MAT 310 FALL 09 HOMEWORK 10

Due Wednesday, December 2

1. Let $T:V\to V$ be a nilpotent linear map, so $T^k=0$ for some $k<\infty$. Prove that if v is a vector such that

$$T(v) = \lambda v$$
,

then $\lambda = 0$, i.e. the only eigenvalue of a nilpotent operator is 0.

- 2. Prove that if $T: V \to V$ is an injective linear map then T cannot be nilpotent.
- 3. (a) Find all eigenvalues of the linear map $T:\mathbb{C}^3\to C^3$ given by $T(z_1,z_2,z_3)=(z_2,0,3z_3)$. Determine the multiplicities of these eigenvalues.
 - (b). Find all generalized eigenvectors of T, corresponding to the eigenvalues found in (a).