v) curve in a geodesic parametrization, then the
curves q (u, 0) and q (u, L) are our two closed geodesics. Now consider the variation
where s = u and t = v, then the second variation is given by

d2E

ds2
|s=0 =

ˆ b

a

�

u̇2 �Ku2
�

dt =

ˆ b

a

�Ku2dt < 0.
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This shows that the curves v 7! q (u, v) are shorter than L. As they are also curves
between the two closed geodesics this contradicts that our original curve was the
shortest such curve. ⇤

Theorem 7.8.5. (Mangoldt, 1881 Hadamard, 1889?) A complete surface M
with K  0 admits a global parametrization q (u, v) where (u, v) 2 R2. If on R2 we
introduce the first fundamental form from M , then we obtain a complete metric on
R2 with K  0 where all geodesics are minimal.

Proof. The parametrization is given by the exponential map. Identify a fixed
tangent space TpM with R2 via a choice of orthonormal basis E1, E2 and intro-
duce Cartesian (x, y) as well as polar coordinates (r, ✓). We can use q (r, ✓) =
expp (r cos ✓E1 + r sin ✓E2) as a potential parametrization on M . Even when it
isn’t a parametrization as in lemma 7.4.4 we note that it is a geodesic variation
with the radial lines as unit speed geodesics. We have the velocity fields @rq, @✓q for
the r- and ✓-curves which for each (r, ✓) give us tangent vectors in T

q(r,✓)M . Since
the r-curves are unit speed geodesics we have |@rq| = 1 everywhere. We can also
show that I (@rq, @✓q) = 0. First note that it vanishes at r = 0 since @✓q (0, ✓) = 0.
Next see that I (@rq, @✓q) = 0 is constant since

@rI (@rq, @✓q) = I
⇣

�

@2
rq
�I
, @✓q

⌘

+ I
⇣

@rq, (@r@✓q)
I
⌘

= I
⇣

@rq, (@✓@rq)
I
⌘

=
1

2
@✓I (@rq, @rq)

= 0.

Thus I (@rq, @✓q) = 0 everywhere. It follows that D expp is nonsingular at a point
(r, ✓) precisely when I (@✓q, @✓q) > 0 at (r, ✓).

Define a first fundamental form on R2 by



grr gr✓
g✓r g✓✓

�

=



1 0
0 g✓✓

�

,

where
g✓✓ =

�

�D expp (�yE1 + xE2)
�

�

2
= I (@✓q, @✓q) .

When D expp is nonsingular this corresponds precisely to the first fundamental
form of M in this parametrization.

By continuity expp : TpM ! M is nonsingular on some open setO that contains
the origin. Let B (0, R) ⇢ O be the largest ball inside O. We claim that R = 1
and note that if R < 1 then the closure B̄ (0, R) cannot be contained in O. On
B (0, R) the (r, ✓)-coordinates are geodesic polar coordinates with respect to



1 0
0 g✓✓

�

.

Since they correspond to the first fundamental form on M the Gauss curvature
satisfies

0  K = �
@2
r
p
g✓✓p

g✓✓
.

In particular, @2
r
p
g✓✓ � 0. The initial values at r = 0 for

p
g✓✓ are:

p

g✓✓ (0, ✓) = 0, (@r
p
g✓✓) (0, ✓) = 1.
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This follows directly by using that D expp is the identity at r = 0
p

g✓✓ (r, ✓) =
�

�D expp (�yE1 + xE2)
�

�

= |�yE1 + xE2|+O
�

r2
�

= r +O
�

r2
�

.

Together with @2
r
p
g✓✓ � 0 this this shows that

p

g✓✓ (r, ✓) � r. If we let r ! R
this shows that g✓✓ (R, ✓) does not vanish when R < 1, in particular, B (0, R) ⇢ O
can’t be maximal unless R = 1.

This gives us the desired global parametrization on M with a first fundamental
form on R2 that has K  0. This will also help us establish the second part of the
result. In fact, no metric on R2 withK  0 can have geodesics that intersect at more
than one point as that would violate Gauss-Bonnet. Consider two geodesics q1 (t)
and q2 (t) with qi (0) = p. By lemma 7.4.4 they can’t intersect near p. Therefore,
if they intersect at some later point, then there will a point q 6= p closest to p where
they intersect. In this case we can after reparametrizing assume that qi (1) = q
and that when restricted to t 2 [0, 1] there are no other intersections between the
geodesics. Now create a triangle by using p, q, and, say q1 (1/2), as vertices. This
triangle has angle sum > ⇡ as one angle is ⇡. This however, violates the Gauss-
Bonnet theorem as the whole triangle is a closed simple curve of rotation index 2⇡
when oriented appropriately. Specifically, as the geodesic curvature vanishes the
Gauss-Bonnet theorem 6.5.2 tells us

0 �
ˆ
q(R)

KdA = 2⇡ �
X

✓i,

where ✓i are the exterior angles at the three vertices. Since they are complementary
to the interior angles ↵,�, � we have

0 �
ˆ
q(R)

KdA = 2⇡ �
X

✓i = �⇡ + ↵+ � + �.

⇤
Remark 7.8.6. There are di↵erent proofs of the latter part that do not appeal

to the Gauss-Bonnet theorem.
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Riemannian Geometry

As with abstract surfaces we simply define what the dot products of the tangent
fields should be:

[I] =
⇥

@q
@u1 · · · @q

@un

⇤t ⇥ @q
@u1 · · · @q

@un

⇤

=

2

6

4

g11 · · · g1n
...

. . .
...

gn1 · · · gnn

3

7

5

The notation @q
@ui = @iq for the tangent field that corresponds to the velocity of the

ui curves is borrowed from our view of what happens on a surface.
We have the very general formula for how vectors are expanded

V =
⇥

U1 · · · Un

⇤

⇣

⇥

U1 · · · Un

⇤t ⇥
U1 · · · Un

⇤

⌘�1
⇥

U1 · · · Un

⇤t
V

=
⇥

U1 · · · Un

⇤

2

6

4

U1 · U1 · · · U1 · Un

...
. . .

...
Un · U1 · · · Un · Un

3

7

5

�1 2

6

4

U1 · V
...

