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Abstract. We discuss relations between the initial boundary value problem (IBVP) and quasi-local Hamil-

tonians in GR. The latter have traditionally been based on Dirichlet boundary conditions, which however
are shown here to be ill-posed for the IBVP. We present and analyse several other choices of boundary

conditions which are better behaved with respect to the IBVP and carry out a corresponding Hamiltonian

analysis, using the framework of the covariant phase space method.

1. Introduction

This article is concerned with the initial boundary value problem (IBVP) for the vacuum Einstein equa-
tions and its relation to the existence of quasi-local Hamiltonians in general relativity. We consider then
space-times M topologically of the form M ∼= I × S, where I = (−1, 1) and S is a compact 3-manifold with
non-empty boundary ∂S = Σ. Let C = I × Σ denote the boundary ∂M of M with Σ = ∂S. The initial
boundary value problem is the problem of finding Lorentz metrics g on M satisfying the vacuum Einstein
equations

(1.1) Ricg = 0,

together with prescribed boundary conditions along C and initial conditions along a Cauchy surface (e.g. S =
{0} × S ⊂ M). More precisely, one would like to establish existence, uniqueness and stability of solutions
with prescribed initial and boundary data.

The analogous situation for the Cauchy or initial value problem has long been well-understood and it is
worthwhile to recall this briefly to gain the general perspective. The initial data (gS ,K) on S consist of a
Riemannian metric gS and symmetric bilinear form K satisfying the vacuum Einstein constraint equations;
these give the induced metric and second fundamental form of a solution g on S.

Let (V, g) denote a vacuum development of an initial data set (S, gS ,K), i.e. a globally hyperbolic vacuum
spacetime V containing (S, gS ,K). It was proved by Choquet-Bruhat [11] that vacuum developments always
exist. Two vacuum developments (V1, g2), (V2, g2) are called equivalent if they contain a common sub-
development. Choquet-Bruhat and Geroch [12] further proved that there is a maximal development Vmax,
unique up to isometry, i.e. unique up to the action of the group Diff0(Vmax) of diffeomorphisms of Vmax fixing
S pointwise. Let V be the space of such isometry classes of maximal solutions.

The main results on the solution of the Cauchy problem can then be summarized in the following state-
ment: for each Cauchy surface S, there is a bijective correspondence

(1.2) ES : V → I, g → (gS ,K),

where I is the space of all initial data (gS ,K) satisfying the vacuum constraint equations. The bijection
(1.2) gives an effective parametrization of the space of maximal solutions of (1.1) by their initial data. It
would appear to be likely that I and hence V may be given the structure of a smooth infinite dimensional
manifold, possibly away from a small singular set of special data. Further by work of Fischer, Marsden and
Moncrief, cf. [14], V or I should carry a naturally defined (non-degenerate) symplectic form Ω.1

1Such manifold and symplectic structure results hold when S is a closed or asymptotically flat 3-manifold, cf. [14], but this

has not yet been extended in detail to the situation of manifolds with boundary. Also, for simplicity, we forgo here any detailed
discussion of the specific function spaces, e.g. Sobolev spaces, and related issues of regularity. The topologies and all geometric

data are assumed to be C∞ in the following.
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One would like to obtain similar results and a similar understanding for the IBVP, and so in particular
obtain a bijective correspondence

(1.3) DS : V → I ×c B, g → ((gS ,K), b)

where V now denotes the space of maximal globally hyperbolic vacuum spacetimes (M, g) with time-like
boundary C and B is a space of boundary data on C. The subscript c denotes compatibility or corner
conditions arising in solutions of the IBVP. Again, a maximal solution should be unique up to isometry,
i.e. up to the action of Diff0(M) of diffeomorphisms of M fixing S and C pointwise. Of course to even start,
this requires finding a suitable set of boundary data B on C.

The issue of the solvability of an IBVP (with certain boundary conditions) was first addressed in the
foundational paper of Friedrich-Nagy [17]. This was followed by work of Kreiss-Reula-Sarbach-Winicour
[24], [25] and more recently by works of Fournadavlos-Smulevici [15], [16]; we refer to [33] for a general
survey of this topic. Unfortunately, none of these works establishes a well-posedness result as expressed in
(1.3).

As with the Cauchy problem, the most natural boundary conditions are geometric boundary conditions,
i.e. those determined by the Diff0(M)-invariant Cauchy data at C, i.e. the induced metric γ and second
fundamental form A of C in (M, g).

Based on the familiar situation with simpler field theories, e.g. scalar or Yang-Mills gauge-type fields, it
is usually assumed in the physics literature that the boundary conditions for vacuum gravity are of Dirichlet
or Neumann type. For theories which have a fixed space-time structure (so the metric field is a background
field, not subject to variation), Dirichlet or Neumann data are well known to be well-behaved and are well-
posed for the IBVP, cf. [28], [35], [40] for instance. In particular one generally has a correspondence as in
(1.3) for such boundary data.

On the other hand, in general relativity there are no fixed background fields and we will show below
that the straightforward analogy does not hold: Dirichlet boundary data (fixing the induced metric on the
boundary C) or Neumann boundary data (fixing the second fundamental form A of C in M) are ill-behaved
or ill-posed boundary data for vacuum gravity.2 This is proved in Proposition 2.1, cf. also Proposition 2.2,
below. We conjecture that the conformal-mean curvature (CH) boundary data

(1.4) ([γ], H),

consisting of the conformal class of the boundary metric (C, γ) and its mean curvature H = trA, do lead
to a well-posed IBVP for which (1.3) holds, cf. Conjecture 2.3. Some evidence for this conjecture is the
result, given in Proposition 2.4, that the vacuum constraint equations are naturally solvable under the CH
boundary conditions (1.4).

However, currently, the only known boundary data for which the IBVP is known to be well-posed and for
which (1.3) holds are the diffeomorphism-invariant boundary data (called AA data here) recently developed
in [1]; these are also discussed in more detail in §2.

Next, we relate the issues above with a Hamiltonian analysis of GR on finite manifolds-with-boundary.
Hamiltonian analyses of GR on manifolds with boundary at infinity are well-known and well-developed.
The ADM and Regge-Teitelboim Hamiltonian analysis for asymptotically flat space-times with boundary
at spatial or null infinity are foundational works for the notions of global energy-momentum and angular
momentum (the “conserved charges”) of such space-times. The case of time-like anti-de-Sitter boundaries
at conformal infinity has also been extensively studied in connection with the AdS-CFT correspondence.
In contrast, there has been much less detailed analysis in the case of finite, time-like boundaries, although
see [5], [13] for instance.

The main concern of this paper is then a more rigorous understanding of the definition of quasi-local
energies (Hamiltonians) through an analysis of the behavior of the space of solutions of a well-posed IBVP.
There is a large literature on Hamiltonian approaches to a suitable definition of quasi-local energy, starting
with the foundational work of Brown-York [9]; we refer to [36] for a detailed survey. These are all based on

2We note that the recent result of [16] for totally geodesic boundary data A = 0 does not prove well-posedness for general
Neumann boundary data, which is the situation considered here.
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Hamiltonians with Dirichlet boundary conditions. The focus here is instead on both general boundary data,
and specific boundary data, namely the CH data (1.4) and the AA boundary data developed in [1].

The traditional canonical phase space approach toward a Hamiltonian analysis breaks the general co-
variance of the theory by a choice time evolution and corresponding time-like vector field ∂t. This gives
a space-like foliation or 3+1 decomposition of the space-time, and an associated lapse-shift pair (N,X),
∂t = NT +X. Hamiltonians H thus depend on this data, H = H(N,X), cf. [36], [37].

A very useful alternative to this approach which does not break the full covariance of the theory is the
covariant phase space method, which directly gives a (pre)-symplectic structure to the space of all vacuum
solutions (with given boundary conditions). We refer to the survey article [23] for a detailed description
of the background and history of this method; important contributions to this topic are those of Crnkovic-
Witten [10] and in particular Lee-Wald [27], Iyer-Wald [21], [22] and Wald-Zoupas [38].

Here we are interested in the context of space-times M with time-like boundary C which has been discussed
much less in the literature. Fortunately, an excellent description of the covariant phase space method with
boundary has recently been given by Harlow-Wu [20] and we will generally follow this description (pointing
out however a number of subtleties). In §3, we provide an overview of this method, as applied to general
(not only Dirichlet) boundary data. We also develop a modification of the method needed to deal with the
diffeomorphism-invariant AA boundary data from [1].

In Propositions 4.1 and 4.3 of §4, we show that the CH boundary data and a slight modification of
the AA boundary data admit Lagrangian descriptions and have a well-defined variational formulation. In
Propositions 4.4 and 4.5, we provide a detailed description of the corresponding phase space and derive the
associated Hamiltonians.

In §5, we then discuss the basic issue of the choice of zero-point energies for Hamiltonians. For Dirichlet
boundary data, these have been based on Euclidean (in the case of Brown-York [9]) or Minkowski (in the
case of Wang-Yau [39]) subtraction terms. We consider the situation of general boundary conditions and a
general definition of subtraction term in Definition 5.2, reminiscent of the Bartnik definition [6] of quasl-local
energy.

2. Well-posed boundary data in GR

The primary method to solve an IBVP for the Einstein equations is to find a gauge in which the reduced
Einstein equations form a quasilinear hyperbolic system and then determine boundary conditions in which
reduced system is a well-posed IBVP. Of course one also needs to ensure that all solutions of the reduced
Einstein equations are true vacuum solutions; this is the issue of constraint preservation. For such a method
of solution, a necessary condition for well-posedness is that the IBVP localized at a standard flat Minkowski
corner region R = {t ≥ 0, x1 ≤ 0} ⊂ R1,3 is well-posed, i.e. the frozen coefficient IBVP is well-posed. All
known existence and uniqueness results for the vacuum IBVP are based on this method.

In this respect, we note the following:

Proposition 2.1. With respect to either Dirichlet or Neumann boundary conditions, the linearization of
the vacuum equations (1.1) at a standard Minkowski background is not a well-posed IBVP, for any choice of
gauge reduction.

