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Abstract. We study the existence and uniqueness of solutions to the static vacuum Einstein
equations in bounded domains, satisfying the Bartnik boundary conditions of prescribed metric
and mean curvature on the boundary.

1. Introduction

This paper is a continuation of a series on elliptic boundary value problems for Riemannian
metrics. Broadly speaking, the issue has both analytic/PDE and geometric/physical aspects. On
the PDE side, the issue is to identify and solve “natural” elliptic boundary problems where the
unknown is a Riemannian metric g on an (n+ 1)-dimensional manifold Mn+1 with boundary ∂M .
The simplest and most natural problems will involve a quasilinear 2nd order (weakly) elliptic sys-
tem for g with suitable boundary data. The fundamental analytic problem is to understand the
global existence and uniqueness of solutions, (or lack thereof). To be meaningful geometrically
and physically, the equations and boundary conditions should be diffeomorphism invariant (gen-
eral covariance). Given these constraints, the simplest equations in the interior are the Einstein
equations

(1.1) Ricg = λg,

where Ricg is the Ricci curvature of the metric g and λ is a constant. Einstein metrics of course
have their origin in general relativity (with metrics of Lorentz signature). Moreover, they have
long been associated with the problem of finding optimal metrics on a given manifold. Any theory
describing the existence and uniqueness (or structure of the moduli space) of Einstein metrics on
closed manifolds is currently far out of reach and the perspective here is to see if one can make
progress in the presence of a boundary.

Both analytically and geometrically, it would appear that the most natural boundary data to
consider in relation to the Einstein equations (1.1) are either Dirichlet or Neumann data, i.e.

g|∂M = γ0 or A = A0,

where one prescribes either the induced metric on ∂M to be γ0 (Dirichlet) or prescribes the 2nd

fundamental form A of ∂M in (M, g) to be A0 (Neumann). Note this data is invariant under
diffeomorphisms of M fixing ∂M . However, such Dirichlet or Neumann data are never elliptic for
the Einstein equations (in any gauge), cf. [6]. Geometrically the most natural elliptic boundary
data appear to be the mixed Dirichlet-Neumann data

(1.2) ([γ], H),

where [γ] is the conformal class of the induced metric on ∂M and H is the mean curvature of ∂M
in M ; cf. again [6].

The simplest situation is 3-dimensions (n+ 1 = 3) where one is considering Einstein metrics on
3-manifolds with boundary. Here the metrics on the interior are standard, in that they are just
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of constant curvature, so that one is essentially analysing the structure of embedded surfaces in
constant curvature 3-manifolds with prescribed conformal class and mean curvature. This problem
has been analysed in detail in [7], [8], with results that are particularly complete when M is a 3-ball
with ∂M = S2.

The next simplest case is n+1 = 4, so Einstein metrics on 4-manifolds with 3-manifold boundary.
This is rather difficult in general, so we focus here on the simplest class of Einstein metrics in
dimension 4, namely the static metrics; these are warped products N = M ×u S1 of the form

(1.3) gN = u2dθ2 + g,

with g = gM a Riemannian metric on M . The Einstein equations (1.1) with λ = 0 on N are then
equivalent to the equations

(1.4) uRicg = D2u, ∆u = 0,

for a metric g and potential function u onM . The unknowns of the static vacuum Einstein equations
(1.4) are thus (M, g, u). Many, but not all, of the results of the paper apply to the case λ 6= 0,
cf. Remark 3.6 for more details. For simplicity, we concentrate on the situation λ = 0.

Throughout we assume that N is a 4-manifold with boundary ∂N and u > 0 on ∂N , so that
∂N = S1 × Σ with Σ a closed surface; we assume N and ∂N are connected and oriented. The
metric gN is called strictly static if

u > 0

in the interior of N . In this case N = S1 ×M topologically, with M a 3-manifold with connected
boundary ∂N = Σ. The simplest case is N = S1 × B3, with M = B3, ∂M = S2. At the same
time, we will also consider the situation where the “horizon”

H = {u = 0 ⊂ N} 6= ∅.
Loosely speaking, this situation corresponds to domains surrounding a collection of black holes.
The static vacuum equations (1.4) imply H is a finite collection of totally geodesic surfaces in M ,
giving rise to new boundary components of M , but not to N . We write ∂totM = ∂M ∪ H with
∂N = S1 × ∂M , so that ∂M represents the “outer” boundary of M . Again for ∂N = S1 × S2,
the simplest example is the filling N = D2 × S2. More generally, consider ∂N = S1 × Σ where
Σ is any surface. This bounds on the one hand S1 ×H, where H is a 3-dimensional handlebody
(corresponding to the strict static case), or also B2×Σ, (corresponding to the black hole case). In
general, the horizon H could have several components - even of different genus.

Let E = Em,α = Em,α(M) be the moduli space of Cm,α smooth static vacuum Einstein metrics
on M ; this consists of pairs (g, u) on M with u > 0 on M ∪ ∂M , cf. Section 2 for the precise
definition. Throughout the paper we assume m ≥ 2 and α ∈ (0, 1). It follows from [6], cf. also [11],
that if E 6= ∅, then E is a smooth infinite dimensional Banach manifold. This implies that one has
a good local structure to the space of solutions of the static vacuum Einstein equations.

While one could consider elliptic boundary data of the form (1.2) on N , here we focus on data
introduced by Bartnik [13], [14], motivated by issues in general relativity related to quasi-local
mass. Thus, given a static vacuum solution (M, g, u), consider the boundary data

(1.5) (γ,H),

where γ is the induced metric and H is the mean curvature on ∂M . It is shown in [6], [11] that
the boundary data (1.5) form elliptic boundary data for the static vacuum equations (1.4), (in a
suitable gauge). Moreover, the boundary map

(1.6) ΠB : Em,α →Metm,α(∂M)× Cm−1,α(∂M),

ΠB(g, u) = (γ,H),
2



is a smooth Fredholm map of Fredholm index 0. Basic questions of global existence and uniqueness
of static vacuum metrics with given boundary data (γ,H) are then equivalent to the surjectivity
and injectivity of ΠB.

The key to obtaining such global information on the structure of the map Π and the space E
is to understand when the map Π is proper (at least when mapping onto suitable domains in the
target space). This amounts to showing that solutions (M, g, u) are controlled by their boundary
data (γ,H), i.e. obtaining apriori estimates for solutions in terms of boundary data.

Note that boundary data here are independent of the potential function u. Consider first the
strict static case where u > 0 on N . The static equations (1.4) are invariant under rescalings
u→ λu of u and

ΠB(g, λu) = ΠB(g, u).

Hence DΠB always has a non-trivial kernel. Since its Fredholm index is zero, it also has everywhere
a non-trivial cokernel; cf. Corollary 2.2 for more details. The image variety

V = ImΠB ⊂ B ≡Metm,α(∂M)× Cm−1,α(∂M),

is thus of codimension at least one in the target space B, and hence ΠB is never surjective. Moreover,
it follows that in this situation ΠB is never proper, since one may always scale the length u of the
S1 fiber so that u → 0 or u → ∞ on M . One could correct for this by choosing a normalization
for u, for example minu = 1 or maxu = 1 and restricting E and ΠB to this subspace. The image
of ΠB remains the same, but ΠB then has Fredholm index −1. However to obtain useful global
information, one needs the Fredholm index to be non-negative. Note that this rescaling is not
possible in the second (horizon) case, since rescaling creates an edge-type singularity along the
horizon, cf. Section 2 for further discussion.

There is a another distinct reason that ΠB is not proper in general. Consider for example the
space Eflat of flat static vacuum solutions. Here (M, gflat) is a flat 3-manifold and so there is

an isometric immersion of M (or possibly M̃) into R3 with ∂M a surface immersed in R3. For
such (M, gflat), the function u is any function satisfying D2u = 0, i.e. (the pullback of) any affine
function of the form u = a + bz, for a, b ∈ R, z a linear function on R3 of norm 1. The boundary
data (γ,H) are independent of u. However, the space of such u is non-compact; in particular one
may have sequences of affine functions ui on M with ui > 0 for all i, but u = limui having a zero
on ∂M . Thus, the potential function may degenerate with fixed boundary data (γ,H).

To overcome these difficulties, we will first show in Proposition 2.6 that, in the strict static case,
the image V of ΠB is generically transverse to the lines (γ, λH), λ ∈ R, for any fixed (γ,H). Hence,
it is natural to consider the map to the quotient

(1.7) Π[B] : Em,α →Metm,α(∂M)× Cm−1,α(∂M),

Π[B](g, u) = (γ, [H]),

where Cm−1,α(∂M) = Cm−1,α(∂M)/R, with the equivalence relation H2 ∼ H1 if and only if H2 =
λH1 for some λ. The map Π[B] is still a Fredholm map, but now of Fredholm index +1. To obtain
a map of index 0, one may thus append to this map a 1-dimensional space of boundary data and it
is most natural to choose boundary data depending smoothly on u. There is no unique choice for
this, and the choice we make is to obtain useful information. Thus, consider

(1.8) Π : E →Met(∂M)× C+ × R,

Π(g, u) = (γ, [H], µ), µ =

∫
∂M

(|dν|4 + ν2)dvγ ,
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where ν = log u and dν is the differential of ν on ∂M . (Again many other choices are possible
here). Note that the first term in the integral in (1.8) is invariant under rescalings of u but the
second is not.

The first main result of the paper is the following. Let C+ be the space of positive functions
H : ∂M → R+ modulo the equivalence relation above: two functions Hi : ∂M → R+ are equivalent
if H2 = λH1 for some λ > 0. Let E+ denote the space of static vacuum metrics for which the
boundary metric has positive Gauss curvature and H > 0, (modulo rescalings), so that

Em,α+ = Π−1(Metm,α+ (∂M)× Cm−1,α
+ (∂M)× R),

where Met+ denotes the space of metrics γ on ∂M with positive Gauss curvature: Kγ > 0.

Theorem 1.1. The map

(1.9) Π : E+ →Met+ × C+ × R,
is a smooth proper Fredholm map of Banach manifolds, of Fredholm index 0.

This holds in both the strict static case where H = ∅ and the black hole case where H 6= ∅.

Theorem 1.1 makes it possible to study the global behavior of the map Π by using robust
topological techniques. Foremost among these is the notion of degree of a map. In particular, a
smooth, proper Fredholm map F : X → Y of index 0 between Banach manifolds has a well-defined
Z2-valued degree - the Smale degree, [29], defined by

(1.10) degZ2 F = #F−1(y), (mod 2),

where y ∈ Y is any regular value of F ; the properness of F guarantees that the cardinality in (1.10)
is finite. This applies to the map Π in (1.9).

Theorem 1.2. In the strict static case, with M = B3, N = S1 ×B3, one has

(1.11) degZ2Π = 0.

In fact Theorem 1.2 holds for M of arbitrary topology, e.g. M equal to a handlebody H, cf. Re-
mark 4.6. We conjecture that (1.11) also holds in the “Schwarzschild black hole case”, where
N = S2 ×D2 with ∂N = S2 × S1. Evidence is given for this conjecture in Section 4, but we have
not been able to establish the necessary rigidity results to prove the conjecture.

The techniques used to prove Theorems 1.1 and 1.2 also allow one to use Morse theory and
Lyusternik-Schnirelman theory methods to analyse the number of Einstein metrics with given Π-
boundary values. An example of this is the following rather surprising consequence. Let (M, g, u) =
(B3(1), gEucl, a + bz) be a standard flat solution of the static Einstein equations (1.4) on the unit
ball in R3. The induced data on the boundary are (γ,H) = (γ+1, 2).

Theorem 1.3. In the strict static case, with M = B3, N = S1×B3, any boundary data (γ, [H], µ),
µ > 0, near the standard flat data (γ+1, [2], µ) are realized by at least 3 distinct static vacuum
solutions, i.e.