Un · V

3

7

5

provided we know how to compute dot products of the basis vectors and dots
products of V with the basis vectors. So we will now assume that were are given
a symmetric matrix [I] = [gij ] of function on some domain U ⇢ Rn that uses ui

as parameters. We shall further assume that this first fundamental form has non-
vanishing determinant so that we can calculate the inverse [I]�1 =

⇥

gij
⇤

. We shall
then think of gij = I (@iq, @jq) as describing the inner product of the coordinate
vector fields and q as a point on the space we are investigating. When dealing with
surfaces we also used that this defined an inner product. For the moment we will
not need this condition.

We can define the Christo↵el symbols in relation to the tangent fields when we
know the dot products of those tangent fields:

�ijk =
1

2
(@jgki + @igkj � @kgij) ,

�k
ij =

X

l

gkl�ijl.

Proposition 8.0.7. The metric and Christo↵el symbols are also related by

@kgij = �kij + �kji

@kg
ij = �

X

l

gil�j
kl + gjl�i

kl

198
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Proof. The first formula follows directly from the definition

�kij + �kji =
1

2
(@kgij + @igkj � @jgki)

+
1

2
(@kgji + @jgki � @igkj)

= @kgji.

For the second we first have to calculate the derivative of the inverse of a matrix.
Symbolically this is done as follows. If In =

⇥

�ij
⇤

denotes the identity matrix then

In = [I] [I]�1

�ji = gikg
kj

so

0 = @sIn = (@s [I]) [I]
�1 + [I] @s [I]

�1

0 = @s�
j
i =

X

l

@sgilg
lj +

X

k

gik@sg
kj

showing that

@s [I]
�1 = � [I]�1 (@s [I]) [I]

�1

@sg
kj = �

X

i,l

gki@sgilg
lj

We can now use the first formula to prove the second

@kg
ij = �

X

s,t

gis@kgstg
tj

= �
X

s,t

gis (�kst + �kts) g
tj

= �
X

s,t

gis�kstg
tj �

X

s,t

gis�ktsg
tj

= �
X

s

gis�j
ks �

X

t

�i
ktg

tj

= �
X

l

gil�j
kl + gjl�i

kl

⇤

While we have not yet specified where q is placed we can still attempt to define
second partials intrinsically. This means that we imitate what happened for surfaces
but assume that there is no normal vector.

To start with we should have

@2
ijq · @kq = �ijk
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leading to

@2
ijq =

⇥

@1q · · · @nq
⇤

[I]�1 ⇥ �ij1 · · · �ijn

⇤t

=
⇥

@1q · · · @nq
⇤

2

6

4

�1
ij
...

�n
ij

3

7

5

Note that the symmetry of the metric and Christo↵el symbols now tell us that we
still have

@2
ijq = @2

jiq

This will allow us to define intrinsic acceleration and hence geodesics. It’ll also
allow us to show that the stationary curves for energy are geodesics. If in addition
the metric is positive definite, i.e., I (V, V ) > 0 unless V = 0, then we can define
the length of vectors and consider arc-length of curves. It will then also be true
that short geodesics minimize arc-length.

To define curvature we collect the Gauss formulas

@i
⇥

@1q · · · @nq
⇤

=
⇥

@1q · · · @nq
⇤

2

6

4

�1
i1 · · · �1

in
...

. . .
...

�n
i1 · · · �n

in

3

7

5

=
⇥

@1q · · · @nq
⇤

[�i]

and form the expression

@i [�j ]� @j [�i] + [�i] [�j ]� [�j ] [�i]

that we used to define the curvatures involved in the Gauss equations.
This time we don’t have a Gauss curvature, but we can define the Riemann

curvature as the k, l entry in this expression:

[Rij ] = @i [�j ]� @j [�i] + [�i] [�j ]� [�j ] [�i] ,

Rl
ijk = @i�

l
jk � @j�

l
ik +

⇥

�l
i1 · · · �l

in

⇤

2

6

4

�1
jk
...

�n
jk

3

7

5

�
⇥

�l
j1 · · · �l

jn

⇤

2

6

4

�1
ik
...

�n
ik

3

7

5

This expression shows how certain third order partials might not commute as this
means that

@3
ijkq� @3

jikq =
⇥

@1q · · · @nq
⇤

2

6

4

R1
ijk
...

Rn
ijk

3

7

5

But recall that since second order partials do commute we have

@3
ijkq = @3

ikjq

So we see that third order partials commute if and only if the Riemann curva-
ture vanishes. This can be used to establish the di�cult existence part of the next
result.

Theorem 8.0.8. [Riemann] The Riemann curvature vanishes if and only if
there are Cartesian coordinates around any point.
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Proof. The easy direction is to assume that Cartesian coordinates exist. Cer-
tainly this shows that the curvatures vanish when we use Cartesian coordinates, but
this does not guarantee that they also vanish in some arbitrary coordinate system.
For that we need to figure out how the curvature terms change when we change
coordinates. A long tedious calculation shows that if the new coordinates are called
vi and the curvature in these coordinates R̃l

ijk, then

R̃l
ijk =

@u↵

@vi
@u�

@vj
@u�

@vk
@vl

@u�
R�

↵�� .

Thus we see that if the all curvatures vanish in one coordinate system, then they
vanish in all coordinate systems.

Conversely, to find Cartesian coordinates we set up a system of di↵erential
equations

@iq = Ui

@i
⇥

U1 · · · Un

⇤

=
⇥

U1 · · · Un

⇤

[�i]

whose integrability conditions are a consequence of having vanishing curvature. We
select a point u0 2 U in our given parametrization and assume that we are looking
for a map q : U ! Rn where q (u0) = 0 and Ui (u0) = ui a suitable basis for Rn.

The integrability conditions for the first set of equations are

@iUj = @jUi

which from the second set of equations mean that

⇥

U1 · · · Un

⇤

2

6

4

�1
ij
...

�n
ij

3

7

5

=
⇥

U1 · · · Un

⇤

2

6

4

�1
ji
...