Proof. The proof uses only the structure of the vacuum Einstein constraint equations (not the full Einstein
equations) on the boundary C;

(2.1) |A|2 −H2 −Rγ = E(ν, ν) = 0,

(2.2) div(A−Hγ) = 2E(ν, ·) = 0.

Here E is the Einstein tensor of g, Rγ is the scalar curvature of the boundary metric (C, γ) and div is
the divergence operator on symmetric (2, 0) tensors on (C, γ); divh = tr∇h. As above, A is the second
fundamental form of (C, γ) ⊂ (M, g) and the mean curvature H is its trace.

Consider first Dirichlet boundary data, where the boundary metric γ is prescribed. The linearization of
the Hamiltonian or scalar constraint (2.1) in the direction of the variation h of g is given by

2〈A′h, A〉 − 2〈A2, hT 〉 − 2HH ′h −R′hT = 0,
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where hT is the variation of the induced metric on the boundary. The linearization of these equations at the
standard solid corner region (R, g0) of Minkowski space gives A = H = 0, so that

R′hT = 0.

Thus, at the linearized level, only scalar flat deformations hT of the boundary metric γ0 = g0|C , C = {x1 = 0},
are possible. This is an infinite dimensional restriction; for example, most conformal deformations are
excluded. It follows that the linearized constraint (2.1) is not solvable for generic variations of boundary
data hT ; the same applies then to the (more restrictive) full Einstein equations.

Next consider Neumann boundary data, where the second fundamental form A is prescribed. The lin-
earization of the momentum constraint (2.2) is given by

(2.3) divγ(A′h −H ′hγ −HhT ) = −(div)′h(A−Hγ).

At the standard solid region of Minkowski space, this gives

(2.4) divγ0
(A′h −H ′hγ0) = 0.

where divγ0 is the divergence operator with respect to the standard background Lorentz metric γ0 on R1,2.
Thus the linearization of (2.2) is not solvable for generic A′h; the form A′h has 6 degrees of freedom while (2.4)
gives 3 scalar conditions on A′h. This shows again that the linearized Einstein equations are not generically
solvable at g0 for prescribed variations A′h.

From this, one expects that the space of vacuum solutions having given boundary metric (Dirichlet
boundary data) or given second fundamental form (Neumann boundary data) is generically empty; the
space of boundary data admitting solutions g is of infinite codimension in the space B of all boundary data.
While Proposition 2.1 does not quite prove this, it does show that any proof of well-posedness cannot be
based on solving a gauged IBVP for a quasi-linear hyperbolic system which localizes. More generally, one
expects the behavior of the space of solutions with respect to either Dirichlet or Neumann boundary data
to be highly unstable; given one solution with (say) Dirichlet boundary data γ on C, an open set of nearby
solutions have boundary data only in a subset of infinite codimension in the space B = Met(C) of boundary
data. In particular, there is no correspondence as in (1.3).

We also point out that there is a strong failure of uniqueness naturally associated with the failure of
existence above.

Proposition 2.2. In harmonic gauge, solutions to the linearized IBVP for the Einstein equations with
Dirichlet boundary data have an infinite-dimensional kernel.

Proof. Consider the initial boundary value problem for vacuum Einstein equations with Dirichlet boundary
data:

Ricg = 0 in M, g|S = gS ,
1
2LT g|S = K on S, gC = γ on C.

Let xα = (t, x1, x2, x3) be a local chart near the corner of M , mapping to the corner region R ⊂ R1,3.
Assume xα are harmonic, so that V α = �gxα = 0. The kernel of the linearization of the system above at
the Minkowski corner R is then given by:

Ric′h + δ∗(V ′h) = 0 in R

hαβ = 0, ∂thαβ = 0 on {t = 0, x1 ≤ 0}
V ′h = 0, hT = 0 on {x1 = 0},

(2.5)

where V ′h = −divh+ 1
2dtrh. We show that the system (2.5) has an infinite-dimensional space of solutions.

Set hαβ = 0 in R for all α, β except (α, β) = (1, 1), (0, 1) and let

(2.6) h01 = 1
2h11 = f(x1 + t)

for some f determined below. Then clearly (∂t − ∂x1)h11 = 0, ∂xAh11 = 0 for A = 2, 3. It follows that the
bulk equation in (2.5) holds: (Ric′h + δ∗(V ′h))αβ = �hαβ = 0 in R, for all α, β.

Let f : R→ R be any smooth function such that f(x) = 0, f ′(x) = 0 for all x ≤ 0 but f(x) 6= 0 for x > 0.
Then on the initial surface {t = 0, x1 ≤ 0}, h01 = h11 = ∂th01 = ∂th11 = 0, so that hαβ satisfies the initial
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conditions. It remains to verify the boundary conditions. The Dirichlet boundary condition hT = 0, which
reads h00 = h0A = hAB = 0 for A,B = 2, 3, is obviously true. Further simple calculation also gives V ′h = 0,
cf. [1, eqn. (3.6)] for example. (This is the reason for the particular relation between h01 and h11 in (2.6)).

Thus the deformation h constructed above solves the homogeneous IBVP; however, h11 6= 0 in the region
{t+ x1 > 0} ⊂ R. In other words, incoming wave solutions generated by such f show that solutions to the
linearized IBVP (2.5) are not unique outside the domain of dependence of the initial surface.

Note that the same result and proof also work well for Neumann boundary data.

This raises the question of whether there are any geometric boundary data on C for which the IBVP could
be well-posed. We note that in the simpler Riemannian or Euclidean setting, it was proved in [2] that neither
Dirichlet nor Neumann boundary data give a well-posed elliptic boundary value problem for the vacuum
Einstein equations, in any gauge. On the other hand, it was shown there that the data

(2.7) ([γ], H),

consisting of the conformal class [γ] of the boundary metric γ and the mean curvature H = trA, are well-
posed elliptic boundary data, in a suitable gauge. (There exist other choices of well-posed elliptic boundary
data, but the choice (2.7) is perhaps the most natural). This was extended to the parabolic Ricci-flow setting
in [18].

By analogy, it is natural then to consider the same data for the IBVP in the Lorentzian setting (1.1). We
make the following

Conjecture 2.3. The IBVP for the vacuum Einstein equations (1.1) is well-posed with respect to the mixed
boundary data ([γ], H) on C.

There is strong evidence in favor of this conjecture, but a detailed discussion would be lengthy and is out
of place here; we hope to address Conjecture 2.3 in detail elsewhere.

As a first justification for the conjecture, we note the following result, which contrasts strongly with
Proposition 2.1.

Proposition 2.4. The boundary data ([γ], H) are well-posed in terms of the constraint equations (2.1)-(2.2).
In particular, the constraint equations on the boundary C can be solved with any prescribed ([γ], H).

Proof. This is proved by transferring the usual conformal method of Lichnerowicz-Choquet-Bruhat-York
from the space-like elliptic setting to the time-like hyperbolic setting.

Let γ0 be a representative metric in [γ] (not to be confused with the Minkowski metric on R1,2 used above),
with volume form dvγ0 and let α be a background volume form on C. Form then the so-called densitized
lapse (cf. [30]),

µ = 1
2

dvγ0

α
.

Let σ be a transverse-traceless (2,0) tensor with respect to γ0; divσ = trσ = 0. In the conformal method,
cf. [30] again, one then constructs the Cauchy data (γ,A) at C by setting

γ = λ4γ0,

A = λ−2(σ + 1
2µ L̂Xγ0) + 1

3Hλ
4γ0,

where L̂Xγ0 is the conformal Killing operator with respect to γ0: L̂Xγ0 = LXγ0 − ( 2
3divγ0

X)γ0. The
constraint equations (2.1)-(2.2) in this time-like setting then become a coupled system of equations for
(λ,X) which take the form

(2.8)
divγ0( 1

2µ L̂Xγ0) = 2
3λ

6dH,

8�γ0λ = Rγ0λ− |σ + 1
2µ L̂Xγ0|2λ−7 + 2

3H
2λ5.

Here divγ0
and �γ0

are the divergence and wave operator with respect to γ0 ∈ [γ] and R0 is the scalar

curvature of γ0. One has divL̂X(γ0) = divδ∗X − 2
3ddivX and standard Weitzenbock formulas show that

divL̂X(γ0) = −D∗DX + 1
2ddivX +E(X), where E(X) involves only the curvature of γ0 and no derivatives

of X.
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The system (2.8) is thus a coupled system of semi-linear wave equations for (λ,X) and so by standard
theory is well-posed; one has existence and uniqueness of solutions for at least some positive time t ∈ [0, T ),
given suitable initial conditions.

It is also easy to see that the York decomposition [41] holds on (C, [γ]); any symmetric bilinear form h,

(e.g. h = A above) admits a decomposition h = σ + trh
3 γ0 + L̂Xγ0, where σ is transverse-traceless with

respect to γ0. The vector field X is unique up to choice of initial conditions on a slice Σ to C. The proof of
this is essentially the same as in the Riemannian or space-like case, using hyperbolic equations in place of
elliptic equations.

Thus the space of solutions of the Einstein constraint equations on a time-like boundary C is parametrized
by the free data ([γ], H, σ) and initial conditions at Σ. This time-like boundary setting is actually significantly
better behaved than the analogous situation for initial data, where the corresponding result is false. In
general, given ([gS ], k, σ), k = trSK, on an initial slice S, it is not always possible obtain existence of (unique)
solutions to the constraint equations. The conformal method does not always work well for example when
H is far away from the set of constant functions (the far from CMC regime).

Remark 2.5. We make some further remarks comparing Propositions 2.1 and 2.4, focusing on the constraint
equations with Dirichlet data.

Consider first initial data, i.e. the issue of solving the constraint equations on a Cauchy surface with given
Dirichlet data, i.e. initial metric γ. In bulk dimension 3, this is the problem of isometric immersion of a
given Riemannian surface (S, gS) into R1,2, by the fundamental theorem of hypersurfaces in R1,2, (at least
when S is simply connected). We are not aware of significant results on this topic. The analogous isometric
immersion problem of a Riemannian surface in Euclidean space R3 is notoriously hard and largely unresolved
except in the case of positive Gauss curvature Kγ > 0; this is the solution of the Weyl embedding problem
by Nirenberg and Pogorelov.3

Passing to Dirichlet data on a Cauchy surface in 4 dimensions is the problem of isometrically immersing
a given Riemannian 3-manifold into some vacuum space-time. Again, we are not aware of significant results
on this problem.