#Π−1(γ, [H], µ) ≥ 3,

for all data (γ, [H], µ) near (γ+1, [2], µ), with µ > 0. Further, for generic boundary data (γ, [H], µ),
µ > 0, near standard flat data (γ+1, [2], µ) there are at least 4 distinct static vacuum solutions, i.e.

#Π−1(γ, [H], µ) ≥ 4.

Theorem 1.3 is related to a recent conjecture of Jauregui [20]; this and more details regarding
the content of Theorem 1.3 are discussed in Section 5.

We conclude the Introduction with a brief summary of the contents of the paper. In Section 2, we
establish background material and preliminary results for the main results to follow; Propositions
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2.5 and 2.6 are of particular note. Section 3 is devoted to the proof of Theorem 1.1, while Section
4 computes the degree of Π in some standard situations. Section 5 concludes with a discussion of
Morse theory aspects and the proof of Theorem 1.3.

2. Preliminary Results

In this section, we discuss and prove preliminary results needed for the work to follow. As
discussed in the Introduction, the static vacuum equations (1.4) are equations for a pair (g, u),
consisting of a Riemannian metric g and a scalar function (potential) u > 0 on a 3-manifold M
with boundary ∂M , possibly with inner boundary components H on which u = 0.

To determine the structure of H, the static equations (1.4) imply that

(2.1) D2u = 0 on H.

Evaluating (2.1) on a pair of tangent vectors T to H gives, since u = 0 on H, N(u)A = 0 on
H, where A is the second fundamental form and N is a unit normal. Evaluating (2.1) on (N,T )
where N is normal and T is tangent to H gives TN(u) = 0, so that N(u) = const is a constant on
each component of H (known as the surface gravity). Since u is harmonic, the unique continuation
property for harmonic functions implies that N(u) 6= 0 and hence A = 0 on H so that the horizon
is totally geodesic in (M, g).

The constraint equations, i.e. Gauss and Gauss-Codazzi equations, at ∂M take the form

(2.2) |A|2 −H2 +Rγ = Rg − 2Ric(N,N) = 2u−1(∆u+HN(u)),

(2.3) δ(A−Hγ) = −Ric(N, ·) = −u−1(dN(u)−A(du)).

To see (2.2), one uses Rg = 0 and −Ric(N,N) = −u−1NN(u) = u−1(∆∂Mu+HN(u)), where the
last equation uses ∆Mu = 0. The divergence constraint (2.3) is a similar simple computation.

Given M , let E = Em,α(M) be the space of all static vacuum solutions (M, g, u) which are Cm,α

up to ∂M . The group Diffm+1,α
1 (M) of Cm+1,α diffeomorphisms of M , equal to the identity on ∂M

acts freely on Em,α. The quotient Em,α = Em,α/Diffm+1,α
1 is the moduli space of static vacuum

Einstein metrics. Observe that the boundary data (γ,H) are well defined on quotient.
It is proved in [6] (or [11]) that the space Em,α is a smooth infinite dimensional Banach manifold

(if not empty) and the boundary map

(2.4) ΠB : Em,α →Metm,α(∂M)× Cm−1,α(∂M) ≡ Bm,α,

ΠB(g) = (γ,H),

is a C∞ smooth Fredholm map, of Fredholm index 0.

The boundary data (γ,H) arise from a natural variational problem. Let S(h) = −∆trh+δδ(h)−
〈Ric, h〉 be the linearization of the scalar curvature, (cf. [15] for instance), with adjoint S∗ given by

S∗u = D2u−∆u g − uRic.

It is well-known that the static vacuum equations are given by

S∗u = 0 and R = 0.

We first discuss the strict static case H = ∅.

Proposition 2.1. On the space of strict static metrics with boundary conditions as in (1.5), the
Lagrangian

(2.5) L(g, u) = −
∫
M
uRdVg : Met(M)× C(M)→ R,
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has gradient ∇L at (g, u) given by

(2.6) −∇L = (S∗u+ 1
2uRg, R, uA−N(u)γ, 2u).

Thus, if (h, u′) is a variation of (g, u) inducing the variation (hT , H ′h) of the boundary data, then

(2.7) −dL(h, u′, hT , H ′h) =

∫
M

[〈S∗u+ 1
2uRg, h〉+Ru′] +

∫
∂M

[〈uA−N(u)γ, hT 〉+ 2uH ′h].

In particular the static vacuum equations are critical points for L with data (γ,H) fixed on ∂M .

Proof: The reason for the choice of the minus sign in (2.5) is to obtain the right sign in (2.19)
below. To begin, one has

(2.8) −DL(h, u′) =

∫
M

(uR′ + u′R+ uR(dV )′) =

∫
M
uS(h) + 1

2uR〈g, h〉+Ru′.

A simple integration-by-parts argument gives

(2.9)

∫
M
uS(h) =

∫
M
〈S∗u, h〉+

∫
∂M
−uN(trh)− (δh)(N)u− 〈h(N), du〉+ trhN(u).

The equations (2.8) and (2.9) imply immediately the bulk Euler-Lagrange equations - the first
two terms in (2.6). If the bulk term (over M) vanishes, then since u′ is arbitrary R = 0, so this
gives

S∗u = 0,

with R = 0, which are the static vacuum equations.
For the boundary terms, a standard formula gives:

2A′h = ∇Nh+ 2A ◦ h− 2δ∗(h(N)T )− δ∗(h00N),

where T denotes tangential projection onto the boundary and h00 = h(N,N), so that (since H ′ =
trA′ − 〈A, h〉),

2H ′h = N(trh) + 2δ(h(N)T )− h00H −N(h00).

Also by a simple calculation

(δh)(N) = δ(h(N)T ) + 〈A, h〉 − h00H −N(h00),

so that,

2H ′h − (δh)(N) = N(trh) + δ(h(N)T )− 〈A, h〉.
This gives ∫

∂M
u(−N(trh)− (δh)(N)) =

∫
∂M
−2uH ′h + 〈du, h(N)T 〉 − u〈A, h〉.

It follows that the boundary term in (2.9) is given by∫
∂M
−2uH ′h − u〈A, h〉 −N(u)h00 +N(u)trh =

∫
∂M
−2uH ′h − u〈A, hT 〉+N(u)〈hT , γ〉,

which proves the result.

As noted in the Introduction, in the strict static case KerDΠB is always non-empty; the rescal-
ings u → λu of u leave the boundary data invariant, so that (0, λu) ∈ KerDΠ. Since DΠ is of
Fredholm index 0, it follows that DΠB always has non-trivial cokernel.

6



Corollary 2.2. In the strict static case, the image V of ΠB has codimension at least one in the
target space B,

(2.10) codim(ImΠB) ≥ 1.

In fact the tangent space of the image of ΠB at ΠB(g, u) is orthogonal to the span of the vector
Z = (−uA+N(u)γ,−2u) ∈ TB,

(2.11) (ΠB)∗(TE)(g,u) = T (ImΠB) ⊥ (−uA+N(u)γ,−2u).

In particular ImΠB has empty interior in B.

Proof: On the moduli space E (i.e. on-shell) one has L = 0 and hence dL = 0 on variations
tangent to E . The left side of (2.7) thus vanishes, as does the bulk term on the right. Hence, the
boundary term on the right vanishes, which is exactly the statement (2.11).

It would be interesting to know if (2.11) can be explicitly “integrated”, so that the codimension
1 restriction for V ⊂ B can be described explicitly.

Corollary 2.2 does not hold in the black hole case H 6= ∅; in this case, the same computations as
in the proof of Proposition 2.1 give∫

∂M
〈uA−N(u)γ, hT 〉+ 2uH ′h = −

∫
H
N(u)〈γ, hT 〉.

Since N(u) = κ is the constant surface gravity, one has∫
H
N(u)〈γ, hT 〉 = 2N(u)

d

dt
area(H),

where the derivative is taken with respect to gt = g + th. This term may or may not vanish; it is
analogous to the variation of a mass term for asymptotically flat metrics.

To obtain a variational characterization of the boundary data (2.4) in the black hole case, we pass
to the 4-manifold N with gN = u2dθ2 + g with ∂N = S1× ∂M . Consider first the Einstein-Hilbert
action on Met(N) with Gibbons-Hawking-York boundary term

(2.12) L = −
∫
N
RNdvgN − 2

∫
∂N

HNdvγN ,

where RN and HN are the scalar curvature and mean curvature at ∂N of gN . It is standard that
the variation of L is given by

(2.13) dL(h) =

∫
N
〈E, hN 〉dvgN +

∫
∂N
〈τ, hN 〉dvγN ,

where τ = AN −HNγN is the conjugate momentum and E = RicgN −
RN
2 gN is the Einstein tensor

of gN . One has HN = N(ν) + H, where as before, H is the mean curvature of ∂M ⊂ M . The
matrix corresponding to the form τ is given by

τ =

(
−H 0

0 A− (N(ν) +H)γ

)
.

The derivative (2.13) does not vanish on the space of deformations h fixing the boundary data
(γ,H), due to the “vertical term” (tangent to the S1 fiber) at the boundary. To see this, let

ω = udθ be the unit length 1-form tangent to the S1 fiber. Then hN = 2uu′dθ2 + h = 2u
′

u ω
2 + h.

If hT = 0 at ∂M , then 〈τ, hN 〉dvγN = −2Hu′dvγ 6= 0.
Thus in place of L consider

(2.14) L̃ = −
∫
N
RNdvgN − 2

∫
∂N

HNdvγN + 2

∫
∂N

HdvγN .
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Computing as above then gives

dL̃(h) =

∫
N
〈E, hN 〉dvgN +

∫
∂N

[〈τ, hT 〉+ 2H ′h +Htrγh
T ]dvγN ,

which does vanish when hT = H ′h = 0.
This gives the analog of Proposition 2.1 in the black hole case.

Proposition 2.3. On the space of black hole static metrics on N with boundary conditions (γ,H),

the Lagrangian L̃ has gradient given by

(2.15) −∇L̃ = (S∗u+ 1
2uRg, R, uA−N(u)γ, 2u).

Thus, if (h, u′) is a variation of (g, u) inducing the variation (hT , H ′h) of the boundary data, then

(2.16) −dL̃(h, u′, hT , H ′h) =

∫
M

[〈S∗u+ 1
2uRg, h〉+Ru′] +

∫
∂M

[〈uA−N(u)γ, hT 〉+ 2uH ′h].

In particular the static vacuum equations are critical points for L̃ with data (γ,H) fixed on ∂M .

On the other hand, the analog of Corollary 2.2 does not hold in the black hole case, since the

functional L̃ does not vanish on shell, i.e. is not trivial on the space of solutions E .

When K = KerDΠB = 0, the map ΠB is a local diffeomorphism near a given solution (g, u), so
it has a local inverse map B → E defined near ΠB(g, u). When K 6= 0 this is no longer the case, but
the well-known Lyapunov-Schmidt reduction gives this structure modulo finite dimensional spaces.
To describe this in the current context, let

(2.17) E(g, u) = −(S∗u+ 1
2uRg,R),

be the static Einstein operator, so that E = E−1(0, 0). Of course this may also be written in the
form

(2.18) E(g, u) = (u[Ricg −
R

2
g − u−1D2u+ u−1∆u g],−R).

In the following it will be more convenient to work on the 4-manifold (N, gN ), where (2.18) has the
simple form

(2.19) E(gN ) = RicgN −
RN
2
gN .

Let hN be a variation of gN and let

(2.20) L(hN ) = E′(hN ),

be the linearization of E at (N, gN ) ∈ E with fixed boundary data

(2.21) hT = H ′h = 0 at ∂M.