�n
ji

3

7

5

These conditions holds since �k
ij = �k

ji.
For the second set of equations the integrability conditions are given by

@i
�⇥

U1 · · · Un

⇤

[�j ]
�

= @j
�⇥

U1 · · · Un

⇤

[�i]
�

which we know reduce to

@i [�j ] + [�i] [�j ] = @j [�i] + [�j ] [�i]

These conditions hold because we assume that [Rij ] = 0.
This means that we can solve these equations on some neighborhood of u0 2 U

with the specified initial conditions. We then have to show that the new parametriza-
tion is Cartesian. The new parameters are given by the coordinates for q, i.e.,

�

x1, ..., xn
�

=
�

q1, ...,qn
�

= q
�

u1, ..., un
�

Thus

@jq
k =

@qk

@uj
= Uk

j

and

@ijq
k = @iU

k
j = Uk

l �
l
ij = @lq

k�l
ij
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The new first fundamental form is then given by

g̃kl =
@ui

@xk
gij

@uj

@xl

[g̃kl] =



@ui

@xk

�

[gij ]



@uj

@xl

�

Unfortunately we don’t know what the matrix
h

@ui

@xk

i

is. It is given as the inverse

of
h

@xk

@ui

i

which in turn is the matrix
⇥

U1 · · · Un

⇤

by our first equations. This

means that we have

g̃kl =
@xk

@ui
gij

@ul

@xj
= @iq

kgij@jq
l

We can now calculate the derivative of this as

@sg̃
kl = @siq

kgij@jq
l + @iq

kgij@sjq
l

+@iq
k@sg

ij@jq
l

= @tq
k�t

sig
ij@jq

l + @iq
kgij@tq

l�t
sj

�@iq
k
⇣

git�j
st + gjt�i

st

⌘

@jq
l

= @tq
k�t

sig
ij@jq

l � @iq
kgjt�i

st@jq
l

+@iq
kgij@tq

l�t
sj � @iq

kgit�j
st@jq

l

= 0 + 0

showing that the new metric coe�cients are constant. We can then specify the basis
ui so that the new metric becomes Cartesian at u0 and hence Cartesian everywhere
since the metric coe�cients are constant. ⇤



APPENDIX A

Vector Calculus

A.1. Vector and Matrix Notation

Given a basis e, f for a two-dimensional vector space we expand vectors using
matrix multiplication

v = vee+ vff =
⇥

e f
⇤



ve

vf

�

The matrix representation [L] for a linear map/transformation L can be found from
⇥

L (e) L (f)
⇤

=
⇥

e f
⇤

[L]

=
⇥

e f
⇤



Le
e Le

f

Lf
e Lf

f

�

Next we relate matrix multiplication and the dot product in R3. We think of vectors
as being columns or 3⇥ 1 matrices. Keeping that in mind and using transposition
of matrices we immediately obtain:

XtY = X · Y,
Xt

⇥

X2 Y2

⇤

=
⇥

X ·X2 X · Y2

⇤

⇥

X1 Y1

⇤t
X =



X1 ·X
Y1 ·X

�

⇥

X1 Y1

⇤t ⇥
X2 Y2

⇤

=



X1 ·X2 X1 · Y2

Y1 ·X2 Y1 · Y2

�

,

⇥

X1 Y1 Z1

⇤t ⇥
X2 Y2 Z2

⇤

=

2

4

X1 ·X2 X1 · Y2 X1 · Z2

Y1 ·X2 Y1 · Y2 Y1 · Z2

Z1 ·X2 Z1 · Y2 Z1 · Z2

3

5

These formulas can be used to calculate the coe�cients of a vector with respect
to a general basis. Recall first that if E1, E2 is an orthonormal basis for R2, then

X = (X · E1)E1 + (X · E2)E2

=
⇥

E1 E2

⇤ ⇥

E1 E2

⇤t
X

So the coe�cients for X are simply the dot products with the basis vectors. More
generally we have

Theorem A.1.1. Let U, V be a basis for R2, then

X =
⇥

U V
⇤

⇣

⇥

U V
⇤t ⇥

U V
⇤

⌘�1
⇥

U V
⇤t
X

=
⇥

U V
⇤

⇣

⇥

U V
⇤t ⇥

U V
⇤

⌘�1


U ·X
V ·X

�

203
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Proof. First write

X =
⇥

U V
⇤



Xu

Xv

�

The goal is to find a formula for the coe�cients Xu, Xv in terms of the dot products
X · U,X · V. To that end we notice



U ·X
V ·X

�

=
⇥

U V
⇤t
X

=
⇥

U V
⇤t ⇥

U V
⇤



Xu

Xv

�

Showing directly that


Xu

Xv

�

=
⇣

⇥

U V
⇤t ⇥

U V
⇤

⌘�1


U ·X
V ·X

�

and consequently

X =
⇥

U V
⇤

⇣

⇥

U V
⇤t ⇥

U V
⇤

⌘�1


U ·X
V ·X

�

⇤

Remark A.1.2. There is a similar formula in R3 which is a bit longer. In prac-
tice we shall only need it in the case where the third basis vector is perpendicular
to the first two. Also note that if U, V are orthonormal then

⇥

U V
⇤t ⇥

U V
⇤

=



1 0
0 1

�

and we recover the standard formula for the expansion of a vector in an orthonormal
basis.

Theorem A.1.3. A real symmetric matrix, or symmetric linear operator on a
finite dimensional Euclidean space, has an orthonormal basis of eigenvectors.

Proof. First observe that if we have two eigenvectors

Av = �v, Aw = µw

where � 6= µ, then

(�� µ)
�

vtw
�

= (�v)t w � vt (µw)

= (Av)t w � vt (Aw)

= vtAtw � vtAw

= vtAw � vtAw

= 0

so it must follow that v ? w.
This shows that the eigenspaces are all perpendicular to each other. Thus we

are reduced to showing that such matrices only have real eigenvalues. There are
many fascinating proofs of this. We give a fairly down to earth proof in the cases
that are relevant to us.

For a 2⇥ 2 matrix

A =



a b
b d

�
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the characteristic polynomial is

�2 � (a+ d)�+ ad� b2

so the discriminant is

� = (a+ d)2 � 4
�

ad� b2
�

= (a� d)2 + 4b2 � 0

This shows that the roots must be real.
For a 3 ⇥ 3 matrix the characteristic polynomial is cubic. The intermediate

value theorem then guarantees at least one real root. If we make a change of basis
to another orthonormal basis where the first basis vector is an eigenvector then the
new matrix will still be symmetric and look like

2

4

�1 0 0
0 a b
0 b d

3

5

The characteristic polynomial then looks like

(�� �1)
�

�2 � (a+ d)�+ ad� b2
�

where we see as before that �2 � (a+ d)�+ ad� b2 has two real roots. ⇤

A.2. Geometry

Here are a few geometric formulas that use vector notation:

• The length or size of a vector X is denoted:

|X| =
p
Xt ·X

• The distance from X to a point P :

|X � P |
• The projection of a vector X onto another vector N :

X ·N
|N |2

N

• The signed distance from P to a plane that goes through X0 and has
normal N , i.e., given by (X �X0) ·N = 0:

(P �X0) ·N
|N |

the actual distance is the absolute value of the signed distance. This
formula also works for the (signed) distance from a point to a line in R2.