It seems even less is known in the setting of time-like boundaries, i.e. results or a theory of isometrically
immersing Lorentzian surfaces into flat R1,2 or similarly, a theory of isometrically immersing Lorentzian
3-manifolds into a vacuum spacetime. On the other hand, Proposition 2.4 shows the situation is very well
understood for ([γ], H) data (for all dimensions).

Remark 2.6. Once one solves the time-like constraint equations, if the data are analytic, then the Cauchy-
Kovalevsky theorem can be used to obtain actual vacuum solutions defined in a neighbhorhood of C; this gives
local two-sided solutions, i.e. solutions extending to each side of the boundary C. In more detail, given a pair
(γ,A) of analytic data satisfying the constraint equations (2.1)-(2.2), one may work in the gauge of geodesic
normal coordinates normal to C where g(ν, ·) = δν ·. In this gauge, the Einstein equations are “evolution
equations” off the boundary in the normal ν-direction, and for analytic data the Cauchy-Kovalevsky theorem
gives the existence of analytic solutions in a neighborhood of C. Of course the simple scalar model here is
the Laplace equation ∆u = 0 or wave equation �u = 0 with prescribed Cauchy data on C.

While this is not a well-posed boundary value problem, it is a delicate issue to understand whether a
solution g defined in a neighborhood of C extends to a smooth solution on M .

In the discussion of geometric boundary conditions above, note that the number of degrees of freedom for
the boundary data (γ, or A, or ([γ], H)) is 6. This is the correct and expected number for the gauge group
Diff0(M) of diffeomorphisms fixing C pointwise, i.e. (maximal) solutions with the same initial and boundary
data are expected to be unique up to diffeomorphisms fixing an initial slice S and the boundary C. However,
the space of all solutions is invariant under the larger gauge group Diff(M), which essentially differs from

3Note that in this Riemannian situation, the condition Kγ > 0 is an open condition, so that there are open sets of C∞

solutions of the constraint equations with given Dirichlet data, in strong contrast with Proposition 2.1. Nevertheless, the

constraint equations (2.1)-(2.2) are not a well-posed or elliptic system, even when Kγ > 0. Instead, the main idea is to quotient
the space Met(S) by the positive definite second fundamental form K, where the problem does become (underdetermined)

elliptic, cf. [19], [2], [40]. This method is thus restricted to the convex case.
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Diff0(M) by the group Diff(C) of boundary diffeomorphisms. The group Diff(C) has 3 degrees of freedom
and so the number of true boundary conditions describing non-isometric solutions should be 6 − 3 = 3. Of
these 3 degrees of freedom, 2 account for the degrees of freedom of the gravitational field, and 1 for the
location or evolution of the boundary C off the initial corner surface Σ. Note that it may not be easy to find
a global slice to (for instance) the space of Dirichlet data Met(C)/Diff(C).

Next we discuss the boundary data introduced in [1]. This is based on the construction of a global preferred
harmonic-type gauge for a metric (M, g), at least near the boundary C. The preferred gauge depends on the
space-time (M, g) as well as a vector field ΘC defined on C; different choices of ΘC give different choices of
time evolution or space-like foliation of the space-time (M, g). The gauge is given by a wave map

(2.9)
ϕg : (M, g)→ (M0, gR),

�gϕg = 0,

where for simplicity the target space M0 is taken to be a standard solid cylinder I ×B3 in Minkowski space
R1,3 with standard time function t. The Riemannian metric gR is the associated flat Euclidean metric.
Initial data for ϕg on a Cauchy slice S are given by

(2.10) ϕg = EgS , (ϕg)∗(Tg) = TgR on S,

where Tg is the g-future unit normal to S in (M, g), TgR is the future unit normal to {t = 0} in M0 and EgS
is determined by gS = g|S equivariantly with respect to Diff(S) near the boundary Σ, i.e.

Eψ∗(gS) = ψ∗EgS = EgS ◦ ψ.
We refer to [1] for details regarding the assignment gS → EgS and for concrete examples of such.

The boundary data for ϕg are of Sommerfeld type given by

(2.11) [(ϕg)∗(Tg + νg)]
T = ΘC ,

together with the (scalar) Dirichlet condition that ϕg : C → ∂M0 = I × S2. Here ν is the g-unit normal of
C ⊂ M and the superscript T denotes orthogonal projection with respect to gR onto ∂M0. Thus, we view
ΘC as a vector field tangent to C0 = ∂M0.

The equations (2.9) are hyperbolic and initial boundary value problems of this type are well-understood;
it follows from such known results that the IBVP (2.9)-(2.11) is well-posed. In particular, given a background
metric g, there exists a unique solution ϕg which is a diffeomorphism in a neighborhood of the initial and
time-like boundary T = S ∪ C. Moreover (at least near T ), the solution is equivariant with respect to
diffeomorphisms, so that

(2.12) ϕψ∗g = ψ∗ϕg,

for any ψ ∈ Diff(M).
Next consider the coupled system (g, ϕg)

(2.13)
Ricg = 0,
�gϕg = 0,

with initial conditions for g given by

(2.14) g|S = gS , Kg|S = K,

where (gS ,K) satisfy the constraint equations (2.1)-(2.2). The boundary conditions for g are expressed on
the target C0 = ∂M0 as:

(2.15) ([γt], H∗,ΘC).

Here γt = (ϕ−1
g )∗g|Σt

, is the metric induced by the pullback (ϕ−1
g )∗ of g to M0 restricted to the slices

Σt = {t = constant} in C0 and [·] denotes the conformal class of the 2-metric. The term H∗ is a combination
of mean curvatures of the form

(2.16) H∗ = αtrCA|Σt
+ βtrΣt

A+ γtrΣt
K,

for certain values of α, β, γ, (cf. [1] for the exact allowable coefficients). One admissible choice of H∗, which
also appears in [26], is H∗ = 2trCA− trΣtA; this choice will be discussed further in §4. The initial conditions
for ϕg are as in (2.10).
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It is proved in [1] that this is a well-posed IBVP. For any choice of compatible initial data (2.14) and
boundary data (2.15), there is a vacuum solution g realizing the initial and boundary conditions. Such
solutions have the covariance property

(2.17) ḡ = ψ∗g(g) = ψ∗χ∗g(χ
∗g),

for any χ ∈ Diff(M), where ψg = ϕ−1
g . This gives a slice (at least near the boundary C) to the action of

Diff(M) on the space of vacuum solutions. Thus, diffeomorphisms no longer act on the metrics ḡ; these
metrics are evaluated in the fixed standard coordinates (t, xi) on R1,3. The solutions ḡ are unique with
given initial and boundary data and one has stability of solutions and the existence of maximal solutions.
Moreover, any vacuum solution is isometric to such a solution in a preferred gauge. Note that since the
boundary data ([γt], H∗,ΘC) always admit solutions, it follows that the constraint equations (2.1)-(2.2) on
C are automatically satisfied; in fact the form of the H∗ term in (2.16) derives partly from the form of the
constraint equations.

An important point is that, by construction, the boundary conditions (2.15) are invariant under the action
of Diff(M)|C = Diff(C) on the space of vacuum solutions. However, the choice of ΘC determines a particular
or preferred gauge ϕg, giving a particular foliation or 3+1 decomposition of the space-time (M, g) in which
the boundary data are measured. The relevant space of (geometric) boundary data is then

(2.18) Bgeom = I × Conf(Σ)× C∞(Σ) = {(t, [γt]Σt , H
∗
Σt

)},

where Conf(Σ) is the space of pointwise conformal classes [γt] of smooth metrics on Σ and H∗ ∈ C∞(Σ).
The space Bgeom has 3 degrees of freedom, corresponding to Diff(C) invariant boundary data. This is in
marked contrast with the discussion of geometric boundary data (Dirichlet, Neumann or ([γ], H)) above,
which are not Diff(C) invariant.

The well-posedness of this IBVP then gives a family of effective parametrizations as in (1.3), i.e.

(2.19) DS,ΘC : Vgeom → Igeom ×c Bgeom,

depending on the choice of Cauchy surface and boundary gauge ΘC . The space Vgeom is now the space of full
isometry classes of solutions (vacuum Einstein metrics), i.e. the space of all solutions modulo the action of
the full diffeomorphism group Diff(M). Accordingly Igeom is the space of equivalence classes of Cauchy data
(gS ,K) on a Cauchy slice, where (gS ,K) ∼ (g′S ,K

′) if there is a space-time diffeomorphism χ ∈ Diff(M),
χ(S) = S, such that (χ∗g′S , χ

∗K ′) = (gS ,K).
A variational description and Hamiltonian analysis of this boundary data will be discussed in the following

sections.

3. The IBVP and Quasi-local Hamiltonians

In this section, we discuss the covariant phase space method applied to vacuum GR with a time-like
boundary, following [20], [27], [21].

Consider Lagrangians with boundary terms describing vacuum gravity,

(3.1) I(g) = IEH(g) +

∫
C
`(g) =

∫
M

Rgdvg +

∫
C
`(g).

(We have chosen units where 16πG = 1). The bulk Einstein-Hilbert action IEH is invariant under the
diffeomorphism group Diff(M); only boundary actions

∫
C ` which are also Diff(C) invariant will be considered.

Different choices of boundary action correspond to different choices of boundary data space B. As a simple
example, consider the case of a scalar field u : M → R with action given by

(3.2) ID(u) =

∫
M

( 1
2 |du|

2 + V (u))dvg,

where g is a fixed background globally hyperbolic Lorentz metric on M and V (u) is a function involving
only 0-jet of u. Then the variation of ID in the direction v = u′ is given by

d

dt
ID(u+ tv)|t=0 = −

∫
M

v(�u− V ′(u))−
∫
C
v∂νu−

∫
S+∪S−

Ψu(v),
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where Ψu(v) = v∂Tu and T is the unit outward time-like normal to the future and past the slices S±. This
term is ignored in the variational problem, cf. [20], so that the variational derivative is given by

δID(v) = −
∫
M

v(�u− V ′(u))−
∫
C
v∂νu.