The operator L gives the 2nd variation of L in (2.5) or L̃ in (2.14) and so is symmetric for this
choice of boundary values:

〈L(h1), h2〉 = 〈h1, L(h2)〉,
for hi satisfying (2.21). Explicitly, L is given by

(2.22) 2L(hN ) = D∗DhN − 2R(hN )−D2trhN − δδhN g + ∆trhN g − 2δ∗δhN ,

where here all geometric quantities are on (N, gN ). We view L as acting

L : Sm,α0 (N)→ Sm−2,α(N),
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where Sm,α(N) = TMetm,αstat(N) is the tangent space of static metrics on N and 0 denotes the
boundary condition (2.21).

Now write

Sm,α0 = Imδ∗ ⊕ T m,α0 ,

where T m,α denotes the transverse space of divergence-free forms on N , δNh = 0, and T m,α0 denotes
the subspace of such forms satisfying (2.21). Also δ∗ acts on Cm+1,α vector fields Z on M with
Z = 0 on ∂M , (so the boundary condition (2.21) is preserved). This L2-orthognal splitting is
well-known, cf. [15] for instance.

The forms δ∗Z are in the kernel of L, L(δ∗Z) = 0, and D2L(δ∗X, ·) = 0. (This corresponds

of course to the fact that the functionals L and L̃ are invariant under static diffeomorphisms in
Diff1(N)). Moreover, by the symmetry property,

ImL ⊥ Imδ∗.

To see this, one has 〈L(h), δ∗Z〉 =
∫
N 〈δ(L(h)), Z〉, since Z = 0 on ∂M . But δL(h) = δ(E′h) =

(δE)′h − δ′hE = 0. Hence

(2.23) L : T m,α0 → T m−2,α.

This operator is elliptic, so Fredholm, and symmetric.
The nullity of (M, g, u) = (N, gN ) with respect to ΠB is the dimension of the kernel K =

KerDΠB, consisting of forms κ = (k, 2ν ′), ν ′ = u′

u , satisfying

L(κ) = 0, δNκ = 0, with kT = 0, H ′k = 0 at ∂M.

A regular point of ΠB has nullity zero. A set Σ ⊂ E is a non-degenerate critical manifold if Σ is
a finite dimensional manifold and each point in Σ is a critical point of ΠB with nullity equal to
dimΣ.

Let K⊥ be the L2 orthogonal complement of K ⊂ T m−2,α and let K⊥0 be the L2 orthogonal
complement of K ⊂ T m,α0 . The symmetry (self-adjointness) property above implies that

(2.24) L : K⊥0 → K⊥,

is an isomorphism.
Now suppose K 6= 0 at a given solution (g0, u0) with boundary data (γ0, H0). Given boundary

data (γ,H) near (γ0, H0) choose an extension to a metric gγ,H on N for instance as follows: gN =
u2

0dθ
2 + gM with

gM = η(dt2 + ϕ2γ) + (1− η)g0,

where ϕ = 1 and N(ϕ) = 1
2H at t = 0 so that gM realizes the boundary data (γ,H). Here t is the

geodesic normal coordinate for g0 so that g0 = dt2 + γt and η is a bump function with η = 1 near
∂M . This gives a map (γ,H)→ gγ,H ∈Metm,α(M)× Cm,α(M). Now define an operator

P : B ×K ×K⊥0 → K⊥,

P (γ,H, κ, `) = πK⊥ [E(gγ,H + κ+ `)],

where πK⊥ is the orthogonal projection to K⊥, κ = (k, 2ν ′) ∈ K and ` = (h, 2ν ′) ∈ K⊥0 . The
derivative (D3P )γ0,H0,0,0 in the third component is an isomorphism by (2.24). Hence by the implicit
function theorem, there is a (smooth) map

I0 : B ×K → K⊥0 ,

such that I0(γ,H, κ) is the unique solution (locally) to

P (γ,H, κ, I0(γ,H, κ)) = 0,
9



so that

E(gγ,H + κ+ I0(γ,H, κ)) ∈ K.
Set

I : B ×K →Metm,α(M)× Cm,α(M),

I(γ,H, κ) = gγ,H + κ+ I0(γ,H, κ)

and set

(2.25) z : B ×K → K,

z(γ,H, κ) = E(I(γ,H, κ)) ∈ K.
From this we have the following result on the structure of E near (g0, u0).

Proposition 2.4. For (γ,H) near (γ0, H0) as above, one has I(γ,H, κ) ∈ E if and only if
z(γ,H, κ) = 0. The locus z−1(0) is a smooth submanifold of B × K of codimension k = dimK
with 0 × K ⊂ T (z−1(0)). Further, for arbitrary fixed boundary data (γ,H), z−1(0) ∩ Π−1(γ,H)

consists exactly of the critical points of L (in case H = ∅) or L̃ (in case H 6= ∅).

Proof: The first statement is immediate from the discussion above. The second statement is a
consequence of the result (2.4) that E is a smooth manifold; namely the divergence-gauged Einstein
operator Metm,αstat(N) → Sm−2,α(N) is a submersion at any Einstein metric, cf. [6], [11]. The last
statement is immediate from Propositions 2.1 and 2.3.

Abusing notation slightly, let End be the set of ”non-degenerate” static Einstein metrics, i.e. the
set of such metrics (g, u) such that KerDΠB = (0, λu) in the strict static case, and KerDΠB =
(0, 0) in the black hole case. In the former case one can of course remove the scaling freedom of u
by restricting to the subspace of E for which, for instance,

∫
M u = 1; however we will not carry this

out in practice. Thus regular points of ΠB are defined to be those with nullity equal to 1 in the
strict static case. Let Ed = E \End be the complement consisting of degenerate metrics. Let Vd and
Vnd denote the image of these sets under ΠB. The next result shows that non-degenerate metrics
(i.e. the regular points of ΠB) are open and dense in E ; more precisely the degenerate metrics are
contained in a submanifold of codimension 1 in E .

Proposition 2.5. In the strict static case H = ∅, Im(ΠB) is of codimension one in the target
space B. The ”singular points” of ΠB, i.e. the locus Ed, is of codimension at least one in E. At
any point in Vnd, one has

(2.26) TVnd = Z⊥ ⊂ TB,
where Z is given by (2.11).

In the black hole case H 6= ∅, Im(ΠB) is of codimension zero in the target space B. Again, the
singular points of ΠB, i.e. the locus Ed, is of codimension at least one in E. At any point in Vnd,
one has

(2.27) TVnd = TB.

Proof: The proof is based on the classical idea that if (M, g, u) is degenerate, so that L in (2.22)
has a zero eigenvalue (K = KerL 6= 0) then perturbing M slightly by moving the boundary ∂M
inward by the normal exponential map should give a non-degenerate solution with K = 0. We
follow some of the methods used in [34] to carry this out in this context.

The issue is local, so fix any degenerate solution (M, g0, u0) with dimK = k > 0. Then as above,
solutions in E near (M, g0, u0) are parametrized by (γ,H, κ) and

I(γ,H, κ) ∈ E
10



exactly when z(γ,H, κ) = 0. Consider the 2-parameter variation

I(γs, Hs, κs + tκ) = gs,t,

where I(γs, Hs, κs) is the curve in E given by moving in along unit inward normal −N a geodesic
distance s, so this curve is in z−1(0). The curve I(γ0, H0, tκ) is tangent to E but may not be in E
at second order.

Let Sk = {(γ,H, κ) ∈ z−1(0) : dimK = k}. Observe that

Sk = {(γ,H, κ) : z(γ,H, κ) = 0, D2z(γ,H, κ) = 0},

where D2 is the derivative in the κ direction, i.e. the full derivative of z in directions of K vanishes.
Note that D2z = L, for L as in (2.22), acting on forms satisfying the boundary conditions (2.21).

At this point, we divide the discussion into two cases.

Case I: D2
2z(γ0, H0, 0) 6= 0.

In this case, there is some direction κ0 so that the 2nd derivative of z in the κ0 direction is non-
zero. Thus the first derivative of ∂κ0z(γ0, H0, κ) at κ = 0 is non-zero. But (0, κ0) is tangent to z−1(0)
and hence the set of (γ,H, κ) with I(γ,H, κ) near (g0, u0) such that z(γ,H, κ) = ∂k0z(γ,H, κ) = 0
lies in a submanifold of z−1(0). Since this set contains Sk near (g0, u0), it follows that Sk has
codimension at least one.

Case II: D2
2z(γ0, H0, 0) = 0.

In this situation, we construct a functional on E which vanishes at the critical locus Ed of ΠB

but with non-zero gradient. This again gives the codimension one property. We work first in strict
static case and follow that with the black hole case.

To begin, note that the action L in (2.5) vanishes identically on E , so gives no information.
Instead, consider

(2.28) F = L −
∫
∂M

Hdvγ = −
∫
M
uRdvg −

∫
∂M

Hdvγ .

This is non-zero on E and the variation onshell (i.e. on E) is given by

δF(h) = −(

∫
∂M

Hdvγ)′ = −
∫
∂M

H ′h + 1
2Htrγhdvγ .

Observe this vanishes on K = KerDΠB, so that critical points of ΠB are critical points of F . More
importantly, at g ∈ E , a form κ ∈ K exactly when the second variation D2F(κ, ·) = 0, when F is
viewed as a functional on the space of metrics with fixed boundary metric and mean curvature, as
in (2.21). Thus K gives the kernel of the second variation of F .

Now compute the variation of F on the family gs,t in the direction s at s = 0, for t small. The
variation of the metric g is given by h = −A while the variation of the potential u is given by
−N(u). This gives

(2.29)
d

ds
F(gs,t)|s=0 =

∫
M
〈E(g, u), (h, u′)〉 −

∫
∂M
〈uA−N(u)γ, hT 〉+ 2uH ′h

−
∫
∂M

H ′h + 1
2Htrγhdvγ .

Consider the second order behavior of (2.29) in the direction t. The bulk term over M vanishes at
first order since E′κ = L(κ) = 0, as does the first boundary term. Similarly, these terms also vanish
at second order, exactly by the Case II condition, which implies that D2E(κ, κ) = 0. Hence

(2.30)
d

ds
F(gs,t)|s=0 = −1

2

∫
∂M

N(H) +H2 + o(t2),
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since H ′h = −1
2N(H). We now compute the second derivative of (2.30) in the direction κ ∈ K,

i.e. in the t direction. First, by definition, one has 2A = LNg, so that A′k = LNk (in the normal
geodesic gauge) so that A′′k = LNk′ = 0. Similarly H ′′k = 0.

Next, by the standard normal Riccati equation, N(H) = −|A|2−Ric(N,N) and by the constraint
(Gauss) equation |A|2 −H2 +Rγ = Rg − 2Ric(N,N). So −Ric(N,N) = 1

2(|A|2 −H2 +Rγ −Rg),
giving N(H) = 1

2(−|A|2 −H2 + Rγ − Rg). Note that R′′γ = 0 since kT = 0 at ∂M while R′′g = 0,
since κ is tangent to E to second order. It follows that

d2

dt2
d

ds
F(gs,t)|s=t=0 =

1

4

∫
∂M
|A′k|2dvγ ≥ 0.

Suppose first that

(2.31)
d

ds

d2

dt2
F(gs,t)|s=t=0 =

1

4

∫
∂M
|A′k|2dvγ > 0,

for some κ ∈ K. Then the function d2

dt2
F(gs,t)|t=0 has non-zero derivative in the s or inward direction

so that the set of metrics in E near the background (g0, u0) where d2

dt2
F(gs,t)|t=0 = D2F(κ, κ) = 0

is of codimension 1 in E . However, to first order in s, K also represents the kernel of D2F at gs.
Namely, if κs ∈ Ks, then Ls(κs) = 0 so that L′κ(κ) + L(κ′) = 0. But L′κ(κ) = D2E(κ, κ) = 0 by
the Case II property, so that L(κ′) = 0, which proves the claim. It then follows that Sk also has
(at least) codimension 1.