• The distance from P to a line with direction N that passes through X0:
�

�

�

�

�

(P �X0)�
(P �X0) ·N

|N |2
N

�

�

�

�

�

=

s

|P �X0|2 �
|(P �X0) ·N |2

|N |2

• The area of a parallelogram spanned by two vectors X,Y is
r

det
⇣

⇥

X Y
⇤t ⇥

X Y
⇤

⌘

• If X,Y 2 R2 there is also a signed area given by

det
⇥

X Y
⇤
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• If X,Y 2 R3 the area is also given by

|X ⇥ Y |

• The volume of a parallelepiped spanned by X,Y, Z is
r

det
⇣

⇥

X Y Z
⇤t ⇥

X Y Z
⇤

⌘

• If X,Y, Z 2 R3 the signed volume is given by

det
⇥

X Y Z
⇤

= X · (Y ⇥ Z)

= Xt (Y ⇥ Z)

• The

A.3. Geometry of Space-Time

We collect a few of the special features of space-time R2,1 where we use the
inner product

X · Y = XxY x +XyY y �XzY z.

A.4. Di↵erentiation and Integration

A.4.1. Directional Derivatives. If h is a function on R3 and X = (P,Q,R)
then

DXh = P
@h

@x
+Q

@h

@y
+R

@h

@z

= (rh) ·X
= [rh]t [X]

=
h

@h
@x

@h
@y

@h
@z

i

[X]

and for a vector field V we get

DXV =
h

@V
@x

@V
@y

@V
@z

i

[X] .

We can also calculate directional derivatives by selecting a curve such that ċ (0) =
X. Along the curve the chain rule says:

d (V � c)
dt

=
h

@V
@x

@V
@y

@V
@z

i



dc

dt

�

= DċV

Thus

DXV =
d (V � c)

dt
(0)

A.4.2. Chain Rules. Consider a vector function V : R3 ! Rn and a curve
c : I ! R3. That the curves goes in to space and the vector function is defined on
the same space is important, but that it has dimension 3 is not. Note also that the
vector function can have values in a higher or lower dimensional space.

The chain rule for calculating the derivative of the composition V � c is:

d (V � c)
dt

=
h

@V
@x

@V
@y

@V
@z

i



dc

dt

�
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There is a very convenient short cut for writing such chain rules if we keep in
mind that they simply involve matrix notation. Write

X =

2

4

x
y
z

3

5

and
c (t) = X (t)

Then this chain rule can be written as

d (V � c)
dt

=
@V

@X

dX

dt
were we think of

@V

@X
=

@V

@ (x, y, z)
=
h

@V
@x

@V
@y

@V
@z

i

and

dX

dt
=

d

dt

2

4

x
y
z

3

5

It is also sometimes convenient to have X be a function of several variables,
say, X (u, v). In that case we obtain

@V (X (u, v))

@u
=

@V

@X

@X

@u
as partial derivatives are simple regular derivatives in one variable when all other
variables are fixed.

A.4.3. Local Invertibility. Mention Inverse and Implicit Function Theo-
rems. Lagrange multipliers.

A.4.4. Integration. Change of variables. Green’s, divergence, and Stokes’
thms. Use Green Thm to prove the change of variable formula, and similarly with
Stokes.

A.5. Di↵erential Equations

The basic existence and uniqueness theorem for systems of first order equations
is contained in the following statement. The first part is standard and can be found
in most text books. The second part about the assertion of smoothness in relation
to the initial value is very important, but is somewhat trickier to establish.

Theorem A.5.1. Given a smooth function F : R⇥ Rn ! Rn the initial value
problem

d

dt
x = F (t, x) , x (0) = x0

has a solution

x (t) =

2

6

4

x1 (t)
...

xn (t)

3

7

5

that is unique on some possibly small interval (�✏, ✏). When |x0|  R, we can pick
✏ independently of x0. Moreover this solution is smooth in both t and the initial
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value x0. In case |F (t, x)|  M + C |x| for constants M,C � 1 we can choose
✏ = 1.

Proof. The proof is quite long and consists of several di↵erent proof. The
existence and uniqueness is relatively standard. The long term existence is less
standard so we supply a proof below. The smoothness on initial values is also
standard but not covered in many texts (see , however, MM for a good proof).

Long term existence:.................................... ⇤
The above result was strictly about ODEs (ordinary di↵erential equations), but

it can be used to prove certain results about PDEs (partial di↵erential equations)
as well.

We consider a system

@

@u
x = P (u, v, x)

@

@v
x = Q (u, v, x)

x (0, 0) = x0

where x (u, v) is now a function of two variables with values in Rn.
The standard situation from multivariable calculus is:

Theorem A.5.2. (Clairaut’s Theorem) When P = P (u, v) and Q = Q (u, v)
do not depend on x a solution to

@

@u
x = P (u, v)

@

@v
x = Q (u, v)

x (0, 0) = x0

can be found if and only if the system is exact, i.e.,

@

@u
Q =

@

@v
P.

This solution will be defined on all of R2 provided P,Q : R2 ! R.

Proof. If such a solution exists, then it follows that

@

@u
Q =

@2x

@u@v
=

@2x

@v@u
=

@

@v
P.

Conversely start by defining x1 (u) as

x1 (u) = x0 +

ˆ u

0
P (s, 0) ds.

Next define the function x (u, v) for a fixed u by

x (u, v) = x1 (u) +

ˆ v

0
Q (u, t) dt.

This gives us
@x

@v
= Q, x (0, 0) = x0.

Thus it remains to check that
@x

@u
= P.
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Note however that when v = 0 we have

@x

@u
(u, 0) =

dx1

du
(u) = P (u, 0) .

More generally the v-derivatives satisfy

@2x

@v@u
=

@2x

@u@v

=
@Q

@u

=
@P

@v
.

So it follows that
@

@v

✓

@x

@u
� P

◆

= 0.