The boundary condition that ID is stationary δID = 0 then requires that v = 0 at C, i.e. the Dirichlet
data u|C of u is fixed. Hence the space B is the space of Dirichlet boundary data of u, B = C∞(C). The
corresponding equations of motion are

(3.3) �u+ V ′(u) = 0.

If one adds a boundary action of the form

(3.4) IN (u) =

∫
M

( 1
2 |du|

2 + V (u))dvg +

∫
C
u∂νu,

then a similar analysis shows that the boundary condition becomes ∂νv = 0, i.e. the Neumann boundary
data ∂νu of u is fixed, with corresponding boundary data space again B = C∞(C).

In either case above, one has a well-defined variational problem on the field or configuration space F =
C∞b (M) of functions u : M → R with u satisfying a fixed boundary condition b ∈ B (Dirichlet or Neumann)
at the boundary C; namely, ID, resp. IN , is a smooth function on C∞(M) whose critical points are solutions
of the Euler-Lagrange equations (3.3). Moreover, standard theory of the IBVP for the (non-linear) wave
equation (3.3) implies that the space of solutions P of (3.3) satisfies the analog of (1.3),

P ' I ×c B.

The covariant phase space method discussed below defines a natural symplectic structure on P, with corre-
sponding Hamiltonians, cf. [10], [20] for further details.

We emphasize here that the issues of having a well-defined variational problem for a field theory and a
well-posed IBVP for the equations of motion are fundamentally distinct and independent. In particular,
the property of having a well-defined variational problem does not at all imply the property of having a
well-posed IBVP.

Returning to GR and the action (3.1), let F = Met(M) be the configuration space of all maximal globally
hyperbolic Lorentz metrics on M with time-like boundary C. The pre-phase space

P̃ ⊂ F

is defined to be the space of globally hyperbolic solutions of the vacuum Einstein equations on M . (The

terminology on-shell for data in P̃ and off-shell for data in F is often used). The bulk diffeomorphism group
Diff(M), mapping C → C, acts naturally on both spaces by pullback. Although it is geometrically natural
to consider the quotient space of isometric metrics Met(M)/Diff(M), it will be seen below that the quotient

P̃/Diff(M) does not generally serve as a suitable candidate for the phase space.
We first discuss the “bare” situation without any boundary terms. For the bare EH action,

IEH(g) =

∫
M

Rgdvg,

one has δg(Rgdvg)(h) = −〈Eg, h〉dvg + dθ(h) where dθ(h) = (−�trh+ divdivh)dvg. The 3-form

(3.5) θ(h) = − ? (dtrh− divh),

is called the pre-symplectic potential and plays a central role in this discussion. Note that for any 2-form C

on M , d(θ − dC) = dθ. On-shell, i.e. tangent to P̃, (Rgdvg)
′ = 0 and Eg = 0, so that, on T P̃,

(3.6) dθ(h) = 0

pointwise on M . In other words, θ is a closed 3-form on M on-shell. It follows that

(3.7)
d

dt
IEH(g + th)|t=0 = 0,
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on-shell. Thus (in contrast to the situation in (3.2) or (3.4)) it might appear that there are no boundary
conditions imposed by the requirement of stationarity. However, (3.7) only gives

∫
∂M

(θ − dC)(h) = 0, i.e.∫
C
(θ − dC)(h) =

∫
S+

(θ − dC)(h)−
∫
S−

(θ − dC)(h).

This shows there is a (global) coupling of the variation at the future and past Cauchy surfaces with the
variation at the boundary C. For a well-defined variational problem, one requires instead that

(3.8) δIEH(h) =

∫
C
(θ − dC)(h) = 0,

for all on-shell variations h.
On C, θ(h) = −(ν(trh)− divh(ν))dvγ is a gauge, i.e. Diff0(M) dependent term. To obtain a geometric or

gauge-invariant boundary condition, recall the basic identity (valid on any hypersurface)

(3.9) −θ(h) =
(
ν(trh)− (divh)(ν)

)
dvγ =

(
2H ′h + 〈A, h〉+ div(h(ν)T )

)
dvγ .

It is natural to set

(3.10) C(h) = ?h(ν)T on C,
and we do so for the remainder of the paper; the discussion to follow is independent of the extension of C
off C. Also set

(3.11) θ̂ = θ − dC.
Then by (3.9), (3.8) is equivalent to

(3.12)

∫
C
(〈A, h〉+ 2H ′h)dvγ = 0,

This corresponds to geometric boundary conditions hT = H ′h = 0. However, these are now 7 boundary
conditions and so these are over-determined boundary conditions, (cf. the discussion in §2).

This shows that it is necessary to include boundary Lagrangians ` to obtain a well-defined variational

problem. To begin, the action (3.1) is stationary on the subspace of h ∈ T P̃ such that

(3.13) [(θ − dC + δ`)|C ](h) = 0.

Thus associate to the action (3.1) a space of (geometric) boundary data B and consider the natural evaluation
or restriction map

R : P̃→ B,
equivariant with respect to the action of diffeomorphisms. Given a choice of boundary data b ∈ B, the

pre-phase space P̃b is defined as the inverse image

(3.14) P̃b = R−1(b) :

P̃b is the space of vacuum metrics with boundary data in b. Then (3.13) is equivalent to

T P̃b = Ker ([θ − dC + δ`]C).

Via (3.9), the boundary condition (3.13) is thus equivalent to

(3.15) −〈A, h〉 − 2H ′h + `′h = 0 on C.

Of course in general P̃b will no longer have an effective induced action of Diff(M); the choice of b breaks
the symmetry, i.e. breaks the isometric action of Diff(M) on Met(M) to that of the subgroup Diffb(M)
preserving the boundary condition b ∈ B.

The pre-symplectic current ω on P̃b, or more generally on P̃ or F , is given by

(3.16) ω = δθ̂,

where δ is the exterior derivative on F . Thus,

ω(h1, h2) = (θ̂(h2))′h1
− (θ̂(h1))′h2

,

where h1, h2 are tangents to a 2-parameter deformation in P̃b, (so that the formal correction term θ([h1, h2])
vanishes).
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Given a Cauchy surface S, the pre-symplectic form is a 2-form on P̃b defined by

Ω̃(h1, h2) =

∫
S

ω(h1, h2) =

∫
S

(θ̂(h2))′h1
− (θ̂(h1))′h2

.

Using (3.9), this gives

Ω̃(h1, h2) = −
∫
S

〈K ′h1
, h2〉 − 〈K ′h2

, h1〉+ 1
2 [trSh1(〈K,h2〉+ 2k′h2

)− trSh2(〈K,h1〉+ 2k′h1
)],

where K is the extrinsic curvature of S in (M, g) and k = trSK. Writing π = (K−kgS)dvgS , where K−kgS
is the momentum conjugate to gS , this may be written (in standard form) as

(3.17) Ω̃(h1, h2) = −
∫
S

〈π′h1
, h2〉 − 〈π′h2

, h1〉.

This gives a non-degenerate symplectic form off-shell, i.e. on the configuration space F , cf. [27]. However,

the vacuum constraints and boundary conditions imply that Ω̃ is degenerate on-shell, i.e. on P̃ or P̃b.
The boundary condition (3.13) implies ω = δδ` = 0 on C. Since ω is a closed 3-form on M , it follows that

Ω̃ is well-defined, independent of the Cauchy surface S, on P̃b. This is not the case without the boundary

condition (3.13); thus Ω̃ = Ω̃S gives a pre-symplectic form on the full space P̃ which depends on the Cauchy
surface S.

Hamiltonians are functions H : P̃b → R for which there is a vector field XH such that

(3.18) Ω̃(XH, ·) = δH.

If Ω̃ were non-degenerate, then any smooth function H : P̃b → R is a Hamiltonian. Namely, setting Ω̃ = Ω
in the non-degenerate situation, the symplectic gradient XH is given by

XH = Ω−1(δH, ·),

where Ω defines the pairing: TP→ T ∗P. If, as it is here, Ω̃ is degenerate, then Hamiltonians may not exist.

A Hamiltonian H must be invariant under the flow generated by the degenerate directions Ker Ω̃. Moreover,

H is always conserved, i.e. H is invariant under the flow of the Hamiltonian vector field XH on P̃b.

The actual phase Pb with boundary data b ∈ B is given by a standard symplectic reduction process,
cf. [29], as the formal quotient

(3.19) Pb = P̃b/G,

where G is the Lie group generated by the Lie algebra Ker Ω̃. Then Ω̃ descends to a (non-degenerate)
symplectic form on Pb, giving it formally a symplectic structure.

As the primary example of interest here, consider a vector field ξ generating a flow in Diff(M) by spacetime

diffeomorphisms of M . This generates a flow on P̃b in the usual way by pullback, with tangent vector

Lξg ∈ TgP̃b.
As shown in [27], [21], [20], the Hamiltonian Hξ is given by

(3.20) Hξ =

∫
Σ

qξ + ξ · `− C(Lξg),

where qξ is the Noether potential given by

qξ = − ? dξ,
viewing ξ as a 1-form on C. We consider ` as a scalar density, ` = `dvγ on C, so that ξ · ` = ξbdvC . On
Σ, ?dξ = dξ(T, ν) = 〈∇T ξ, ν〉 − 〈∇νξ, T 〉, where ν is as above and T is the unit normal to Σ ⊂ C. Since
Lξg(T, ν) = 〈∇T ξ, ν〉+ 〈∇νξ, T 〉 and 〈∇T ξ, ν〉 = −A(ξ, T ), this gives

(3.21) Hξ =

∫
Σ

(−2A(ξ, T ) + `〈ξ, T 〉)dvγΣ .

Note that Hξ is independent of the slice Σ since the variation h = Lξg satisfies the boundary condition

(3.13), i.e. Lξg ∈ T P̃b. Otherwise, as with Ω̃, this will not be the case for general ξ ∈ TDiff(M).
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Clearly if ξ = 0 on C (or on suitable domains in C), then Hξ = δHξ = 0. so the symplectic form Ω̃ is
degenerate on vectors tangent to Diff0(M). Thus one always has

(3.22) Diff0(M) ⊂ G.