Suppose then on the other hand that

(2.32) kT = (A′k)
T = 0,

for all κ ∈ K, so that the Cauchy data for κ vanish at ∂M . The main issue is to show that (2.32)
leads to κ = 0, (and hence a contradiction). To do this, we need to obtain the same information

regarding the Cauchy data for u′. Given any (M, g, u) ∈ E , let K̃ be the space of linearized Einstein

deformations satisfying (2.32) at ∂M , so that in general K̃ ⊂ K but in the context in which we are

working, K̃ = K at the given solution (M, g0, u0). Consider then the modified functional

F̃ = −
∫
M
uRdvg −

∫
∂M

Hdvγ −
∫
∂M
〈A,∇NA〉dvγ .

We view F̃ as a functional on the space of pairs (g, u) with fixed metric γ and second fundamental
form A at ∂M , analogous to but stronger than (2.21). As before, the kernel of the second variation

D2F̃ on this space is exactly K̃ at (M, g0, u0).
Now note that −N〈A,∇NA〉 = −|∇NA|2−〈A,∇N∇NA〉. As before A′′k = 0 and ∇N∇NA′′k = 0.

Carrying out the same process as above and using (2.32) gives then

d2

dt2
d

ds
F̃(gs,t)|s=t=0 =

1

2

∫
∂M
|A′k|2dvγ +

∫
∂M
|∇NA′k|2dvγ =

∫
∂M
|∇NA′k|2dvγ .

If this term is positive, then the same arguments as above prove the result. Suppose then instead

∇NA′k = 0

holds, together with (2.32). Taking the derivative of the normal Riccati equation (cf. [25] for
instance) ∇NA + A2 + RN = 0 in the direction k gives R′N = 0, and hence by the static vacuum
equations (and constraint equations on ∂M) one obtains

(2.33) Ric′k = 0

at ∂M .
Now on M , one has

uRic′ + u′Ric = (D2)′u+D2u′.
12



Since (D2)′ = 0 at ∂M by (2.32), this together with (2.33) gives

(2.34) u′Ric = D2u′.

at ∂M . Thus u′ is another static solution, with the same underlying metric g, at ∂M . It follows from
a result of Tod, [31], that generically (off a codimension 1 subset of static metrics) the potential u
is uniquely determined, up to constants, by the metric g. More precisely, let d denote the covariant
exterior derivative acting on T (M)-valued 1-forms. Then dRic is the well-known Cotton tensor (a
vector valued 2-form on M). Taking d of the static vacuum equations gives

(dRic)ij = (Ricii −Ricjj)dνk
where ei is a local orthonormal basis diagonalizing the Ricci curvature Ric, cf. [30, Eqn. (12)].
Hence if the eigenvalues ρi of Ric are distinct, the potential ν is uniquely determined up to a
constant by Ricg and dRicg. The static metrics for which at least two eigenvalues of Ric are equal
are of infinite codimension in the space of all static metrics (cf. [30, Eqn. (34)].

Thus, without loss of generality, we may assume from (2.34) and the discussion above that
d log u′ = d log u at ∂M . This gives u′ = cu and N(u′) = cN(u) at ∂M . Now to any variation
κ = (k, u′) one may subtract a variation ηc = (0, cu) rescaling the length of the fiber S1 so that
κ̂ = κ− ηc = (k, u′ − cu). It follows then that for any variation κ̂, one has

(2.35) kT = (A′k)
T = u′ = N(u′) = 0,

at ∂M . Thus, all of the Cauchy data of the variation κ̂ vanish at ∂M . It follows then from the
unique continuation theorem in [9] that

κ̂ = 0,

on M . In turn, this implies that the original variation κ is trivial, i.e. of the form κ = (0, cu). This
completes the proof of Proposition 2.5 in the strict static case.

The proof in the black hole case H 6= ∅ is basically the same. One replaces L in (2.28) by L̃.
All of the arguments above then carry through, and prove in this case also that either Sk is of
codimension (at least) one or (2.35) holds. It follows again that κ = (0, cu) for some c. However,
in this case, because of the presence of the horizon H, one must have c = 0 so that κ = 0.

Let Dm,α = Metm,α(∂M) × Cm−1,α(∂M), where as in (1.7) the second term is the space of
equivalence classes [H] = [λH]. Let π : B → D denote the projection, so that the fibers of π are

given by π−1(γ, [H]) = {(γ, λH)} for λ ∈ R+. Thus Π[B] = π ◦ ΠB. Let Ẽ = E/ ∼, where the

equivalence relation is given by rescalings of u, so u ∼ λu for λ > 0. This action of R+ on E is free,

so that Ẽ is also a smooth Banach manifold.

Proposition 2.6. In the strict static case (H = ∅) the image space V = ImΠB is transverse to
the fibers of π, except possibly at the critical value locus of ΠB. Thus the map

(2.36) Π[B] : Ẽnd → D,
is a local diffeomorphism.

Proof: By Proposition 2.5, it suffices to show that

(2.37) TV ⊕ T [H] = TB,
away from the critical values in V. This is equivalent to showing that T [H] is not contained in
TV. Tangent vectors to T [H] are of the form (0, λH) and by (2.11) these are never tangent to
V = (ΠB)∗(TEnd), since ∫

∂M
〈uA−N(u)γ, hT 〉+ 2uH ′h =

∫
∂M

2uλH > 0,
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since u > 0 and H > 0. This proves the result.

Proposition 2.6 is of course false in the black hole case, since DΠB maps generically onto TB.
A consequence of Proposition 2.6 is the following relation between the regular points of ΠB and Π
(in the strict static case).

Corollary 2.7. In the strict static case, a point (M, g, u) ∈ E is a regular point of Π if and only if
(M, g, u) is a regular point of ΠB, (i.e. a point of nullity 1). More generally, for any (M, g, u) ∈ E,

(2.38) nullityDΠB = nullityDΠ + 1.

Proof: If κ ∈ KerDΠ, then kT = 0, H ′k = λH for some λ, and ν ′κ = 0. The transversality
property (2.37) implies that H ′k = 0 and hence κ ∈ KerDΠB. Thus

KΠ ⊂ KΠB .

Conversely, if κ ∈ KΠB , then κ ∈ KΠ if and only if µ′κ = 0. This can always be achieved by
rescaling u (u→ λu), so changing κ = (k, u′)→ (κ, u′ − λ), for some λ, cf. also Remark 4.6.

3. Properness of Π

To obtain a deeper understanding of the possible boundary values (γ,H) of static vacuum solu-
tions, one needs to know that the map Π (or ΠB) is proper, or determine domains in the target
space onto which it is proper. Only with this property can one obtain effective information on the
global behavior of Π.

Proving that ΠB is proper amounts to showing that a static vacuum metric (M, g, u) can be
controlled in terms of its boundary data (γ,H), (which amounts to control of the “inverse map”
to ΠB). As discussed below, this is relatively easy in the interior of M , away from ∂M (especially
in the case H = ∅) but it is more difficult to control the structure of (M, g, u) near ∂M in terms of
(γ,H). The main issue is to obtain some control or information about the behavior of the potential
function u near ∂M in terms of (γ,H).

As discussed in the Introduction, ΠB is in fact never proper, at least in the strict static case,
due to the possible degeneration of u with fixed or controlled boundary data (γ,H). As motivated
there, we instead consider the closely related map

(3.1) Π : E → D × R = Met(∂M)× C+ × R,
Π(g, u) = (γ, [H], µ),

where µ =
∫
∂M (|dν|4 + ν2), ν = log u. The map Π is a smooth Fredholm map, of Fredholm index

0.
In the following, we prove Theorem 1.1, that Π is proper at least on the domain E+ of static

vacuum solutions for which Kγ > 0 and H > 0, i.e. the boundary has positive Gauss and mean
curvature.

Proof of Theorem 1.1.
Suppose (M, gi, ui) is a sequence of static vacuum solutions with boundary data

(3.2) (γi, [Hi], µi)→ (γ, [H], µ),

in the Cm,α × Cm−1,α × R topology on ∂M . One then needs to prove that (M, gi, ui) → (M, g, u)
in a subsequence, in the Cm,α topology on M .

The proofs in the strict static and black hole cases are somewhat different. We thus first prove
the result in the strict static case H = ∅; following that, we discuss the case black hole case H 6= ∅.

Case A. H = ∅.
14



Since the metrics γi are uniformly controlled, by the Sobolev embedding theorem on ∂M , a
bound on

(3.3) µi =

∫
∂M

(|dνi|4 + ν2
i )dvγi

implies a uniform bound on sup |νi| and hence uniform pointwise control on {ui} away from 0 and
∞ on ∂M . By the maximum principle for harmonic functions, the same bound extends to all of
M .

The main point is then to obtain a uniform bound on the full curvature Rm of {gi}. To begin,
write Hi = λiH

′
i, where |H ′i|Cm−1,α(∂M) = 1. Then either λi → 0, λi → λ0 > 0 or λi → ∞ (in a

subsequence). We analyze these situations case-by-case.
(I). λi → λ0 > 0.
In this case both the metrics γi and mean curvatures Hi are uniformly controlled along the

sequence.

Proposition 3.1. In the strict static case, there is a constant Λ = Λ(γ,H, µ) such that

(3.4) |Rm| ≤ Λ,

on M . In addition, at the boundary ∂M ,

(3.5) |A| ≤ Λ, |N(u)| ≤ Λ, and dfoc ≥ Λ−1,

where dfoc is the distance to the focal locus of the inward normal exponential map from ∂M into
M . The estimates (3.4), (3.5) also hold for higher derivatives of Rm, A and N(u) up to order
m− 2, m− 1 respectively.

Proof: For points x ∈ M a bounded distance away from ∂M , the estimate (3.4) follows imme-
diately from the apriori interior estimates in [4] which states that

(3.6) |Rm|(x) ≤ k

t2(x)
, |d log u|(x) ≤ k

t(x)
,

where t(x) = dist(x, ∂M) and k is an absolute constant. The estimates (3.6) are scale invariant,
and hold also for all higher derivatives of Rm and log u. Consider then the behavior at ∂M . By
the scalar constraint equation (2.2), a bound on |Rm| at ∂M implies a bound on|A| at ∂M , given
control of (γ,H). Similarly, by standard comparison geometry, a bound on |Rm| on M gives a
lower bound on the distance dfoc to the focal locus of the normal exponential map exp∂M .

It remains then to prove the curvature bound (3.4) at or arbitrarily near the boundary ∂M .
(The higher derivative estimates then follow by standard elliptic regularity theory). We prove
(3.4) by a blow-up argument. If the curvature bound in (3.4) is false, then there is a sequence
(M, gi, ui, xi) ∈ E with controlled boundary data (γi, Hi) such that

|Rmgi | → ∞.
Choose points xi ∈M such that |Rmgi |(xi = max |Rmgi | = λ2

i →∞. Consider the rescaled metrics
g′i = λ2

i gi; then

(3.7) |Rmg′i
|(xi) = 1, and |Rmg′i

|(yi) ≤ 1,

for any yi ∈ (M, g′i). By standard scaling properties, Hg′i
= λ−1

i Hgi , Rγ′i = λ−2
i Rγi and t′i = λiti.