For fixed u this shows that

v 7! @x

@u
� P

is constant. Since
�

@x
@u � P

�

(u, 0) = 0 this implies that @x
@u = P . ⇤

This result can be extended to the more general situation as follows. When
computing the derivative of P (u, v, x (u, v)) with respect to v it is clearly necessary
to use the chain rule

@

@v
(P (u, v, x (u, v))) =

@P

@v
+

@P

@x

@x

@v
=

@P

@v
+

@P

@x
Q

where @P
@v is the partial derivative of P keeping v and x fixed. Similarly

@

@u
(Q (u, v, x)) =

@Q

@u
+

@Q

@x

@x

@u
=

@Q

@u
+

@Q

@x
P

so if a solution exists the functions P and Q must satisfy the condition

@P

@v
+

@P

@x
Q =

@Q

@u
+

@Q

@x
P.

This is called the integrability condition for the system. Conversely we have

Theorem A.5.3. Assume P,Q : R2 ⇥Rn ! Rn are two smooth functions that
satisfy the integrability condition

@P

@v
+

@P

@x
Q =

@Q

@u
+

@Q

@x
P.

The solution

x (u, v) =

2

6

4

x1 (u, v)
...

xn (u, v)

3

7

5

for the initial value problem

@

@u
x = P (u, v, x) ,

@

@v
x = Q (u, v, x) ,

x (0, 0) = x0



A.5. DIFFERENTIAL EQUATIONS 210

exists and is unique on some possibly small domain (�✏, ✏)2. When |P | , |Q| 
M + C |x| for constants M,C � 1 the solution exists on all of R2.

Proof. We invoke theorem A.5.3 to define x1 as the unique solution to

d

du
x1 (u) = P (u, 0, x1 (u)) , x1 (0) = x0.

Next use theorem A.5.3 to define the function x (u, v) for a fixed u as the solution
to

d

dv
x (u, v) = Q (u, v, x (u, v)) , x (u, 0) = x1 (u)

as well as to check that x (u, v) is smooth in both variables. This gives us

@x

@v
= Q, x (0, 0) = x0.

Thus it remains to check that
@x

@u
= P.

Note however that when v = 0 we have

@x

@u
(u, 0) =

dx1

du
(u) = P (u, 0, x (u, 0)) .

More generally the v-derivatives satisfy

@2x

@v@u
=

@2x

@u@v

=
@

@u
(Q (u, v, x))

=
@Q

@u
+

@Q

@x

@x

@u

=
@P

@v
+

@P

@x
Q� @Q

@x
P +

@Q

@x

@x

@u

and
@

@v
P (u, v, x) =

@P

@v
+

@P

@x

@x

@v
=

@P

@v
+

@P

@x
Q.

So it follows that
@

@v

✓

@x

@u
� P

◆

=
@Q

@x

✓

@x

@u
� P

◆

.

For fixed u this is a di↵erential equation in @x
@u � P . Now

�

@x
@u � P

�

(u, 0) = 0 and
the zero function clearly solves this equation so it follows that

@x

@u
� P = 0

for all v. As u was arbitrary this shows the claim.
In case P,Q are bounded we can invoke theorem A.5.1 to see that x is also

defined for all (u, v) 2 R2. ⇤

Remark A.5.4. It is not di�cult to expand this result to systems of m equa-
tions if x has m variables.
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The most important case for us is when x = X is a row matrix of vector
functions

X =
⇥

U1 · · · Um

⇤

,

where Ui : ⌦ ! V are defined on some domain ⌦ ⇢ Rn and the vector space
V is m-dimensional. We will generally assume that for each p 2 ⌦ the vectors
U1 (p) , ..., Um (p) form a basis for V . This implies that the derivatives of these
vector functions are linear combinations of this basis. Thus we obtain a system

@

@ui

⇥

U1 · · · Um

⇤

=
⇥

U1 · · · Um

⇤

[Di] ,

where [Di] is an m ⇥ m matrix whose columns represent the coe�cients of the
vectors on the left hand side

@Uj

@ui
= d1ijU1 + · · ·+ dmijUm =

⇥

U1 · · · Um

⇤

2

6

4

d1ij
...

dmij

3

7

5

.

In this way each of the entries are functions on the domain dkij : ⌦ ! R.
The necessary integrability conditions now become

@2

@ui@uj

⇥

U1 · · · Um

⇤

=
@2

@uj@ui

⇥

U1 · · · Um

⇤

.

As

@2

@ui@uj

⇥

U1 · · · Um

⇤

=
@

@ui

✓

@

@uj

⇥

U1 · · · Um

⇤

◆

=
@

@ui

�⇥

U1 · · · Um

⇤

[Dj ]
�

=

✓

@

@ui

⇥

U1 · · · Um

⇤

◆

[Dj ] +
⇥

U1 · · · Um

⇤ @

@ui
[Dj ]

=
⇥

U1 · · · Um

⇤

[Di] [Dj ] +
⇥

U1 · · · Um

⇤ @

@ui
[Dj ]

=
⇥

U1 · · · Um

⇤

✓

[Di] [Dj ] +
@

@ui
[Dj ]

◆

and U1, ..., Um form a basis the integrability conditions become

[Di] [Dj ] +
@

@ui
[Dj ] = [Dj ] [Di] +

@

@uj
[Di] .

Depending on the individual context it might be possible to calculate [Di]
without first finding the partial derivatives

@Uk

@ui

but we can’t expect this to always happen. Note, however, that if V comes with
an inner product, then the product rule implies that

@ (Uk · Ul)

@ui
=

@Uk

@ui
· Ul + Uk · @Ul

@ui
.



A.5. DIFFERENTIAL EQUATIONS 212

This means in matrix form that
@

@ui

⇣

⇥

U1 · · · Um

⇤t ⇥
U1 · · · Um

⇤

⌘

=

✓

@

@ui

⇥

U1 · · · Um

⇤t
◆

⇥

U1 · · · Um

⇤

+
⇥

U1 · · · Um

⇤t @

@ui

⇥

U1 · · · Um

⇤

= [Di]
t ⇥ U1 · · · Um

⇤t ⇥
U1 · · · Um

⇤

+
⇥

U1 · · · Um

⇤t ⇥
U1 · · · Um

⇤

[Di] .

Or more condensed
@

@ui

�

XtX
�

= [Di]
t XtX +XtX [Di] .

If we additionally assume that dkij = dkji, then we obtain the surprising formula:

dkij = gkl
✓

@gli
@uj

+
@glj
@ui

� @gij
@ul

◆

.