On the other hand, the existence of non-trivial Hamiltonians generated by ξ as above shows that generally
Diffb(M) is not contained in G.

Finally we note that a Hamiltonian Hξ : Pb → R as in (3.20) is determined by (3.18) only up to an
additive constant; the constant may depend on the boundary condition b ∈ B. The choice of the normalizing
constant plays an important role in Hamitonian approaches to the issue of quasi-local energy and is discussed
in more detail in §5.

The covariant phase space method is related to the perhaps more well-known canonical phase space
method by the choice of a Cauchy surface S. Namely, given such an S, one has a formal identification

(3.23) ES : P̂b ' I, ES(g) = (gS ,K),

where P̂b = P̃b/Diff0(M) and I is the space of initial data (gS ,K) satisfying the constraint equations. Here
Diff0(M) is the group of diffeomorphisms of M fixing T = S∪C. Of course different choices of Cauchy surface
give different parametrizations ES . The data (gS ,K), or more precisely (gS , π), serve as the “q, p variables”

for equivalence classes of solutions in P̂b and so such data effectively serve as a choice of coordinates for P̂b.
Solutions g ∈ P̃b are then given by a specific choice of time evolution along a curve of Cauchy surfaces St
with associated lapse-shift data (N,X).

This brief summary of the covariant phase space method with boundary neglects however several signif-
icant issues. As discussed in §2, there are seemingly natural situations, e.g. Dirichlet boundary data where
B = Met(C), for which the identification (3.23) fails badly. For generic boundary data b ∈ B, one may have

P̃b = ∅. Moreover, the structure of P̃b may be highly unstable with respect to variations of b ∈ B. For the

purely formal considerations outlined above to accurately reflect the behavior of the space of solutions P̃ or

P̃b (or their symplectic quotients), these spaces should be smooth infinite dimensional manifolds (or with

small, understood singular sets) with the submanifolds P̃b varying smoothly with b (at least generically).
For this, one needs at least the a priori existence of charts for these spaces effectively parametrizing them
locally.

It appears that the only method to do this is to prove that the IBVP associated to P̃b, b ∈ B, is well-posed.
In this case, one has natural parametrizations

(3.24) P̂ = P̃/Diff0(M) ' I ×c B,

as in (1.3). As discussed in §2, this does not hold for Dirichlet or Neumann boundary data. Further, based
on the analogous result for closed or asymptotically flat Cauchy surfaces S, cf. [14], one would expect that

P̂ ' P,

at least generically.

Remark 3.1. An alternate path to the definition of Hamiltonians is the Hamilton-Jacobi method, used for

instance by Brown-York [9], cf. also [36] for a survey. Here one also considers the space P̃ of (maximal)
globally hyperbolic vacuum solutions on M and a corresponding space B of boundary data (Dirichlet data in
the case of [9]). Analogous to the Hamilton-Jacobi method in classical mechanics, a Hamiltonian is defined
as the variation of the on-shell action (3.1) with respect to a choice of time translation ∂t of the boundary
data b ∈ B, expressed in terms of a lapse-shift (N,X) decomposition of C. For this approach to be effective,

one needs to know that the action I : P̃b → R is a smooth function of b and so in particular the space

P̃b varies smoothly with b. Again, as discussed in §2, this cannot be expected to be true for Dirichlet (or
Neumann) boundary data.

Remark 3.2. A shortcoming of the Hamiltonian approach above is that Hamiltonians associated to infini-
tesimal generators ξ ∈ TDiff(C) only exist for ξ preserving the boundary condition, i.e. ξ ∈ TDiffb(C). For
generic boundary data, no such ξ exist and so the theory applies only in very special circumstances.
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One would thus like to develop a well-defined Hamiltonian for arbitrary ξ ∈ TDiff(C). Note first that it
follows easily from the constraint equations that δI(Lξg) = 0 for any vector field ξ of compact support on C
(for any diffeomorphism invariant boundary action). More generally, for h = Lξg, the constraint equations
show that the boundary condition (3.15) may be rewritten in the form

(3.25) div(τ(ξ)) + div(`ξ) + divh(ν)T − dC(h) = 0 on C.
Hence for infinitesimal diffeomorphisms, the boundary condition (3.13) or (3.15) is only a condition at the
future and past boundaries Σ±. This suggests that ideally one should seek boundary conditions which are
preserved under the action of Diff(C).

Nevertheless, (3.25) does not imply one can construct Hamiltonians with, for example, diffeomorphism-
invariant Dirichlet boundary data, i.e. boundary data in the quotient space Met(C)/Diff(C). For such a larger
space of admissible boundary data, Hamiltonians will no longer be conserved and it is necessary to work in
the context of time-dependent Hamiltonians. This has been done using extended phase space techniques in
work of Booth [7] and Booth-Fairhurst [8].

The covariant phase space method applied to the Diff(C)-invariant boundary data in [1] discussed in

§2 is rather different from the discussion above. To explain the situation, as before let P̃ be the space of
all (maximal, globally hyperbolic) vacuum Einstein metrics on M . Given a Cauchy surface S ⊂ M , and
a choice of boundary vector field ΘC on C0 as in (2.11), as discussed in §2 there is a unique wave map
ϕg : (M, g) → (M0, gR) associated to g. As in (2.12), the assignment g → ϕg is equivariant with respect to

the action of Diff(M) on P̃. Let ψg = ϕ−1
g and let χ(C0) be the space of vector fields on the boundary C0.

Define then a map

(3.26)
P̃× χ(C0)→ P̄,

(g,ΘC)→ ḡ = ψ∗gg,

where P̄ is the space of vacuum metrics on M0 in the standard (t, xi) Minkowski coordinates. The group
Diff(M) acts on the first factor on the left and acts trivially on the second and the map (3.26) descends to
the quotient to give a bijection

(P̃× χ(C0))/Diff(M)→ P̄.
Variations h̄ of ḡ are of the form

(3.27) h̄ = ψ∗gh− LXh
ḡ − LXΘ′ ḡ ∈ T P̄,

where h is an on-shell variation of g and Xh, XΘ′ are the variations of the wave map ϕg induced by
the variation h of g (with ΘC fixed) and variations Θ′ of ΘC with g fixed. Regarding the latter, fix a
vacuum solution g and consider variations ΘC(t) of the Sommerfeld boundary data ΘC for ϕg, satisfying
the compatibility conditions at the corner Σ, holding the initial conditions fixed. One has unique wave map
solutions ϕg(t) of (2.9)-(2.11) realizing the boundary conditions ΘC(t). By uniqueness, the pair (g, ϕg(t)) are
solutions of the coupled system (2.13)-(2.15) satisfying the initial data and boundary data ([γt], H∗,ΘC(t)).
This gives a curve of gauges, i.e. 3+1 decomposition or space-time foliation of the fixed metric g. Then

(3.28) XΘ′ =
d

dt
ϕg(t)|t=0,

where Θ′ = d
dtΘC(t).

One may now carry out the covariant phase space method on the space P̄. The definition of the corre-
sponding pre-symplectic current θ̄ is just as in (3.5), acting on h̄ ∈ T P̄. Similarly ω̄ is defined as in (3.16),
leading to the (pre)-symplectic form

(3.29) Ω̄(h̄1, h̄2) =

∫
S0

〈π′h̄1
, h̄2〉 − 〈π′h̄2

, h̄1〉,

where S0 = {t = 0}. Although dω̄ = 0, ω̄ is non-zero on C in general, without any boundary condition, so
that Ω̄ is not conserved, i.e. independent of the Cauchy slice S0.

A boundary action and associated boundary condition is discussed below in §4, cf. Proposition 4.3. We
also introduce there an expanded phase space allowing for the existence of non-trivial Hamiltonians; see
Propositions 4.4 and 4.5 below.
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4. Boundary actions in GR

In this section, we consider several boundary actions
∫
C ` for the Einstein-Hilbert action IEH and discuss

the resulting Hamiltonians generated by space-time diffeomorphisms.
The physics literature has long (only) considered the Gibbons-Hawking-York boundary term 1

8π

∫
C Hdvγ

and the corresponding action

IGHY = IEH + 2

∫
C
Hdvγ ,

(where again we set 16πG = 1). The variation of the boundary Lagrangian is (H ′h + 1
2 〈Hγ, h

T 〉)dvγ , where

hT is the variation of the boundary metric γ. Inserting this in (3.15) gives the well-known formula

(4.1) δIGHY = −2

∫
C
〈τ, hT 〉dvγ ,

on P̃ where τ = A − Hγ is the momentum conjugate to the boundary metric γ. The form τ is also the
Brown-York stress-energy tensor of the boundary C, i.e. the variation of the action with respect to variation
of the Dirichlet boundary data, cf. [9], [20].

This gives a well-defined variational problem, i.e. (3.13) holds, for Dirichlet boundary conditions hT = 0,
so that B = Met(C). However, as discussed in §2, Dirichlet boundary conditions are not well-posed for the

IBVP; for generic boundary data γ, there is not any vacuum solution realizing γ, i.e. P̃γ = ∅.
Nevertheless, one may formally compute the Hamiltonian of a vector field ξ tangent to C preserving the

boundary condition, i.e. ξ a Killing field on (C, γ). Simple computation from (3.21) gives

(4.2) HDirξ = −2

∫
Σ

τ(ξ, T )dvγΣ .

This is the Dirichlet or Brown-York “bare” Hamiltonian; normalizations of HDirξ corresponding to a choice of

zero-point energy are discussed further in §5. One may of course always define (4.2) formally or by fiat, but
the Hamiltonian interpretation is only well-defined in the special circumstances where the boundary (C, γ)
admits a Killing field, cf. Remark 3.2. Recall also from §3 that in this case the Hamiltonian is independent
of the choice of slice Σ.

Consider next the boundary conditions ([γ], H) in (2.7) which are conjectured to be well-posed for the
IBVP, cf. also [3].