Observe that t′i(xi) ≤
√
k by (3.6), so that xi remains within a uniformly bounded distance to the

boundary ∂M with respect to g′i.
The sequence (M, g′i, ui) is now uniformly controlled, in that its curvature is uniformly bounded,

the potential functions ui are uniformly bounded away from 0 and ∞. In addition, the boundary
geometry consisting of the boundary metric, 2nd fundamental form and conjugacy radius of the
normal exponential map are also uniformly controlled. It is possible that within a ball Bxi(R) of
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fixed radius R there are a number of components of the boundary, and moreover, some (or all) of
these boundary components could converge to a single component as i→∞ (of higher multiplicity).
For the moment, we assume this is not the case, so that the distance to the cut locus of the normal
exponential map from ∂M is uniformly bounded below.

It follows from the convergence theorem in [10] for manifolds-with-boundary that, for any α′ <

α < 1, a subsequence converges in C1,α′ to a C1,α static limit (X, g, u, x) with boundary (∂X, γ, u),
cf. also [22]. The convergence is uniform on compact subsets. By the normalization in (3.7), the
limit (X, g) is complete and without singularities up to the boundary ∂X. One has ∂X = R2, the
boundary metric γ is flat, H = 0, so ∂X is a minimal surface in X. The limit harmonic potential
u satisfies 0 < c0 < u < c−1

0 , for some c0. The bound (3.7) and the static equations imply that u
extends at least C1,α up to ∂X. These remarks, and those below, apply to each component of ∂X
if there is more than one.

Moreover, elliptic regularity associated with the Einstein equation implies that the convergence to
the limit is in Cm,α, since the boundary data (γ,H) are elliptic boundary data and the convergence
of (γ,H) to the limit is in Cm,α × Cm−1,α. In particular, it follows from (3.7) that

(3.8) |Rm|(x) = 1,

where x = limxi and Rm = RmX .
On the blow-up limit (X, g), the Gauss equation (2.2) holds and becomes

0 ≤ 1
2u|A|

2 = ∆∂Xu,

on ∂X. Hence u is a Cm,α smooth bounded subharmonic function on R2; it is well-known [19] that
the only such functions are constant, u = const. It follows also that A = 0, so that ∂X is totally
geodesic.

Next, from the divergence constraint (2.3), we also now have 0 = δ(A−Hγ) = −u−1D2u(N, ·),
so that 0 = D2u(N, ·) = dN(u) − A(du) = dN(u). Thus N(u) = const. In particular, it follows
from the static vacuum equations that the ambient curvature Rm satisfies Rm = 0 at ∂X.

One sees then that the full Cauchy data (γ, u,A,N(u)) for the static vacuum equations is fixed
and trivial: γ is the flat metric, A = 0 and u, N(u) are constant. Observe that this data is realized
by the family of flat metrics on (R3)+ with either u = const or u equal to an affine function
on (a domain in) (R3)+. By citeAH, two Einstein metrics on a manifold with boundary with
equal Cauchy data (locally) are locally isometric. It follows that the limit (X, g, u) is flat near the
boundary. However, this contradicts (3.8).

To conclude the proof, we need to remove the assumption of a lower bound on the distance cut
locus di to the normal exponential map. Since as noted above |R| → 0 at each component of ∂X
and (3.7) holds, if di → 0 it follows that |∇R| → ∞ on the sequence (M, g′i, ui). In this case, we
rescale the metrics further so that di = 1. It follows that R → 0 with |∇R|(yi)| = 1 at some base
points yi. This is a contradiction to elliptic regularity of the static vacuum equations and so cannot
occur.

(II). λi → 0.
In this case, one has Hi → 0. If sup |Ri| → ∞, then exactly the same arguments as in Case (I)

give a contradiction, so one must have |Ri| is bounded. From the scalar constraint (2.2) at ∂M ,
one has

(3.9) 1
2u(|A|2 −H2 +Rγ) = ∆u+HN(u),

on ∂M . Now since the curvature |Rmgi | of gi is uniformly bounded, N(ui) is also uniformly
bounded, while Hi becomes arbitrarily small so that HN(u) ∼ 0 for i large. Also |A|2−H2 +Rγ ∼
|A|2 + Rγ . Since Rγi is uniformly bounded away from zero, one obtains ∆u > 0 on ∂M for
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i sufficiently large. This contradicts the maximum principle and hence Case (II) cannot occur,
i.e. Hi is uniformly bounded away from 0.

(III). λi →∞.
Since Rγ > 0, a basic result of Shi-Tam [ST] on the positivity of the Brown-York mass applies,

so that

(3.10)

∫
∂M

Hdvγ ≤
∫
∂M

H0dvγ ,

where H0 is the mean curvature of the unique isometric embedding of (∂M, γ) into R3. So for a
given γ, this gives an upper bound on λ, so that Case (III) also cannot occur.

The analysis above shows that only Case (I) can occur. Proposition 3.1 gives a uniform bound on
the curvature Rmgi of the metrics gi up to ∂M , and uniform control of ui. To obtain compactness,
one still needs to prove that the manifold-with-boundary structure does not degenerate, i.e. that
the normal exponential map from ∂M has injectivity radius bounded below,

inj∂M ≥ i0.
More precisely, let −N be the inward unit normal to ∂M in M and consider the associated normal
exponential map to ∂M , −tN → expp(−tN), giving the geodesic normal to ∂M at p. This is
defined for t small, and let τ(p) be the maximal time interval on which expp(−tN) ∈M is length-
minimizing, (so that in particular the geodesic does not hit ∂M again before time τ(p)). Thus,
τ : ∂M → R+.

Lemma 3.2. There is a constant t0, depending only on Λ in (3.4) and a positive lower bound H0

for H, such that

(3.11) τ(p) ≥ t0.

Proof: First, the bound (3.4) gives a lower bound, say d0, on the focal radius dfoc of the normal
exponential map. Suppose then

min τ < d0.

If the minimum is achieved at p, then the normal geodesic σ to ∂M at p intersects ∂M orthogonally
again at a point p′. Let ` = τ(p) be the length of σ. The 2nd variational formula of energy gives

(3.12) E′′(V, V ) =

∫ `

0
(|∇TV |2 − 〈R(T, V )V, T 〉)dt− 〈∇V T, V 〉|`0 ≥ 0,

where T = σ̇ and V is any variation vector field along σ orthogonal to σ. Choose V = Vi to be
parallel vector fields ei, running over an orthonormal basis at Tp(∂M). The first term in (3.12)
then vanishes, while the second sums to −Ric(T, T ) ≤ Λ. The boundary terms sum to ±H, at p
and p′. Taking into account that T points into M at p while it points out of M at p′, this gives

0 ≤ Λ`− (H(p) +H(p′)).

Since H is bounded away from 0, H ≥ H0, this gives a contradiction if ` is sufficiently small. This
proves the estimate (3.11).

To complete the proof, one needs an upper bound on the diameter of (M, gi) and a lower volume
bound. The lower volume bound follows trivially from control obtained near ∂M from Proposition
3.1 and Lemma 3.2.

Lemma 3.3. There is a constant D, depending only on a lower bound for H, such that

(3.13) diamg(M) ≤ D.
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Proof: The proof of (3.13) is by contradiction; it would be of interest to find a direct proof.
If (3.13) is false, there is a sequence of static vacuum solutions (M, gi, ui) with boundary data
(γi, Hi, µi) converging to a limit (γ,H, µ) in the target space topology. It follows from the re-
sults above that a subsequence converges in Cm,α to a complete non-compact static vacuum limit

(M̂, g, u) (of infinite diameter) with boundary data (γ,H), H > 0. Since M̂ is non-compact, it has

a nontrivial end E (possibly many). The potential function u on M̂ satisfies 0 < c0 ≤ u ≤ C0 for
some fixed constants c0, C0.

We first claim that there is a sequence rj →∞ such that

(3.14) area(S(rj))→∞ as j →∞,

where S(r) = {x ∈ M̂ : distg(x, ∂M) = r}. This basically follows from the structure of static
vacuum ends described in [5], to which we refer for some further details. To start, since u ≥ c0,

by [5] an end E of M̂ is either asymptotically flat in the usual sense, or “small” in the sense that∫ ∞
1

(areaS(r))−1dr =∞.

Clearly (3.14) holds if the end is asymptotically flat. If the end is small, consider the annuli

A(r, kr) = {x ∈ M̂ : s(x) ∈ (r, kr)} (k fixed) rescaled to size 1, so with respect to the rescaled
metric gr = r−2g. It is proved in [5] that when lifted to suitable covers (unwrapping of short
circles or tori), the metrics gr converge in a subsequence to a Weyl solution of the static vacuum
equations on A(1, k), i.e. a solution on the manifold I × S1 × S1 with metric invariant under
rotations about the second or both S1 factors. The first case corresponds to rank 1 collapse (in the
sense of Cheeger-Gromov) along circles, while the second case corresponds to rank 2 collapse along
tori. The second case is only possible for the so-called Kasner metrics (cf. [5, Ex.2.11]) which have
unbounded potential u. Hence toral collapse is ruled out and the collapse is along circles. In this
case, the length of the first S1 factor is bounded below with respect to gr so grows linearly with
respect to g, while the length of the second S1 factor is bounded below with respect to g. This
gives (3.14).

The surfaces S(rj) for any fixed j embed in (M, gi) for i sufficiently large and are of course
homologous to ∂M . Since H > 0 at ∂M , ∂M serves as a barrier for the existence of stable (in
fact minimizing) surfaces in (M, gi). Thus, one may choose j sufficiently large, and then i also
sufficiently large and find a surface Σ ⊂ A(0, rj) ⊂ (M, gi) which minimizes area among surfaces

homologous to ∂M . However, by a result of Galloway [18] (using the 2nd variational formula for
area) there are no such area minimizing surfaces Σ ⊂ (M, gi). This gives a contradiction and shows
that (3.13) must hold.

Given the results above, it follows from the convergence theorem in [10], cf. also [22], that
a subsequence of (M, gi, ui) converges, modulo diffeomorphisms, to a limit (M, g, u) ∈ E in the
C1,α topology. The convergence in Metm,α(M) × Cm,α(M) then follows from elliptic regularity,
cf. [19], [23] for instance.

Case (B). H 6= ∅.
The proof in the presence of a horizon is exactly the same in the Cases (II) and (III) above, but

the proof of Case (I) does not apply directly in this situation since H gives rise to new boundary
components of M .

Suppose first the distance of H to ∂M is bounded below:

(3.15) distgi(H, ∂M) ≥ t0 > 0,
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for all i. The apriori estimate (3.6) and the proof in Case (I) above apply and show that

(3.16) |Rm| ≤ k, |d log u| ≤ k,
hold in a neighborhood of fixed size ∼ t0 about ∂M . However, |Rm| may still blow up on approach
to H. To prove that this is in fact not the case, we work on the Ricci-flat 4-manifold N , which has
the single boundary component ∂N = ∂M × S1. The Chern-Gauss-Bonnet theorem for manifolds
with boundary in this case gives∫

N
|Rm|2 = 8π2χ(N) +

∫
∂N

(A ∗Rm+A3),

where A and Rm are the 2nd fundamental form and curvature of (N, gN ) and A ∗Rm and A3 are
algebraic expressions in A and Rm. These are controlled by the corresponding 3-dimensional data
on (M, g), together with u, N(u).

By (3.16), the boundary term is bounded, and hence∫
N
|Rm|2 = 8π2χ(N) + C.

Thus, (N, g) is a Ricci-flat 4-manifold with a uniform bound on the L2 of curvature. The same
argument as in Case (A) gives a lower volume bound on (N, gN ). One also needs an upper diameter
bound on (N, gN ) or equivalently (M, g). The proof of Lemma 3.3 however does not apply directly in
this situation, since u is not bounded away from zero. Nevertheless, we claim that (3.14) still holds
in the black hole case. Namely as discussed in the beginning of Section 2, N(u) = κ = const > 0
along any component of the horizon H, so that, by the divergence theorem applied to ∆u,∫

∂M
N(u) = c0 > 0.