APPENDIX B

Special Coordinate Representations

The purpose of this appendix is to collect properties and formulas that are
specific to the type of parametrization that is being used. These are used in several
places in the text and also appear as exercises.

B.1. Cartesian and Oblique Coordinates

Cartesian coordinates on a surface is a parametrization where

[I] =



1 0
0 1

�

Oblique coordinates more generally come from a parametrization where

[I] =



a b
b d

�

for constants a, b, d with a, d > 0 and ad� b2 > 0.
Note that the Christo↵el symbols all vanish if we have a parametrization where

the metric coe�cients are constant. In particular, the rather nasty formula we
developed in the proof of Theorema Egregium shows that the Gauss curvature
vanishes. This immediately tells us that Cartesian or oblique coordinates cannot
exist if the Gauss curvature doesn’t vanish. When we have defined geodesic coordi-
nates below we’ll also be able to show that even abstract surfaces with zero Gauss
curvature admit Cartesian coordinates.

B.2. Surfaces of Revolution

Many features of surfaces show themselves for surfaces of revolution. While
this is certainly a special class of surfaces it is broad enough to give a rich family
examples.

We consider
q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t)) .

It is often convenient to select or reparametrized (r, z) so that it is a unit speed
curve. In this case we use the parametrization

q (s, µ) = (r (s) cosµ, r (s) sinµ, h (s)) ,

(r0)
2
+ (h0)

2
= 1

We get the unit sphere by using r = sin s and h = cos s.
We get a cone, cylinder or plane, by considering r = (↵t+ �) and h = �t. When

� = 0 these are simply polar coordinates in the q, y plane. When ↵ = 0 we get a
cylinder, while if both ↵ and � are nontrivial we get a cone. When ↵2 + �2 = 1 we
have a parametrization by arclength.

213



B.2. SURFACES OF REVOLUTION 214

The basis is given by

@q

@t
=

⇣

ṙ cosµ, ṙ sinµ, ḣ
⌘

,

@q

@µ
= (�r sinµ, r cosµ, 0) ,

N =

⇣

�ḣ cosµ,�ḣ sinµ, ṙ
⌘

p

ḣ2 + ṙ2

and first fundamental form by

gtt = ḣ2 + ṙ2,

gµµ = r2

gtµ = 0

Note that the cylinder has the same first fundamental form as the plane if
we use Cartesian coordinates in the plane. The cone also allows for Cartesian
coordinates, but they are less easy to construct directly. This is not so surprising
as we just saw that it took di↵erent types of coordinates for the cylinder and the
plane to recognize that they admitted Cartesian coordinates. Pictorially one can
put Cartesian coordinates on the cone by slicing it open along a meridian and then
unfolding it to be flat. Think of unfolding a lamp shade or the Cartesian grid on a
wa✏e cone.

Taking a surface of revolution using the arclength parameter s, we see that

@N

@s
=

@

@s
(�h0 cosµ,�h0 sinµ, r0)

= (�h00 cosµ,�h00 sinµ, r00)

@N

@µ
=

@

@µ
(�h0 cosµ,�h0 sinµ, r0)

= (h0 sinµ,�h0 cosµ, 0)

The Weingarten map is now found by expanding these two vectors. For the last
equation this is simply

@N

@µ
= (h0 sinµ,�h0 cosµ, 0)

= �h0

r
(�r sinµ, r cosµ, 0)

= �h0

r

@q

@µ

Thus we have

Ls
µ = Lµ

s = 0,

Lµ
µ =

h0

r
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This leaves us with finding Ls
s. Since

@q
@s is a unit vector this is simply

Ls
s = �@N

@s
· @q
@s

= (h00 cosµ, h00 sinµ,�r00) · (r0 cosµ, r0 sinµ, h0)

= h00r0 � r00h0

Thus

K = (h00r0 � r00h0)
h0

r

H =
h0

r
+ h00r0 � r00h0

In the case of cylinder, plane, and cone we note that K vanishes, but H only
vanishes when it is a plane. This means that we have a selection of surfaces all with
Cartesian coordinates with di↵erent H.

We can in general simplify the Gauss curvature by noting that

1 = (r0)
2
+ (h0)

2

0 =
⇣

(r0)
2
+ (h0)

2
⌘0

= 2r0r00 + 2h0h00

Thus yielding

K =

 

r00
(r0)2

h0 � r00h0

!

h0

r

=
r00

r

⇣

� (r0)
2 � (h0)

2
⌘

= �r00

r

= �
@2

@s2

�p
grr

�

p
grr

This makes it particularly easy to calculate the Gauss curvature and also to con-
struct examples with a given curvature function. It also shows that the Gauss
curvature can be computed directly from the first fundamental form! For instance
if we want K = �1, then we can just use r (s) = exp (�s) for s > 0 and then adjust
h (s) for s 2 (0,1) such that

1 = (r0)
2
+ (h0)

2

If we introduce a new parameter t = exp (s) > 1, then we obtain a new parametriza-
tion of the same surface

q (t, µ) = q (ln (t) , µ)

= (exp (� ln t) cosµ, exp (� ln t) sinµ, h (ln t))

=

✓

1

t
cosµ,

1

t
sinµ, h (ln t)

◆
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To find the first fundamental form of this surface we have to calculate

d

dt
h (ln t) =

dh

ds

1

t

=
q

1� (r0)2
1

t

=
q

1� (� exp (�s))2
1

t

=
p

1� exp (�2 ln t)
1

t

=

r

1� 1

t2
1

t

Thus

I =



1
t4 +

�

1� 1
t2

�

1
t2 0

0 1
t2

�

=



1
t2 0
0 1

t2

�

This is exactly what the first fundamental form for the upper half plane looks like.
But the domains for the two are quite di↵erent. What we have achieved is a local
representation of part of the upper half plane.

Exercises.

(1) Show that geodesics on a surface of revolution satisfy Clairaut’s condi-
tion: r sin� is constant, where � is the angle the geodesic forms with the
meridians.