Proposition 4.1. The boundary conditions ([γ], H) have a well-defined variational formulation. In fact,
the action

(4.3) ICH =

∫
M

Rdvg +
2

3

∫
C
Hdvγ ,

has variational derivative given by

(4.4) δICH(h) = −
∫
M

〈E, h〉dvg −
∫
C
(〈τ0, hT0 〉+

4

3
H ′h)dvγ ,

where the subscript 0 denotes the trace-free part with respect to (C, γ).
If ξ is a vector field on C which preserves the boundary conditions, i.e. ξ is a conformal Killing field

preserving H, then

(4.5) HCHξ = −2

∫
Σ

τ0(ξ, T )dvγΣ .

Proof. The first statement follows from (4.1) and the simple computation − 4
3 (
∫
Hdvγ)′h = − 4

3

∫
(H ′h +

1
2 trh)dvγ . The second statement also follows easily from (3.21).

Remark 4.2. The on-shell actions IGHY and ICH are essentially the same; one has ICH = 1
3IGHY on P̃, so

that on-shell

(4.6) δICH = 1
3δIGHY .
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However, the expressions (4.2) and (4.5) for the Hamiltonians associated to ξ are not related in this simple
way. The reason for this is the different boundary conditions; Dirichlet for IGHY and conformal class-mean

curvature for ICH . Distinct boundary conditions give different spaces P̃b and so different symplectic forms
and hence different Hamiltonians.

Suppose ξ is a Killing field on (C, γ) which also preserves the mean curvature ξ(H) = 0, so that h = Lξg

preserves both both boundary conditions, i.e. h ∈ T (P̃γ) ∩ T (P̃([γ],H)). By (3.21), the Hamiltonians HDirξ

and HCHξ have the same relation (4.6) as the actions,

(4.7) HCHξ = 1
3H

Dir
ξ ,

if and only if the Noether charge vanishes,

(4.8) Qξ =

∫
Σ

A(ξ, T )dvγΣ
= 0.

We note that it can be shown that if ξ extends to a (stationary) Killing field of the bulk solution (M, g),
then (4.8) does hold. However, it appears unlikely that (4.8) holds in general.

Next we point out that the Diff(C)-invariant boundary data ([γt], H∗) from [1] may be given a variational
formulation for a natural choice of H∗, at least when the Sommerfeld boundary condition (2.11) for the
gauge ΘC is modified to the Dirichlet boundary condition

(4.9) (ϕg)∗(T
c
g ) = Θ̂C .

Here T cg is the future-pointing time-like unit normal to ϕ−1
g (Σt) ⊂ (C, g) and Θ̂C is a given vector field

tangent to C0.
Recall from §2 that we work with vacuum solutions in preferred gauge ϕg and let ḡ = ψ∗gg, ψg = ϕ−1

g ,
defined on the standard cylinder M0. Let trΣA be the trace of A along the level set Σt = {t = constant} ⊂ C0
of the boundary C0 ⊂ (M0, ḡ).

Proposition 4.3. The action

(4.10) IAA(ḡ) =

∫
M0

Rḡdvḡ +

∫
C

trΣAdvγ̄ ,

gives a well-defined variational problem for the boundary data ([γt], H∗, Θ̂C), where

(4.11) H∗ = 2trCA− trΣA.

Thus, critical points of the action on the field space Fb = Metb(M0) with fixed boundary data b = ([γt], H∗, Θ̂C)
are the vacuum Einstein metrics with given boundary data b.

Proof. Recall from (3.27) that general variations h̄ of ḡ are of the form h̄ = ψ∗gh − LXh
ḡ. The variation of

the bulk Lagrangian is

δ(Rḡdvḡ) = 〈−Eḡ, ψ∗h〉dvḡ + 〈Eḡ, LX ḡ〉dvḡ + div[divh̄− (dtrh̄)]dvḡ

= 〈−Eḡ, ψ∗h〉dvḡ + div[2Eḡ(X) + divh̄− (dtrh̄)]dvḡ,

where we have applied the Bianchi identity in the second equality. Thus the equations of motion generated
by IAA are the vacuum Einstein equations. Using (3.9) or (3.15), the on-shell variation of the action IAA
with respect to deformation h̄ is then easily computed to be

(4.12) δIAA(h̄) =

∫
C
(−〈A, h̄〉 − 2(trCA)′h̄ + (trΣA)′h̄ + 1

2 trΣAtrCh̄)dvγ̄ .

Let h̄Σ be the restriction of h̄ to Σt and let (h̄Σ)0 denote its trace-free part. The first and fourth terms in
(4.12) may then be combined and rewritten as −〈A, h̄〉 + 1

2 trΣA〈γ̄, h̄〉 = −〈A, (h̄Σ)0〉 − 〈q(T ), h̄(T )〉, where

q(T ) = 2A(T )Σ + (− 1
2 trΣA+A(T, T ))T . Also, setting H∗ = 2trCA− trΣA, i.e. setting α = 2, β = −1, γ = 0

in (2.16), (4.12) may be rewritten in the form

(4.13) δIAA(h̄) = −
∫
C
〈A, (h̄Σ)0〉+ (H∗)′h̄ + 〈q(T ), h̄(T )〉)dvγ̄

The vanishing of the terms (h̄Σ)0, (H∗)′
h̄

and h̄(T ) is equivalent to fixing the boundary data ([γt], H∗, Θ̂C).
15



We note that for fixed g, the Dirichlet boundary condition (4.9) still gives a well-posed IBVP for the wave

map ϕg. It remains open however if the choice of Θ̂C in place of ΘC leads to a well-posed IBVP for the
coupled system (g, ϕg) as in (2.13)-(2.15). We hope to investigate this elsewhere.

In this setting, the phase space P̄b may be defined as in (3.26) with associated pre-symplectic form Ω̄ in
(3.29). Unfortunately, this does not give rise to Hamiltonians associated with generators ξ ∈ TDiff(C). This
is partly due to the fact that the boundary conditions are Diff(C) invariant but mainly due to the dependence
of the preferred gauge ϕg on the choice of the Cauchy surface S, as in (2.10).

In order to obtain non-trivial Hamiltonians, we consider the same action on an enlarged space consisting of
the pairs (g, F ) where F denotes a general diffeomorphism F : M →M0 which maps C to C0. In the following

let ḡ = (F−1)∗g defined on M0. Choose fixed boundary data b =
(
[γt], H∗, Θ̂C , G

)
, where

(
[γt], H∗, Θ̂C

)
are

as above and G : C → C0 is an arbitrary but fixed diffeomorphism. Let Cb be the configuration space

(4.14) Cb = {(g, F ) : ḡ = (F−1)∗g has boundary data b =
(
[γt], H∗, Θ̂C

)
with F |C = G}.

Proposition 4.4. The action

(4.15) ĪAA(ḡ) =

∫
M0

Rḡdvḡ +

∫
C0

trΣAḡdvγ̄ ,

gives a well-defined variational problem on Cb, for any boundary data b with

(4.16) H∗ = 2trCA− trΣA.

Thus, critical points of the action on Cb are the vacuum Einstein metrics with given boundary data b.

A vector field ξ on C which preserves the boundary conditions ([γt], H∗, Θ̂C) has an associated Hamiltonian

(4.17) HAAξ =

∫
Σ

−2Aḡ(ξ̄, Tḡ) + 〈ξ̄, Tḡ〉trΣAḡdvγ̄Σ
,

where ξ̄ = G∗(ξ).

Proof. The proof of the first statement is the same as the proof of Proposition 4.3, with deformation h of g
replaced by the deformation (h,X) of (g, F ) ∈ Cb and with corresponding deformation h̄ of ḡ on M0 replaced
by the deformation h̄ = (F−1)∗h − LX ḡ of ḡ. The same computations as before show that the equations
of motion generated by ĪAA are again the vacuum Einstein equations and that ĪAA gives a well-defined
variational problem on Cb for any b satisfying (4.16).

The resulting pre-phase space P̄b is given by

(4.18) P̄b = {(g, F ) ∈ Cb : Ricg = 0}.

The pre-symplectic potential θ is given by the same formula as in (3.5) applied to h̄: θ̄(h̄) = ?ḡ[divh̄−(dtrh̄)].
This leads as before to the pre-symplectic form as in (3.17):

(4.19) Ω̄
(
(h1, X1), (h2, X2)

)
= −

∫
S

〈π̄′h̄1
, h̄2〉 − 〈π̄′h̄2

, h̄1〉,

where h̄i = (F−1)∗(hi)− LXi
ḡ.

Now let ξ be a vector field on (M, g) such that the deformation (Lξg,X) ∈ T P̄b for some deformation X
of F , so that X = 0 on C. Then ξ induces a deformation of the pullback metric ḡ on M0 by h̄ = Lξ̄ ḡ, where

ξ̄ = F∗(ξ)−X on M0. The Hamiltonian generated by ξ is given by the same formula as in (3.21) applied to
the field ξ̄:

HAAξ =

∫
Σ

−2Aḡ
(
ξ̄, Tḡ

)
+ 〈ξ̄, Tḡ〉trΣAḡdvγ̄Σ

.

This gives (4.17) since F = G and X = 0 on C.
Therefore we obtain a nontrivial Hamiltonian which is well-defined when (Lξg,X) ∈ T P̄b, for some X.

Since X = 0 on C, this is equivalent to the existence of a vector field ξ on (M0, ḡ) such that

[Lξγ
t]0 = 0, ξ(H∗) = 0, LξΘ̂C = 0 on C.(4.20)
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A simple example is when ξ = ∂t and the data ([γt], H∗, Θ̂C) are independent of t, arising for instance as
boundary data of a stationary vacuum solution.

Note that the action ĪAA imposes no equation of motion on the auxiliary field F . Also F does not
contribute to the Hamiltonian beyond the fixed boundary condition that F = G at C. Next we point out
that F disappears when passing to the associated phase space and the resulting phase space agrees with the
(standard) phase space defined in (3.19).

Proposition 4.5. The phase space

(4.21) Pb = P̄b/G,

associated to (4.18) agrees with the vacuum phase space in (3.19).