Working then in the context of the proof of Lemma 3.3, one has then again by the divergence
theorem ∫

S(r)
N(u) = c0 > 0,

for all r. On M̂ , the estimate (3.6) gives |N(u)| ≤ k
r on S(r) (since u is bounded above) and hence

area(S(r)) ≥ c1r,

for some constant c1 > 0. This gives (3.14). The rest of the proof of Lemma 3.3 proceeds as before,
and establishes the upper diameter bound in the black hole case.

It follows from the compactness theorem in [3], [12], that a subsequence of (N, (gN )i) converges
in the Gromov-Hausdorff topology to a smooth Ricci-flat orbifold X with a finite number orbifold
singularities of the form C(S3/Γ), (a cone on a spherical space form). However, such singularities
are never static, i.e. the metric near the orbifold singularity is not of the form (1.3). Hence there
are no singularities so that X = N and the convergence of the metrics is smooth everywhere.

Next, to prove (3.15) does in fact hold, suppose not. Then (in a subsequence) distgi(H, ∂M) =

di → 0. Analogous to (3.7), we rescale the metrics (M, gi) by d−2
i so that distg′i(H, ∂M) = 1. One

may apply the same arguments as above to obtain smooth convergence everywhere to a limit. The
limit has outer boundary flat R2 with H = 0, so by the Case (I) argument again, the limit is flat,
with u = const, say u = 1. However at distance 1, one has the blow-up limit of the horizon H
where u = 0. Since the convergence is smooth everywhere, this gives a contradiction.

The remaining parts of the proof in Case (I) carry over without further change.

A standard consequence of Theorem 1.1 is the following result on the structure of the boundary
map Π on the non-degenerate metrics End, (with respect to Π).

19



Corollary 3.4. On any connected component Cnd+ of End+ , the boundary map

Π : Cnd+ →Met+(∂M)× C+ × R+

is a finite sheeted covering map onto its image.

Proof: The results above show that Π is a local diffeomorphism and proper on Cnd. It is then
standard that Π is a covering map, necessarily finite sheeted (see for instance [2]).

Remark 3.5. (I) With the single exception of Lemma 3.2, most all of the results above apply with
only minor changes to the exterior static vacuum problem - the static extension problem, cf. [11].
Lemma 3.2 is the main reason we discuss the interior problem in this paper; we hope to discuss the
exterior problem further elsewhere.

(II) The assumption Kγ > 0 is used only in Cases (II) and (III) above, and it is not used very
strongly there. We expect that Theorem 1.1 in fact holds for general boundary metrics γ, so that
the condition Kγ > 0 is not necessary. It would be interesting to expore this further.

Remark 3.6. One may also consider static vacuum metrics with cosmological constant Λ. These
are given by solutions (M, g, u) to the system

uRicg = D2u+ λug, ∆u = −λu.

Again most all of the results above apply in this situation as well, with the exception of Lemma
3.3 which will not hold in this generality when λ < 0.

4. Degree Computation

As discussed in the Introduction, a smooth, proper Fredholm map F : X → Y of index 0 between
Banach manifolds has a well-defined Z2-valued degree, given by (1.10). By Theorem 1.1, this applies
to the map Π. We will also use the following simple generalization of (1.10). Recall from Section 2
that a non-degenerate critical manifold of Π is a connected k-dimensional submanifold Σ of E such
that the nullity of (g, u) equals k, for each (g, u) ∈ E .

Proposition 4.1. Suppose Π−1(γ, [H], µ) is a union of compact non-degenerate critical manifolds
Σi, 1 ≤ i ≤ m. Then

(4.1) degZ2(Π) =
m∑
i=1

χ(Σi) (mod 2).

Proof: We may assume m = 1 with Π−1(γ, [H], µ) = Σ. Choose a regular value (γ′, [H ′], µ′) near
(γ, [H], µ). By Theorem 1.1, Π−1(γ′, [H ′], µ′) is a finite set of points P = {p1, · · · , pr}, pi = (gi, ui).
By Proposition 2.4, these points correspond bijectively to the critical points qi of a Morse function
ϕ : Σ → R. (This is discussed in more detail in Proposition 5.2 below). By elementary Morse
theory, the Euler characteristic χ(Σ) (mod 2) equals the number of critical points of ϕ, (mod 2).

Remark 4.2. For mappings associated to variational problems, the Z2-valued degree can sometimes
be enhanced to a Z-valued degree. The origins of this are in the Morse theory for closed geodesics,
as well as the Leray-Schauder degree; cf. [17], [24] for instance for surveys. Such a degree theory
has also been developed for minimal surfaces by several authors, cf. [16], [32], [33], [34].

The main issue in defining a Z-valued degree is to construct an orientation on the domain X
and target Y . For suitable variational problems the degree can then be calculated (as in the finite
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dimensional case) as

(4.2) degF =
∑

F (xi)=y

(−1)ind(xi),

where ind(xi) is the index of the solution xi, i.e. the maximal dimension on which the 2nd variation
is negative definite.

In the context of the proper Fredholm map Π with the associated variational problem L or

L̃, the 2nd variation is given by the linearized operator L in (2.22), acting on the space T m,α0 of
deformations hN with fixed boundary conditions (2.21) at ∂M . Since L acting on T m,α0 is elliptic,
Fredholm and self-adjoint, L has a complete basis of eigenvectors in L2, with discrete eigenvalues.
From the form of (2.22), one sees that L is essentially a positive operator, i.e. is bounded below,
on transverse-tracefree deformations, so there are eigenvalues λi → +∞. However, on “pure trace
forms”, i.e. divergence-free forms of the type hN = fgN + δ∗Z with Z = 0 on ∂M , L is a negative

operator. Thus, the index of L (or L̃) is always infinite. This behavior is well-known in the context
of closed manifolds, cf. [15] for instance. It may be possible to define and compute a degree as in
(4.2) using the spectral flow of the operator L in place of the index. However, we will not pursue
this further here.

We now turn to the computation of the degree of Π in some important cases.

First consider the case H = ∅, with M = B3. Recall that µ is defined as in (1.8) as

µ =

∫
∂M

(|dν|4 + ν2)dvγ .

Let γ+1 denote the round metric of radius 1 on S2 = S2(1) and [2] = [c] the equivalence class of
constant H. Let

Σµ = Π−1(γ+1, [2], µ) ⊂ E .

Proposition 4.3. For M = B3, the inverse image Σµ consists of the flat metric gEucl on B3(1) ⊂
R3 with potential u satisfying

(4.3) u = 1 when µ = 0,

(4.4) u = a+ bz when µ > 0,

with a + bz a general affine function on B3(1) ⊂ R3 with |z| = 1. Thus the inverse image Σ0 is a
(critical) point, while the inverse image Σµ, µ > 0 is a manifold diffeomorphic to S2 × S1.

Proof: Consider the set of static vacuum solutions (g, u) with boundary data γ = γ+1, H = const
and with fixed µ. We claim that the metric g is the flat metric gEucl on the ball B3(1) of radius 1
and u is an affine function D2u = 0. To prove this, first by the result of Shi-Tam (3.10), one has

H ≤ 2

with equality if and only if (M, g) is flat. By the scalar constraint (2.2),

(4.5) u(|A|2 −H2 + 2) = 2(∆u+N(u)H),

so that

(4.6)

∫
u[|A|2 −H2 + 2] = 0,

since H = const and
∫
∂M N(u) =

∫
M ∆u = 0. Next, let A0 be the trace-free part of A. Then since

H2 ≤ 4, |A|2 −H2 + 2 = |A0|2 − 1
2H

2 + 2 ≥ 0. It follows from (4.6) that equality holds, and hence

|A|2 = 2, so that A = γ and H = 2. Thus, the Cauchy data (γ,A) of ∂M in M equal that of the
round sphere S2(1) ⊂ R3. Regarding the Cauchy data for u at ∂M , the divergence constraint (2.3)
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implies that N(u) = u− c = ū on ∂M , where c is the mean value of u on ∂M . From this and the
scalar constraint (2.2) one obtains ∆ū+ 2ū = 0, so that u is an eigenfunction of the Laplacian on
S2(1). Hence, the Cauchy data for u are that of an affine function on R3, restricted to S2(1). Since
all the Cauchy data are standard flat data, it follows from the unique continuation theorem in [9]
(or from analyticity) that the solution itself is a standard flat solution gEucl, u = a+ bz.

When µ = 0, so u = 1, the variation (k, u′) = (0, 1) is in KerDΠ, so that (M, gEucl, 1) is a critical
point of Π. Next consider the family (gEucl, u) with u = a+ bz with µ = µ0 > 0. The function z is
uniquely determined by a unit vector z ∈ S2(1). Moreover, the space of such potentials with µ fixed
is compact and hence a, b vary over a circle S1 (topologically); the size of the circle is determined
by µ. (This can also be verified by direct computation). As µ → 0, b → 0 and a → 1. Hence
Σµ = Π−1(γ+1, [2], µ) ' S2 × S1.

Observe that

(4.7) Σ ≡ ∪µ≥0Σµ ' S2 × R2,

where the origin in R2 corresponds to u = 1, (so a = 1, b = 0). Note also that Σ = (ΠB)−1(γ+1, 2).

Remark 4.4. It is not unreasonable to conjecture that Proposition 4.3 holds for any flat boundary
data, i.e. any (γ,H) which arise from an isometric embedding or immersion ι : (M, gflat) # R3.
We note that (γ,H) uniquely determine the isometric immersion ι into R3 up to rigid motion. This
follows from the well-known result (cf. [27] for instance) that there are no non-trivial Bonnet pairs
for spheres S2 immersed in R3, i.e. any two isometric immersions S2 # R3 with the same mean
curvature differ by a rigid motion. (The difference of the two second fundamental forms is a Hopf
differential on S2 and hence vanishes). Call such a pair (γ,H) flat boundary data (embedded flat
boundary data if ι above is an embedding) and set

(4.8) Σµ(γ,H) = Π−1(γ, [H], µ).

Thus one would like to know if for flat boundary data (γ,H) solutions in Π−1(γ, [H], µ) are
uniquely realized by a flat metric gflat on M with u an affine function. The main issue in proving
this is knowing the precise value of the mean curvature HM ∈ [H] of (M, g). One has HM = λH
and by (3.10), λ ≤ 1. If Kγ > 0 and λ = 1 then the rigidity statement in (3.10) implies that (M, g)
is flat. Thus the issue is knowing if there are any static vacuum solutions with flat boundary data
and with λ < 1, (and also dealing with the case of non-convex embeddings or immersions of S2

into R3).

Next we claim Σµ(γ,H) for flat boundary data (γ,H) close to (γ+1, 2) and µ > 0 is a non-
degenerate critical manifold, i.e. the nullity of any (gflat, u) ∈ Σµ equals dim(S2 × S1) = 3.

Proposition 4.5. For any flat boundary data (γ,H) (sufficiently) near (γ+1, 2), the manifolds
Σµ(γ,H), µ > 0, are non-degenerate critical manifolds for Π in E.

Proof: One needs to show that if (k, u′) is an infinitesimal static Einstein deformation of
(M, gflat, u) with (kT , [H ′k], µ

′) = (0, 0, 0) then (k, u′) = (0, u′) with u′ an affine variation of the
affine function u.

Consider first the case (γ,H) = (γ+1, 2), so (M, g) is the standard round unit ball B3(1) ⊂ R3.
We assume for the moment u = 1, (so µ = 0) and prove that the nullity of (B3(1), gflat, 1) equals
4.

