MAT 310 FALL 09 HOMEWORK 8

Due Wednesday, November 11

- 1. Let (V, \langle, \rangle) be an inner product space and suppose $T: V \to V$ is a linear map. Show that if λ is an eigenvalue of T, then $\bar{\lambda}$ is an eigenvalue of the adjoint operator T^* .
- 2. Let (V, \langle, \rangle) be an inner product space and suppose $T: V \to V$ is self-adjoint. If U is an invariant subspace of T, (so $T(U) \subset U$), show that U^{\perp} is also an invariant subspace of T, so $T(U^{\perp}) \subset U^{\perp}$.
- 3. Let v be a given vector in an inner product space and define the linear functional $\ell(w) = \langle w, v \rangle$, so $\ell : V \to \mathbb{F}$. Find the formula for the adjoint linear map $\ell^* : \mathbb{F} \to V$.
- 4. Consider the linear operator T on \mathbb{C}^2 given by $T(z_1, z_2) = (3iz_1 2z_2, 4z_1 + 2iz_2)$. Find the formula for $T^*(z_1, z_2)$.
- 5. Let $C_0^{\infty}[0,1]$ be the vector space of C^{∞} real-valued functions f on [0,1] such that f(0)=f(1)=0. These are the functions which are differentiable to all orders (infinite order). Define

$$T: C_0^{\infty}[0,1] \to C^{\infty}[0,1]$$

 $T(f) = f',$

so T is the derivative operator. Use the L^2 inner product:

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt.$$

Find the formula for the adjoint T^* . Is T self-adjoint?

- 6. Suppose $T: V \to V$, where V is an inner product space and T is self-adjoint. Prove that any two eigenvectors of T which have different eigenvalues are necessarily orthogonal vectors in V.
- 7. Using Proposition 6.46, prove that

$$dimrangeT = dimrangeT^*$$

for $T:V\to W$ a linear map of finite dimensional vector spaces. Explain why this implies that the row rank of an $m\times n$ matrix equals its column rank. (The row (column) rank is the dimension of the span of the row (column) vectors in the matrix).