Proof. First, observe that for any deformation X of F with X = 0 on C, (0, X) ∈ Ker Ω̃, as in (3.22). Thus
one may first reduce P̄ to the quotient space P1 = P̄/G1 where G1 is generated by vector fields (0, X) ∈ T P̄b. If
(g, F ) ∈ P̄b then (g, F ′) ∈ P̄b for arbitrary diffeomorphisms F ′ : (M,∂M)→ (M0, ∂M0) such that F ′ = G on
C. All of these are in the same equivalence class in P1.4 A natural choice of representative of an equivalence
class is given by the pair (g, F ) with F solving

�gF = 0 in M, F = E0, F∗(Tg) = E1 on S, F = G on C,

for a fixed but arbitrary choice of initial data (E0, E1); compare with (2.9)-(2.11). This gives (4.21), but it
worthwhile to carry the analysis somewhat further.

From the expression of Ω̄ in (4.19), it is clear that if the deformation (h,X) preserves the initial data of
ḡ on S, i.e. (ḡS)′

h̄
= 0 (Kḡ)

′
h̄

= 0, then (h,X) ∈ Ker Ω̄. Therefore one may further reduce the space P̄1 to

P̄2 = P̄1/G2,

where G2 is generated by such deformations (h,X).
Next, assume [(gt, Ft)] ∈ P1 is a smooth curve of equivalence classes in P1 where the initial data of gt

varies along a curve of diffeomorphisms: gt|S = ψ∗t (g0|S) and Kgt = ψ∗t (Kg0
) for ψt ∈ Diff0(S) with ψ = Id

on Σ. Consider a new curve F ′t such that F ′t solves

�gtF
′
t = 0 in M, F ′t = F0 ◦ ψt on S, F ′t = G on C.

Clearly (gt, Ft) ∼ (gt, F
′
t ) in P1. In addition, corresponding to the family (gt, F

′
t ), the pullback metrics

ḡt = ((F ′t )
−1)∗gt with (F ′t )

−1 = ψt have the same initial data, and hence the infinitesimal deformations
along this curve belong to G2. Thus in P̄2, (g1, F1) ∼ (g2, F2) if g1 and g2 have equivalent initial data,
modulo diffeomorphisms equal to the identity on C.5 In particular, Pb is a further quotient (possibly trivial)
of P̄2.

As with (3.23) one would like to establish a one-to-one correspondence between Pb and I/Diffb(S), for

b =
(
[γt], H∗, Θ̂C) as above. This would require proving the well-posedness of the following IBVP:

Ricg = 0, �gF = 0 in M,

g|S = gS , Kg = K, F = E0, F∗(Tg) = E1 on S,

[ḡt] = [γt], −2trCAḡ + trΣAḡ = H∗, T cḡ = Θ̂C , F = G on C.
(4.22)

The system (4.22) with Dirichlet boundary condition Θ̂C replaced by the Sommerfeld boundary condition
(Tḡ + νḡ)

T = ΘC as in (2.11) on C was proved to be well-posed in [1]. As discussed following Proposition
4.3, we hope to discuss the well-posedness of (4.22) elsewhere.

4One should restrict here to diffeomorphisms isotopic to the identity but we will forgo such distinctions to simplify the
discussion.

5As above with diffeomorphisms, we assume there exists a curve gt connecting g1 and g2.
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Remark 4.6. Based on the geometric uniqueness result in [1], if (g1, F1), (g2, F2) are solutions to (4.22)

with the same initial data and boundary data, and with ΘC in place of Θ̂C , then they are equivalent in the
sense that one is the pullback of the other by a diffeomorphism in Diff0(M) (fixing S and C); in particular
g1 and g2 are isometric in Diff0(M). This is consistent with the equivalence relationship in P̄b.

On the other hand, if (g1, F1) and (g2, F2) are solutions to (4.22) (again with ΘC in place of Θ̂C) with all
the same initial and boundary data except that g1 = ψ∗(g2), Kg1

= ψ∗(Kg2
) on S for some diffeomorphism

ψ 6= IdS of S, it is unknown whether g1, g2 are equivalent, i.e. isometric. This is the motivation of introducing
the preferred wave map in [1]. However, such elements are equivalent in the phase space P̄b.

5. Normalized Hamiltonians

As noted in the Introduction, several approaches to the definition of quasi-local energy-momentum or
angular momentum of a space-like 2-surface Σ are based on a Hamiltonian or the closely related Hamilton-
Jacobi approach. This was initiated by Brown-York [9], with modifications developed by numerous authors
including Epp, Kijowski, Liu-Yau, Wang-Yau and others; we refer to [36] for a detailed survey and further
references. For all of these definitions, the space B of boundary data is the Dirichlet data space B = Met(C);
the various definitions of quasi-local energies (or momenta) differ by a choice of normalization term, i.e. a
choice of zero-point energy (or momenta).

In general, the starting point of such a Hamiltonian approach is a space-like surface Σ with data on Σ
obtained by fixing a choice of boundary data b ∈ B restricted to Σ. One assumes then that Σ with such
data can be extended as a Cauchy slice in a time-like hypersurface C = ∂M , where (M, g) is a vacuum
space-time. Moreover, one assumes the extension to C has a vector field ξ ∈ TC with flow preserving the
boundary condition b ∈ B. For Dirichlet boundary data, this means ξ is a Killing field of (C, γ), Lξγ = 0. If
ξ is time-like, then the Hamiltonian Hξ serves as a notion of bare quasi-local energy.

Recall from (4.2) that the bare Brown-York quasi-local energy is given by

(5.1) HDir = −2

∫
Σ

τ(ξ, T )dvγΣ
,

where T is the unit time-like normal to Σ ⊂ C. Here the data on Σ consist of the specification of a time-like
3-metric γ on C (Dirichlet data) restricted to Σ for which ξ is a Killing field at Σ. The initial choice of
Brown-York is simply to take

(5.2) γ = −dt2 + γΣ,

with ξ = T = ∂t representing time translation. A simple computation shows that

(5.3) HDir = −2

∫
Σ

HΣdvγΣ ,

where HΣ = trΣA.
This expression is of course non-vanishing for general surfaces Σ ⊂ R3 and the prescription of Brown-York

is to normalize the bare Hamiltonian by subtracting its Euclidean value:

(5.4) HBY = 2

∫
Σ

(H0
Σ −HΣ)dvγΣ

,

where H0
Σ is the mean curvature of an isometric immersion ι(Σ, γΣ) → R3. Thus, the subtraction term is

the Brown-York Hamiltonian of C0 = R × ι(Σ) ⊂ R1,3 with respect to the standard time translation t in
Minkowski space. At least in the case of γΣ with positive Gauss curvature, such an embedding exists by
fundamental work of Nirenberg and Pogorelov, and is unique (up to congruence) by fundamental work of
Cohn-Vossen. Unfortunately, little is known about such existence and uniqueness results outside the case of
positive Gauss curvature.

More generally, the Wang-Yau energy [39] considers families of isometric embeddings (Σ, γΣ)→ R1,3 and
chooses the reference cylinder C0 to be spanned by arbitrary Minkowski time-translation fields transverse
to ι(Σ). This may be viewed as a space-time generalization of the Brown-York prescription and requires
developing an understanding of the possible isometric immersions Σ→ R1,3, carried out in detail in [39].
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Returning to the general expression (5.1), since Dirichlet data are not well-posed, it is of course not well-
understood when (Σ, γΣ) can be embedded in (C, γ) ⊂ (M, g) with time-like Killing field ξ on C, as in (5.2)
for instance. Thus, (5.1) can only be considered as being formally defined, not well-defined.

Note also that even if (5.1) is defined, i.e. one has a vacuum space-time (M, g) with boundary (C, γ)
extending Σ and possessing a time-like Killing field ξ, the Euclidean (Brown-York) or Minkowski (Wang-
Yau) subtraction term above may not be defined. To make this explicit, consider the space Met0(C) of
Lorentz metrics on C with a time-like Killing field ξ. Such metrics are parametrized by metrics Met(Σ) on
Σ, together with a choice of lapse and shift (N,X) on Σ. This data is time-independent, i.e. extended to be
invariant under the flow of ξ, but the data (N,X) may be arbitrarily chosen over Σ. However, in R1,3 there
is only a 4-dimensional space of time-translation Killing fields; thus most Killing fields on (C, γ) cannot be
renormalized to zero-point energy in this way.

Remark 5.1. When the IBVP is well-posed so that (3.23) holds, a Hamiltonian Hξ : Pb → R becomes
a function on the space of initial data Hξ : I → R. The normalization terms above then correspond to
solutions evaluated on flat initial data (gS ,K). Recall that (gS ,K) represent flat initial data if and only if
the flat constraint equations hold; in schematic form

(5.5)
dK = 0,

RgS +K2 = 0.

The traces of these equations give the vacuum Einstein constraint equations (2.1)-(2.2). If (5.5) holds, then
by the fundamental theorem of hypersurfaces in space-forms, S has an isometric immersion into R1,3 unique
up to isometry of R1,3, (at least when S is simply connected). In the time-symmetric (Brown-York) case,
K = 0 and so gS is a flat metric on S ⊂ R3, or more precisely an immersion of S into R3. However, in
general it is not well understood when a given geometry at the boundary Σ, i.e. boundary data b ∈ B, has a
fill-in by a flat metric on S, or when such fillings are unique.

We consider instead a natural definition of the normalization term that is formally valid in general:

Definition 5.2. Given a Hamiltonian Hξ : Pb → R associated with a boundary condition b ∈ B, define the
normalized Hamiltonian by

Ĥξ = Hξ − inf
Pb

Hξ.

For this to be well-defined, one needs of course

(5.6) inf
I
Hξ > −∞.

When the identification (3.23) holds, so that Pb ' I, this gives the more concrete expression

(5.7) Ĥξ = Hξ − inf
I
Hξ.

An advantage of this definition is that it immediately implies the positivity property:

Ĥξ ≥ 0 on I.
Consider first the time-symmetric case where K = 0. If there exists a flat solution with time-symmetric
initial data, i.e. flat initial data (g0

S , 0) ∈ I filling in the boundary data b ∈ B, then it is natural to ask if the
infimum infI Hξ is realized by flat data:

inf
I
Hξ = Hξ(g0

S , 0),

i.e.
Ĥξ(g0

S ,K
0) = 0.