B.3. Monge Patches

This is more complicated than the previous case, but that is only to be expected
as all surfaces admit Monge patches. We consider q (u, v) = (u, v, f (u, v)) . Thus

@q

@u
=

✓

1, 0,
@f

@u

◆

,

@q

@v
=

✓

0, 1,
@f

@v

◆

N = �

⇣

@f
@u ,

@f
@v ,�1

⌘

r

1 +
⇣

@f
@u

⌘2
+
⇣

@f
@v

⌘2
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guu = 1 +

✓

@f

@u

◆2

,

gvv = 1 +

✓

@f

@v

◆2

,

guv =
@f

@u

@f

@v
,

[I] =

2

6

4

1 +
⇣

@f
@u

⌘2
@f
@u

@f
@v

@f
@u

@f
@v 1 +

⇣

@f
@v

⌘2

3

7

5

det [I] = 1 +

✓

@f

@u

◆2

+

✓

@f

@v

◆2

@2q

@w1@w2
=

✓

0, 0,
@2f

@w1@w2

◆

So we immediately get

�w1w2w3 =
@2f

@w1@w2

@f

@w3

Lw1w2 =
@2f

@w1@w2
r

1 +
⇣

@f
@u

⌘2
+
⇣

@f
@v

⌘2

The Gauss curvature is then the determinant of

L =



Lu
u Lu

v

Lv
u Lv

v

�

=



guu guv

gvu gvv

� 

Luu Luv

Lvu Lvv

�

K =
1

det [I]
det



Luu Luv

Lvu Lvv

�

=

@2f
@u2

@2f
@v2 �

⇣

@2f
@u@v

⌘2

det [I]2

We note that

[I]�1 =
1

det [I]

2

6

4

1 +
⇣

@f
@v

⌘2
�@f

@u
@f
@v

�@f
@u

@f
@v 1 +

⇣

@f
@u

⌘2

3

7

5

,

[II] =
1

p

det [I]

"

@2f
@u2

@2f
@u@v

@2f
@u@v

@2f
@v2

#
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and the Weingarten map

[L] = [I]�1 [II]

=
1

(det [I])
3
2

2

6

4

1 +
⇣

@f
@v

⌘2
�@f

@u
@f
@v

�@f
@u

@f
@v 1 +

⇣

@f
@u

⌘2

3

7

5

"

@2f
@u2

@2f
@u@v

@2f
@u@v

@2f
@v2

#

=
1

(det [I])
3
2

2

6

6

4

✓

1 +
⇣

@f
@v

⌘2
◆

@2f
@u2 � @f

@u
@f
@v

@2f
@u@v

✓

1 +
⇣

@f
@v

⌘2
◆

@2f
@u@v � @f

@u
@f
@v

@2f
@v2

✓

1 +
⇣

@f
@u

⌘2
◆

@2f
@u@v � @f

@u
@f
@v

@2f
@u2

✓

1 +
⇣

@f
@u

⌘2
◆

@2f
@v2 � @f

@u
@f
@v

@2f
@u@v

3

7

7

5

This gives us a general example where the Weingarten map might not be a sym-
metric matrix.

B.4. Surfaces Given by an Equation

This is again very general. Note that any Monge patch (u, v, f (u, v)) also yields
a function F (x, y, z) = z � f (x, y) such that the zero level of F is precisely the
Monge patch. This case is also complicated by the fact that while the normal is
easy to find, it is proportional to the gradient of F, we don’t have a basis for the
tangent space without resorting to a Monge patch. This is troublesome, but not
insurmountable as we can solve for the derivatives of F. Assume that near some
point p we know @F

@z 6= 0, then we can use x, y as coordinates. Our coordinates
vector fields look like

@q

@u
=

✓

1, 0,
@f

@u

◆

,

@q

@v
=

✓

0, 1,
@f

@v

◆

where
@f

@w
= �

@F
@w
@F
@z

Thus we actually get some explicit formulas

@q

@u
=

 

1, 0,�
@F
@u
@F
@z

!

,

@q

@v
=

 

0, 1,�
@F
@v
@F
@z

!

.

We can however describe the second fundamental form without resorting to
coordinates. We consider a surface given by an equation

F (x, y, z) = C.

The normal can be calculated directly as

N =
rF

|rF | .

This shows first of all that we have a simple equation defining the tangent space at
each point p

TpM =
�

Y 2 R3 | Y ·rF (p) = 0
 

.
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Next we make the claim that

II (X,Y ) = � 1

|rF | I (DXrF, Y )

= � 1

|rF |Y ·DXrF,

where DX is the directional derivative. We can only evaluate II on tangent vectors,
but Y ·DXrF clearly makes sense for all vectors. This has the advantage that we
can even use Cartesian coordinates in R3 for our tangent vectors. First we show
that

L (X) = �DXN.

Select a parametrization q (u, v) such that

@q
@u ⇥ @q

@v
�

�

�

@q
@u ⇥ @q

@v

�

�

�

=
rF

|rF | .

The Weingarten equations then tell us that

L

✓

@q

@w

◆

= �@N

@w
= �D @q

@w
N.

We can now return to the second fundamental form. Let Y be another tangent
vector then, Y ·rF = 0 so

�II (X,Y ) = �I (L (X) , Y )

= Y ·DXN

= Y ·
✓

DX
1

|rF |

◆

rF + Y · 1

|rF |DXrF

= Y · 1

|rF |DXrF.

Note that even when X is tangent it does not necessarily follow that DXrF is also
tangent to the surface.

In case @F
@z 6= 0 we get a relatively simple orthogonal basis for the tangent

space. In case @F
@x = @F

@y = 0 we can simply use

X = (1, 0, 0) , Y = (0, 1, 0)

otherwise we obtain an orthogonal basis by using

X =

✓

�@F

@y
,
@F

@x
, 0

◆

,

Y =

 

@F

@z

@F

@x
,
@F

@z

@F

@y
,�

 

✓

@F

@x

◆2

+

✓

@F

@y

◆2
!!

.

With that basis the Weingarten map can then be calculated as

[L] = [I]�1 [II]

=



|X|�2 0
0 |Y |�2

� 

II (X,X) II (X,Y )
II (X,Y ) II (Y, Y )

�

.
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To calculate the second fundamental form we use that

h

@rF
@x

@rF
@y

@rF
@z

i

=

2

6

4

@2F
@x2

@2F
@x@y

@2F
@x@z

@2F
@y@x

@2F
@y2

@2F
@y@z

@2F
@z@x

@2F
@z@y

@2F
@z2

3

7

5

.