Since u = 1, the linearization of the scalar constraint (4.5) in the direction k at γ+1, H = 2 gives

(4.9) 2(∆u′ + 2N(u′)) = 2〈A′k, A〉 − 2HH ′k = 2H ′k − 4H ′k = −4λ,
22



on ∂M where H ′k = λH = 2λ. Here we have used the fact that A = γ and trA′k = H ′k since kT = 0.
Integrating (4.9) over ∂M gives

−2λarea(∂M) =

∫
∂M

N(u′) =

∫
M

∆u′.

Since 0 = (∆u)′ = ∆′u+ ∆u′ = ∆u′ (again using u = 1), it follows that λ = 0 and hence

(4.10) ∆u′ + 2N(u′) = 0.

Now ∆u′ = 0 on M = B3(1) and at the boundary (4.10) holds, giving a relation between
the Dirichlet and Neumann boundary data. Decompose u′ in terms of eigenfunctions of the round
Laplacian on S2(1), (these are the restrictions of harmonic polynomials of degree k on R3 to S2(1)),
so that

u′ =
∑

ckϕk,

where ∆ϕk = −λkϕk, with λk = k(k + 1) (the eigenvalues of γ+1). Hence

∆u′ = −
∑

ckk(k + 1)ϕk.

Next, one has the Dirichlet-to-Neumann map u′ → N(u′). It is well-known, cf. [30] for instance,
that this is a non-negative, elliptic and self-adjoint, first order pseudo-differential operator, with
spectrum µm = m. Moreover, as above, the eigenfunctions are restrictions of harmonic polynomials
of order m to S2(1). Hence

N(u′) =
∑

mcmϕm.

and (4.10) gives

−
∑

ckk(k + 1)ϕk + 2
∑

mcmϕm = 0.

Pairing this with any ϕ` and integrating, it follows that

−`(`+ 1) + 2` = 0,

so ` = 1 is the only solution. Thus the only solutions of (4.10) as boundary data of harmonic
functions on S2(1) are the first eigenfunctions of the Laplacian, i.e. restrictions of affine functions
to S2(1). It follows that u′ is an affine function, u′ = a′ + b′z′, on M .

By the linearized static vacuum equations, one has then u′Ric + uRic′ = (D2)′u + D2u′ which
thus gives Ric′k = 0, so that k is an infinitesimal flat deformation of (B3(1), gEucl, u) with kT = 0
on ∂M . It is well-known that convex surfaces in R3 are infinitesimally rigid, and hence it follows
that k = 0 (in divergence-free gauge).

Writing u′ = a′+ b′z′, one sees that the dimension of the space of affine variations u′ is 4, so that
the nullity of (gflat, 1) is 4.

Now of course in the situation above, µ = 0. Consider the nullity of (M, gflat, u) for u close to 1
with µ > 0. By general principles, the nullity of any solution (M, g, u) near (M, gflat, 1) is at most

4. However, the 2nd variation of µ at (gflat, 1) is strictly positive:

D2µ(u′, u′) > 0,

for any u′. Hence the nullity of any solution (M, g, u) near (M, gflat, 1) is in fact at most 3. The
nullity thus equals 3 for all flat solutions (M, gflat, u), with u = a + bz, with a ∼ 1, b 6= 0, b ∼ 0,
any z with |z| = 1. This proves Proposition 4.5 for µ close to 0.

With further work, the computations above can be extended to cover the case of general µ.
Instead, we give a more conceptual or geometric proof.

Take any (M, gflat) with general u = a + bz. In the universal cover Ñ , the flat 4-manifold has
the metric form

g
Ñ

= (a+ bz)2dt2 + gflat.
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The domain Ñ is embedded or immersed in R4. We pull back g̃N by the diffeomorphism ψc : R4 →
R4, ψc(x, y, z, t) = (x, y, z − c, t). Then the pullback 4-metric has the form

(a+ b(z − c))2dt2 + gflat.

The coefficient of dt2 (corresponding to u2) may be multiplied by an arbitrary constant k2. (This
may in fact also be accomplished in the universal cover by the dilation t → kt). This gives the
metric

ĝ
Ñ

= k2(a+ b(z − c))2dt2 + gflat.

One has û = k(a+ b(z − c)) = k(a− bc) + kbz, so b̂ = kb which may now be arbitrary, choosing k
arbitrary (large). Similarly, â = k(1− bc), so that choosing c = b−1(1− k−1) gives â = 1.

This shows that one can pull back the solution (gflat, a+bz) with b arbitrary by a diffeomorphism,

to obtain a solution (ĝflat, â + b̂z) with b small. If (gt, ut) is a static Einstein deformation of
(gflat, a + bz) or an infinitesimal static Einstein deformation, then the pullback is also a static

Einstein deformation of (ĝflat, â + b̂z). Also, the boundary conditions are preserved by such a

pullback. Since the nullity of (ĝflat, â+ b̂z) equals 3, the same holds for the nullity of (gflat, a+ bz).

As in Remark 4.3, it would be very interesting to know if Proposition 4.5 holds for general flat
domains M # R3. We conjecture this is in fact the case; the proof above however does not seem
to generalize easily to this situation.

Proof of Theorem 1.2.

Since χ(Σµ) = 0, the result follows from Propositions 4.1, 4.3 and 4.5.

Remark 4.6. There are other ways to see that degZ2Π = 0 besides the proof above (although the
proof above provides much further information that will be used in Section 5).

For example, the data (γ, [H], 0) is not in Im(Π), for any non-flat boundary data (γ,H), i.e. any
(γ,H) not arising from an isometric immersion M # R3. Namely if µ = 0 then u ≡ 1 and so any
static vacuum solution is flat. Since Π is thus not surjective, one must have degZ2Π = 0.

In a related vein, consider the behavior of Π under rescalings u → cu of the potential u. This
leaves the data (γ, [H]) invariant while µ becomes

(4.11) µ(d) = µ+ 2d

∫
∂M

νdvγ + d2

∫
∂M

1dvγ ,

where d = log c. The function µ(d) has a single critical point, a minimum at d0 =
∮
∂M νdvg, where∮

is the average value, with µ(d)→ +∞ as d→ ±∞. The map µ is thus a 2-1 map with a simple
fold singularity at d0. An easy computation using the Hölder inequality shows that µ(d0) > 0
unless u ≡ 1. Hence the inverse image Π−1(γ, [H], µ) of any regular value always consists of an
even number of points, with pairs (g, ui), i = 1, 2, differing just by rescalings of the potential,
whenever µ 6= µ(d0).

One could naturally choose a normalization for the potential u, by choosing c above so that
ũ = cu realizes the (unique) minimum of µ(d) above. Then Enorm = {(g, u)} ∈ E such that u = ũ
is a codimension one smooth Banach manifold, and the induced map Π[B] from (1.7),

Π[B] : Enorm → D,
Π[B](g, ũ) = (γ, [H]),

is smooth, Fredholm, of Fredholm index 0. However, Π[B] here is still not proper; (consider again
the space of flat solutions with fixed (γ,H) as discussed in the Introduction).

Observe that the arguments above hold for strict static solutions M with arbitrary topology.
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Next we turn to the black hole caseH 6= ∅. The simplest topology in this situation is N = D2×S2

with M = I×S2 where I = [0, 1] (for instance) with the inner boundary {0}×S2 corresponding to
the horizon H. The “standard solution” with this topology is the curve of Schwarzschild metrics

gSch = c2V 2dθ2 + V −2dr2 + r2gS2(1),

where V 2 = (1 − 2m
r ) and θ ∈ [0, 2π], with u = cV . The smoothness of the metric at the horizon

H = {r = 2m} requires
c = 4m,

so that

gSch = 16m2(1− 2m

r
)dθ2 + (1− 2m

r
)−1dr2 + r2gS2(1).

One has r ≥ 2m and we let r ∈ [2m,R] with the outer boundary ∂M at the locus {r = R}. The
boundary data (γ, [H], µ) are then of the form (γR, [c], µ) with γR = R2γ+1, γ+1 the round metric
of radius 1 on S2.

For convenience, set R = 1; (this may always be achieved by rescaling). Then on ∂M , γ = γ+1

and
u2 = 16m2(1− 2m).

A simple calculation shows that (at r = 1),

H = 2
√

1− 2m.

One has m ∈ (0, 1
2) with u → 0 on ∂M as m → 0 or m → 1

2 . The function u = u(m) has a single

maximum at 1
3 , corresponding to the well-known photon sphere {r = 3m} of the Schwarzschild

metric. For m 6= 1
3 , there are exactly two values m± of m giving the same value for u on ∂M and

hence the same value to µ. Thus on the Schwarzschild curve, the map Π is two-to-one;

Π−1(g+1, [c], µ) ∩ {gSch} = gSch(m±) = (g±, u±).

These two branches (the small black hole for m− <
1
3 and the large black hole for m+ > 1

3) merge

together at m = 1
3 . The solution with m = 1

3 is a critical point of Π.
This behavior on the curve of Schwarzschild metrics has long been known in the physics com-

munity, cf. [1] for further discussion and examples.

Remark 4.7. On the Schwarzschild curve, one may vary the mean curvature constant H, while
keeping the boundary metric γ fixed. The map ΠB is not transverse to the fibers [H], compare
with Propositions 2.5 and 2.6.

The discussion above suggests that
degZ2Π = 0,

for N = D2 × S2. This would follow from the following two conjectures.

Conjecture: (Global Uniqueness) For N = D2 × S2 with H = S2, one has

Π−1(γ+1, [c], ·) = gSch(m±).

Conjecture: (Infinitesimal Uniqueness) The metrics gSch(m) with R = 1 are regular points of Π,
provided m 6= 1

3 .

These conjectures are versions of the well-known black hole uniqueness theorem for the Schwarz-
schild metrics, but with finite boundary. We conjecture similar statements hold for the boundary
map ΠB with boundary data (γ,H).

Both conjectures above seem rather difficult to prove (in contrast to the analogous case when
H = ∅) and it would be interesting to make progress on them. We make simply the following
remark.
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Proposition 4.8. Suppose (M, g, u) ∈ Π−1(γ+1, [c], µ0), for some µ0 > 0. If (M, g, u) is a regular
point of Π, then (M, g, u) is the Schwarzschild metric gSch(m) for some m.

Proof: By assumption, the derivative DΠ of the map Π : E → D × R is an isomorphism at
(M, g, u). Let X be any Killing field of γ+1 and extend X to a smooth vector field on M . By
construction, the form κ = (LXg,LXu) = (2δ∗X,X(u)) is in the kernel K of DΠ. It follows
that there is a vector field Z on M with Z = 0 on ∂M (so Z is tangent to Diff1(M)) such that

(LXg,LXu) = (LZg,LZu). Hence X̃ = X − Z is a Killing field of (M, g) preserving the potential
u.

Since the isometry group of (S2(1), [c]) is SO(3), this extends to a group of isometries of (M, g, u)
so that (M, g, u) is spherically symmetric. The result then follows easily.

5. Morse theory on E

In this section, we use Lyusternik-Schnirelman and Morse theory methods to study local proper-
ties and bifurcation phenomena in the space E with respect to the boundary maps Π and ΠB and
prove Theorem 1.3.

In a neighborhood of a regular point (g, u) ∈ E , Π (or ΠB) is a local diffeomorphism, so that
nearby solutions are uniquely determined by the boundary data (γ, [H], µ), and similarly for ΠB.

Consider first the boundary map ΠB. Suppose Σ ⊂ E is a non-degenerate critical manifold with
respect to ΠB. The structure of E near Σ is described by Proposition 2.4. Each point (g0, u0) in Σ
has a neighborhood U in E given as the locus z−1(0) ⊂ B×K, or more precisely given by I(z−1(0)),
where

z(γ,H, κ) = E(I(γ,H, κ)).

The space z−1(0) is a smooth submanifold of B ×K of codimension k. Fixing the boundary data
of Σ to be (γ0, H0), one has Π−1

B (γ0, H0)∩U = Σ∩U , with tangent space K. Thus a neighborhood
of 0 ∈ K gives rise to a local chart ψ for Σ near (g0, u0).