It is also natural to consider the corresponding uniqueness or rigidity issue. For Dirichlet boundary data γΣ

with positive Gauss curvature and with N = 1 on Σ (the Brown-York case as in (5.2)-(5.3)), this is proved
to be true by a basic result of Shi-Tam [34]. A generalization of this result to the setting with non-zero K
(the space-time setting) has been proved in basic work of Wang-Yau [39].

The term infI Hξ bears a formal similarity with the definition of the Bartnik quasi-local energy [6], which
is based on minimizing the ADM Hamiltonian for an asymptotically flat space-time in a region exterior to
the Cauchy surface S; thus the interior minimization problem considered here is replaced in the Bartnik
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program by minimization over a complementary exterior region. Bartnik conjectures that such infima are
realized by stationary vacuum solutions, i.e. vacuum solutions for which the asymptotic time-like Killing
field extends to a time-like Killing field over the full exterior region. It is of course natural to make the
analgous conjecture in this (interior) setting. This will be discussed in more detail elsewhere.

In the case that the Killing field ξ on C is hypersurface orthogonal, i.e. the shift X of ξ satisfies X = 0, it
is proved in [32] that critical points of Hξ on I are solutions of the static vacuum Einstein equations

uRic = D2u, ∆u = 0,

on S with u = N on Σ, partially confirming this conjecture. It is also proved in [31] that the bound (5.6)
holds in this case.

Next we consider analogs of the discussion above for other more well-behaved boundary conditions.
Consider first the ([γ], H) data (4.3) which are conjectured to be well-posed. Let Σ be any space-like

2-surface with metric γΣ and let ξ be a vector field on C restricted Σ. For simplicity, consider here just
extensions of this data to C as in (5.2), so that ξ = T = ∂t. Assume also H is independent of t. Then

[γ] = [−dt2 + gΣ]

and ξ is a conformal Killing field on C preserving the mean curvature ξ(H) = 0, so ξ preserves the boundary
condition. Assuming the IBVP is well-posed for ([γ], H) (or instead just proceeding formally), this gives the
Hamiltonian

HCHξ = −2

∫
Σ

〈A− 1

3
Hγ, T · T 〉dvΣ = −2

∫
Σ

(A(T, T ) +
1

3
H)dvΣ.

Since H = −A(T, T ) +HΣ and H is given boundary data, this may be re-written in the form

(5.8) HCHξ = −2

∫
Σ

(−2

3
H +HΣ)dvγΣ .

Both HΣ and the induced volume form dvγΣ are determined by the solution g, i.e. initial data (gS ,K).
Here it appears more difficult to identify a suitable Euclidean subtraction term in general. One possibility

is as follows; given (Σ, γΣ), as in the Brown-York case suppose there is a unique isometric embedding
ι : (Σ, gΣ) → (R3, gEucl) into R3. Let H0

Σ be the mean curvature of the image ι(Σ) ⊂ R3. Then choose the
boundary condition H = H0 = H0

Σ. As above, there is a corresponding conformal embedding (C, [γ]) →
(R1,3, gMink) and subtracting the Euclidean Hamilonian from (5.8) gives

H̃CHξ = −2

∫
Σ

(−2

3
(H −H0) + (HΣ −H0

Σ))dvγΣ
.

Since by construction H = H0, this gives

H̃CHξ = −2

∫
Σ

(HΣ −H0
Σ)dvγΣ

,

which is exactly the Brown-York energy again (without the 1/3 term as in (4.7)). One advantage to this
approach is that the boundary data ([γ], H) appear to be better behaved than Dirichlet boundary data. On
the other hand, it is not clear if there is any suitable Euclidean subtraction term if H is chosen arbitrarily.
In this case, the definition (5.7) may be more suitable.

Finally consider the ([γt], H∗) data from [1] with H∗ = 2trCA−trΣA as in Proposition 4.4. For simplicity,

extend given data ([γt], H∗) on Σ to be independent of t on C and set ξ = ∂t = T = Θ̂C , G = Id. Then the
boundary condition (4.20) holds and the resulting bare Hamiltonian (4.17) is given by

HAAξ =

∫
Σ

[−2Aḡ(T, T )− trΣAḡ]dvγ̄Σ
.

As in the Brown-York case, consider here for simplicity a Euclidean subtraction term. Thus, given ([γt], H∗)
on Σ as above, let ι : (Σ, [γΣ])→ R3 be a conformal embedding of Σ into R3 with prescribed mean curvature
H∗. A general theory for such embeddings (or more precisely branched immersions) when H∗ > 0 is
developed in [4]. Such an embedding problem is elliptic and in general is much better behaved than the
isometric embedding problem associated to Dirichlet boundary data. As above, one may extend ι trivially
in the t-direction to an embedding of the cylinder C0 into R1,3 with time-like Killing field ξ = ∂t. This gives
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a flat vacuum solution with the same boundary data ([γt], H∗) and with H∗ = H0
Σ (since A(T, T ) = 0 on

the flat cylinder). This gives a Euclidean normalized Hamiltonian

H̃AAξ =

∫
Σ

[−2Aḡ(T, T )− trΣAḡ]dvγ̄Σ +

∫
Σ

H∗dvι∗gEucl
,

or equivalently

H̃AAξ =

∫
Σ

H∗(dvγ̄Σ
+ dvι∗gEucl

)− 2

∫
Σ

trΣAḡdvγ̄Σ
.
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Acta Mathematica, 88, (1952), 141-225.

[12] Y. Choquet-Bruhat and R. Geroch, Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys.,

14, (1969), 329-335.
[13] G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25, (2008) 195014,

arXiv:0805.1902.

[14] A. Fischer and J. Marsden, The initial value problem and the dynamical formulation of general relativity, in General
Relativity, An Einstein Centenary Survey, ed. S. Hawking and W. Israel, Cambridge. Ch. 4, (1979).

[15] G. Fournadavlos and J. Smulevici, On the initial boundary value problem for the Einstein vacuum equations in the

maximal gauge, arXiv:1912.07338.
[16] G. Fournadavlos and J. Smulevici, The initial boundary value problem for the Einstein equations with totally geodesic

timelike boundary, arXiv:2006.01498.

[17] H. Friedrich and G. Nagy, The initial boundary value problem for Einstein’s vacuum field equations, Comm. Math.
Phys., 201, (1999), 619-655.

[18] P. Gianniotis, The Ricci flow on manifolds with boundary, Jour. Diff. Geom., 104, (2016), 291-324, arXiv:1210.0813.
[19] R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., N.S. 7(1), (1982), 65-222.
[20] D. Harlow and J-q. Wu, Covariant phase space with boundaries, JHEP, 10, (2020), 146, arXiv:1906.0861.

[21] V. Iyer and R. M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys.
Rev. D50 (1994) 846-864, arXiv:9403028 [gr-qc].

[22] V. Iyer and R. M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of

stationary black holes, Phys. Rev. D52 (1995) 4430-4439, arXiv:9503052 [gr-qc].
[23] I. Khavkine, Covariant phase space, constraints, gauge and the Peierls formula, Int. Jour. Mod. Phys., A29, (2014),

1230009, arXiv:1402.1282.

[24] H.-O. Kreiss, O. Reula, O. Sarbach and J. Winicour, Well-posed initial boundary value problem for the harmonic
Einstein equations using energy estimates, Class. Quant. Grav., 24, (2007), 5973-5984, arXiv:0707.4188.

[25] H.-O. Kreiss, O. Reula, O. Sarbach and J. Winicour, Boundary conditions for coupled quasi-linear wave equations

with applications to isolated systems, Comm. Math. Phys., 289, (2009), 1099-1129, arXiv:0807.3207.
[26] H.-O. Kreiss and J. Winicour, Geometric boundary data for the gravitational field, Class. Quant. Gravity, 31, (2014),

065004, arXiv:1302.0800.
[27] J. Lee and R. M. Wald, Local symmetries and constraints, Jour. Math. Phys., 31(3), (1990), 725-743.
[28] A. Marini, Dirichlet and Neumann boundary conditions for Yang-Mills connections, Comm. Pure Appl. Math., XLV,

(1992), 1015-1050.
[29] J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Reports on Math. Phys., 5, (1974),

121-130.

21



[30] D. Maxwell, The conformal method and conformal thin sandwich method are the same, Class. Quant. Grav., 31,
(2014), 146006, arXiv:1402.5585.

[31] C. Mantoulidis and P. Miao, Total mean curvature, scalar curvature, and a variational analog of Brown-York mass,

Comm. Math. Phys., 352 (2017), no. 2, 703–718, arXiv:1604.00927.
[32] P. Miao, Y. Shi and L. F. Tam, On geometric problems related to Brown-York and Liu-Yau quasilocal mass, Comm.

Math. Phys., 298, (2010), no. 2, 437–459, arXiv:0906.5451.

[33] O. Sarbach and M. Tiglio, Continuum and Discrete Initial-Boundary Value Problems and Einstein’s Field Equations,
Living Reviews in Relativity, 15, (2012), 9.

[34] Y. Shi and L.-F. Tam, Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative
scalar curvature, J. Diff. Geom., 62 (2002), no. 1, 79-125.

[35] J. Sniatycki and G. Schwarz, The Existence and uniqueness of solutions of Yang-Mills equations with bag boundary

conditions, Comm. Math. Phys., 159, (1994), 593-604.
[36] L. Szabados, Quasi-local energy-momentum and angular momentum in general relativity, Living Reviews in Relativity,

12, (2009), 4.

[37] R. M. Wald, General Relativity, University of Chicago Press, Chicago, (1984).
[38] R. M. Wald and A. Zoupas, A general definition of ’conserved quantities’ in general relativity and other theories of

gravity, Phys. Rev. D61 (2000) 084027, arXiv:9911095 [gr-qc].

[39] M. T. Wang and S. T. Yau, Isometric embeddings into the Minkowski space and a new quasi-local mass, Comm.
Math. Phys. 288 (2009), no. 3, 919-942.

[40] E. Witten, A note on boundary conditions in Euclidean gravity, in: Roman Jackiw: 80th Birthday Festschrift, Ch.

25, World Sci. Press, Singapore, (2020), arXiv:1805.11559.
[41] W. York, Jr., Covariant decompositions of symmetric tensors in the theory of gravitation, Ann. Inst. H. Poincaré,
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