So

II (X,X) =
1

|rF |

h

�@F
@y

@F
@x 0

i

2

6

4

@2F
@x2

@2F
@x@y

@2F
@x@z

@2F
@y@x

@2F
@y2

@2F
@y@z

@2F
@z@x

@2F
@z@y

@2F
@z2

3

7

5

2

4

�@F
@y

@F
@x
0

3

5 ,

II (X,Y ) =
1

|rF |

h

�@F
@y

@F
@x 0

i

2

6

4

@2F
@x2

@2F
@x@y

@2F
@x@z

@2F
@y@x

@2F
@y2

@2F
@y@z

@2F
@z@x

@2F
@z@y

@2F
@z2

3

7

5

2

6

4

@F
@z

@F
@x

@F
@z

@F
@y

�
�

@F
@x

�2 �
⇣

@F
@y

⌘2

3

7

5

,

II (Y, Y ) =
1

|rF |



@F
@z

@F
@x

@F
@z

@F
@y �

�

@F
@x

�2 �
⇣

@F
@y

⌘2
�

2

6

4

@2F
@x2

@2F
@x@y

@2F
@x@z

@2F
@y@x

@2F
@y2

@2F
@y@z

@2F
@z@x

@2F
@z@y

@2F
@z2

3

7

5

2

6

4

@F
@z

@F
@x

@F
@z

@F
@y

�
�

@F
@x

�2 �
⇣

@F
@y

⌘2

3

7

5

.

Exercises.

(1) If q is a curve, then it is a curve on F = C if q (0) lies on the surface
and q̇ · rF vanishes. If q is regular and a curve on F = C, then it
can be reparametrized to be a geodesic if and only if the triple product
det [rF, q̇, q̈] = 0.

B.5. Geodesic Coordinates

This is a parametrization having a first fundamental form that looks like:

I =



1 0
0 gvv

�

This is as with surfaces of revolution, but now gvv can depend on both u and v.
Using a central v curve, we let the u curves be unit speed geodesics orthogonal
to the fixed v curve. They are also often call Fermi coordinates after the famous
physicist and seem to have been used in his thesis on general relativity. They
were however also used by Gauss. These coordinates will be used time and again
to simplify calculations in the proofs of several theorems. The v-curves are well
defined as the curves that appear when u is constant. At u = 0 the u and v curves
are perpendicular by construction, so by continuity they can’t be tangent as long
as u is su�ciently small.

Exercises.

(1) Consider a parametrization q (s, t) where the s-curves are unit speed
geodesics and @q

@s (s, 0) ? @q
@t (s, 0). Show that

@q

@s
(s, t) ? @q

@t
(s, t)

and conclude that such a parametrization defines geodesic coordinates.
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(2) Show that for geodesic coordinates:

�uuu = 0,

�uvu = 0 = �vuu,

�vvu = �1

2

@gvv
@u

,

�vvv =
1

2

@gvv
@v

,

�uvv =
1

2

@gvv
@u

= �vuv,

�uuv = 0,

�u
ij = �iju,

�v
ij =

1

gvv
�ijv,

and

K = �
@2
u
p
gvvp

gvv
= �1

2

 

@2
ugvv
gvv

�
✓

@ugvv
gvv

◆2
!

.

B.6. Chebyshev Nets

These correspond to a parametrization where the first fundamental form looks
like:

I =



1 c
c 1

�

=



1 cos ✓
cos ✓ 1

�

,

Real life interpretations that are generally brought up are fishnet stockings or non-
stretchable cloth tailored to the contours of the body. The idea is to have a material
where the fibers are not changed in length or stretched, but are allowed to change
their mutual angles.

Note that such parametrizations are characterized as having unit speed param-
eter curves.

Exercises.

(1) Show that any surface locally admits Chebyshev nets. Hint: Fix a point
p = q (u0, v0) for a given parametrization and define new parameters

s (u, v) =

ˆ u

u0

p

guu (x, v)dx

t (u, v) =

ˆ v

v0

p

gvv (u, y)dy

Show that @s
@v (u0, v0) = 0 = @t

@u (u0, v0) and conclude that (s, t) defines a
new parametrization that creates a Chebyshev net.

(2) Show that Chebyshev nets q (u, v) satisfy the following properties

@2q

@u@v
? TpM,
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�uvw = �uuu = �vvv = 0,

�uuv = �@✓

@u
sin ✓,

�vvu = �@✓

@v
sin ✓,

@2✓

@u@v
= �K sin ✓.

(3) Show that the geodesic curvature g of the u-coordinate curves in a Cheby-
shev net satisfy

g = �@✓

@u
.

(4) (Hazzidakis) Show that
p

det [I] = sin ✓, and that integrating the Gauss
curvature over a coordinate rectangle yields:

�
ˆ
[a,b]⇥[c,d]

K sin ✓dudv = 2⇡ � ↵1 � ↵2 � ↵3 � ↵4

where the angles ↵i are the interior angles.

B.7. Isothermal Coordinates

These are also more generally known as conformally flat coordinates and have
a first fundamental form that looks like:

I =



�2 0
0 �2

�

The proof that these always exist is called the local uniformization theorem. It is not
a simple result, but the importance of these types of coordinates in the development
of both classical and modern surface theory cannot be understated. There is also
a global result which we will mention at a later point. Gauss was the first to work
with such coordinates, and Riemann also heavily depended on their use. They have
the properties that

�uuu =
@ ln�

@u

�uvu =
@ ln�

@v
= �vuu

�vvv =
@ ln�

@v

�uvv =
@ ln�

@u
= �vuv

�uuv = �@ ln�

@v

�vvu = �@ ln�

@u
,

�w3
w1w2

=
1

�2
�w1w2w3 ,

K = � 1

�2

✓

@2 ln�

@u2
+

@2 ln�

@v2

◆

.
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Exercises.

(1) A particularly nice special case occurs when

�2 (u, v) = U2 (u) + V 2 (v)

These types of metrics are called Liouville metrics. Compute their Christof-
fel symbols, Gauss curvature, and show that when geodesics are written
as v (u) or u (v) they they solve a separable di↵erential equation. Show
also that the geodesics have the property that

U2 sin2 ! � V 2 cos2 !

is constant, where ! is the angle the geodesic forms with the u curves.
(2) Show that when

� =
1

a (u2 + v2) + buu+ bvv + c

we obtain a metric with constant Gauss curvature

K = 4ac� b2u � b2v

It can be shown that no other choices for � will yield constant curvature.
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