Now fix (arbitrary) boundary data (γ,H) near (γ0, H0), so that now I : K → Metm,α(M) ×
Cm,α(M). By Proposition 2.4, Π−1

B (γ,H) ∩ U is exactly the set of critical points (g, u) of L in
Metm,α(M)×Cm,α(M) near (g0, u0)). Thus, via the chart ψ, the functional L ◦ I ◦ψ is a function
on a neighborhood V of (g0, u0) in Σ,

(5.1) L̂ ≡ L ◦ I ◦ ψ : V ⊂ Σ→ R.

By construction, the nullity of the static Einstein metric (g, u) in Metm,α(M) × Cm,α(M) (with

respect to ΠB) equals the nullity of the critical point of L̂ in (5.1). The same discussion holds with

L̃ in place of L in the black hole case H 6= ∅ and we let L̂ denote the functional in both cases.
The local description above is canonical (independent of any coordinates) and smooth. If Σ is

compact, so there only finitely many neighborhoods to patch together, one obtains the following:

Proposition 5.1. Suppose Σ is a compact non-degenerate critical manifold for ΠB. For fixed

boundary data (γ,H) near ΠB(Σ), the functional L̂ : Σ→ R has critical points exactly equal to the
static Einstein metrics (g, u) ∈ E near Σ. Moreover, the nullity of (g, u) ∈ E with respect to ΠB

equals the nullity of the corresponding critical point L̂ : Σ→ R.

Note however that Proposition 5.1 does not directly apply in the strict static case, since non-
degenerate critical manifolds of ΠB are always non-compact (since they are invariant under rescal-
ings of the potential u). Thus we consider the analogous situation for the boundary map Π.
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Let then Σ be a compact non-degenerate critical manifold of Π. By Theorem 1.1, Σ is automat-
ically compact if Π(Σ) = (γ, [H], µ) satisfies Kγ > 0.

Proposition 5.2. In the strictly static case, for any fixed boundary data (γ, [H], µ) near Π(Σ),

the functional L̂ : Σ → R as above has critical points exactly equal to the static Einstein metrics
(g, u) ∈ E near Σ. Again, the nullity of (g, u) ∈ E with respect to Π equals the nullity of the

corresponding critical point L̂ : Σ→ R.

Proof: The proof is basically the same as that of Proposition 5.1. One only needs to define
the map z suitably and this amounts to redefining the equation (2.24) so that it is adapted to the
boundary map Π in place of the previous ΠB. As before the linearization L maps

L : T̂ m,α0 → T m−2,α,

where T̂0 denotes divergence-free forms h(N) satisfying the Π-boundary condition

(hT , [H]′h, µ
′
(h,u′)) = (0, 0, 0).

To compare with this with T0 in (2.21), consider the boundary data (0, λH, 0) with (say) λ = 1

and extend this to a divergence-free form hN0 on N . Let L(hN0 ) = f0. Then hN0 ∈ T̂0, but hN0 /∈ T0.
Also recall that any form hN = (h, u′) ∈ T0 may be “trivially” shifted by adding a term (0, λu) in

KΠB so that hN ∈ T̂0, cf. also Remark 4.6. This gives an isomorphism

T0 ⊕ 〈hN0 〉 → T̂0.

Next, let K⊥Π be the L2 orthogonal complement of KΠ in T̂ m−2,α(N) and let K⊥Π,0 be the L2

orthogonal complement of KΠ in T̂ m,α0 (N). We claim that as in (2.24), L induces an isomorphism

(5.2) L̂ : K⊥Π,0 → K⊥Π .

To see this, recall from Corollary 2.7 that if k ∈ KΠ then k ∈ KΠB in the strict static case, so
KΠ ⊂ KΠB and hence, by (2.38), there is an isomorphism (inclusion)

ι : K⊥ΠB ,0 →W ⊂ K
⊥
Π,0,

where W is a codimension 1 hypersurface. This gives an isomorphism ι−1 : W → K⊥ΠB ,0 and also

an isomorphism W⊕〈hN0 〉 ' K⊥Π,0, (since W ⊂ K⊥ΠB ,0 and hN0 /∈ K⊥ΠB ,0). Combining these gives an
isomorphism

ι1 : K⊥Π,0 → K⊥ΠB ,0 ⊕ 〈h
N
0 〉.

Applying then L as in (2.24) gives the isomorphism

L : K⊥ΠB ,0 ⊕ 〈h
N
0 〉 → K⊥ΠB ⊕ 〈f0〉.

Composing this with isomorphism induced again by ι

ι2 : K⊥ΠB ⊕ 〈f0〉 → K⊥Π ⊂ T̂ m−2,α,

gives the claim (5.2) with L̂ = ι2 ◦ L ◦ ι1.

Propositions 5.1 and 5.2 allow one to use the tools of Lyusternik-Schnirelman theory and Morse
theory to study the structure of static vacuum solutions with boundary data near Π(Σ) (or ΠB(Σ)).
Recall that the Lyusternik-Schnirelman theory implies that the number of critical points of a smooth
function on a compact manifold S is at least Cat(S), where Cat is the smallest number of open
contractible sets covering S. Similarly, Morse theory implies that the number of critical points of
a Morse function is at least the sum of the Betti numbers of S.

The results above lead easily to the proof of Theorem 1.3.
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Proof of Theorem 1.3.
For any flat boundary data (γ0, H0) near (γ+1, 2), the manifolds Σµ defined as in (4.8) with

µ > 0 are compact non-degenerate critical manifolds for Π, by Proposition 4.5. By Proposition
5.2, for any (γ, [H], µ) close to (γ0, [H0], µ), static vacuum solutions in Π−1(γ, [H], µ) near Σµ are

in one-to-one correspondence with the critical points of a smooth function L̂ : Σµ → R. One has
Σµ ' S2 × S1 and Cat(S2 × S1) = 3. Thus for each (γ, [H], µ) near flat boundary data, there are
at least 3 distinct static vacuum solutions (M, gi, ui), 1 ≤ i ≤ 3, with

(5.3) Π(gi, ui) = (γ, [H], µ).

By the Sard-Smale theorem, the regular values of Π are generic; in fact by Propositions 2.5 and
2.6 the critical values of Π are of codimension at least one in D×R+. Hence for generic boundary

data (γ, [H], µ), the functional L̂ : Σµ → R is a Morse function on Σµ ' S2×S1 and so has at least
4 critical points qi, with index(qi) = i − 1 for each 1 ≤ i ≤ 4, i.e. a minimum, maximum and two
saddle points. This gives at least 4 distinct solutions to (5.3).

Theorem 1.2 implies there is an even number of solutions in Π−1(γ, [H], µ) for any regular
value (γ, [H], µ) of Π. By Remark 4.6, pairs of solutions (g, ui), i = 1, 2 in Π−1(γ, [H], µ) just
differ by rescaling the potential u, u2 = cu1 for some c > 0. These rescaling pairs are essentially
geometrically equivalent (the 4-manifolds (N, gN ) are locally isometric) and so should be considered
as just one solution. Of course the rescaling pairs (g, ui) merge together at the rescaling critical
point µ = µ0 as following (4.11). Thus Theorem 1.3 gives at least two geometrically distinct
solutions in Π−1(γ, [H], µ), µ > 0, for any (γ, [H]) close to (γ+1, [2]).

Recall from Corollary 3.4 that the boundary map

Π : Cnd+ →Met+(∂M)× C+ × R+

is a finite sheeted covering map onto its image, where Cnd+ is any connected component of End+ .
Consider first this map in a neighborhood of the (rather large) space Eflat,+ of flat solutions in E+,
so Kγ > 0. By the Weyl embedding theorem, H is then uniquely determined by γ so that there is
a diffeomorphism

Eflat,+ ' P × S2 ×D2,

where P is the space of metrics of positive Gauss curvature on S2 and S2 × D2 represents the
space of affine potential functions as in (4.7). By [26], the space P is contractible, so that Eflat,+
is homotopy equivalent to S2 and hence in particular is simply connected.

Localizing now to a neighborhood of standard round boundary data (γ+1, [2], µ), consider the ε-
ball Bε(γ+1, [2], µ) about (γ+1, [2], µ) in Met+(∂M)×C+×R+. and letW = Bε(γ+1, [2], µ)\Π(Eflat)
be the complement of flat boundary data in Bε(γ+1, [2], µ). It follows then from Theorem 1.3 (and
Propositions 4.3 and 4.5) that for ε > 0 sufficiently small,

Π−1(W) = Ω = ∪Ωi ⊂ End,

where Ωi are the components of Ω, 1 ≤ i ≤ 2k, k ≥ 2, and the induced maps on each component

(5.4) Π : Ωi →W

are diffeomorphisms for each i.
To understand this in more detail, chooose any flat boundary data (γ0, H0) near (γ+1, 2) and

choose any regular value (γ, [H], µ) of Π sufficiently near (γ0, [H0], µ). Then Π−1(γ, [H], µ) =
{(gi, ui)}, 1 ≤ i ≤ 2k.

Now consider the structure of Π−1(γ, [H], tµ) ⊂ E for t ∈ [0, 1]. Since Π is proper, this is a
compact set in E , given as an even number of curves σi(t) = (gi(t), ui(t)) off Ed. For t close to 1,
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each curve σi(t) ∈ Ωi. Pairs of such curves are rescaling curves. However, at t = 0,

Π−1(γ, [H], 0) = ∅,
since any solution with µ = 0 is necessarily flat and (γ, [H]) are not flat boundary data, by
construction. Hence for t sufficiently close to 0 there are also no solutions in Π−1(γ, [H], tµ). In
particular, ε above depends on µ with ε→ 0 as µ→ 0.

Thus the curves σi(t) cannot project via Π to (γ, [H], tµ) for t small. They must thus end, and
presumably join, at the critical locus Ed. The rescaling pairs meet when µ = µ(d0), the minimal
value of µ. This corresponds to the passage from (say) 4 critical points to 3 critical points by
the merging of a distinct pair (as in the passage from the Morse description to the Lyusternik-
Schnirelman description above). The locus of these points (g, u), µ = µ(d0) form components of
Ed which are of codimension 1 in E ; they project to a variety of critical values (γ, [H], µ(d0)) of
codimension 1 in the target space. Of course Eflat ⊂ Ed is of infinite codimension in E .

One sees that even in a neighborhood of standard flat solutions, the structure of the space E is
surprisingly complicated. It would be of interest to explore this further.

Finally, it is interesting to relate the discussion above with recent work of Jauregui [20], cf. also
[21]. Thus, choose any γ ∈ Met+(S2), so Kγ > 0 and pick any positive function H > 0. For λ
sufficiently small, it is shown in [20] that (γ, λH) bounds a metric on M = B3 with nonnegative
scalar curvature. On the other hand, by the Shi-Tam result (3.10), this cannot be the case if λ is
too large, i.e.

λ >

∫
∂M H0dvγ∫
∂M Hdvγ

.

It is also shown in [20] that there is a unique λ0 = λ0(γ,H) > 0 such that (γ, λH) has a nonnegative
scalar curvature filling for λ < λ0 and has no such filling for λ > λ0. The conjecture is made that
(γ, λ0H) has a filling which is static vacuum.

By Theorem 1.3 and the discussion above, for any (γ, [H]) close to flat round boundary data
(γ+1, [2]) there are at least 2 geometrically distinct static vacuum fillings (gi, ui) (not differing by
rescalings of the potential) of the boundary data (γ, [H]). Another interesting open question is to
determine whether H ∈ [H] is the same or different for all such fillings and whether the transition
value λ0H is realized by one (or all) of these static vacuum fillings.
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