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Abstract. This work presents a simple criterion for the existence on compact manifolds of solutions to
the vacuum Einstein constraint equations via the well-known conformal method of Lichnerowicz-Choquet-

Bruhat-York in the far from CMC regime, extending previous work in the CMC and near-CMC regime. The
main perspective is based on Smale’s version of the Sard theorem for Fredholm maps between Banach man-

ifolds and related transversality properties. To implement this, we prove the existence of apriori estimates

along curves of solutions.

1. Introduction

Let (M, g,K) be a triple consisting of a closed 3-manifold M , a Riemannian metric g and a symmetric
bilinear form K on M . The constraint equations for the vacuum Einstein equations are given by

(1.1) δ(K −Hg) = 0,

(1.2) |K|2 −H2 −Rg = 0,

where δ is the divergence with respect to g, H = trgK and Rg is the scalar curvature of (M, g). The equation
(1.1) is called the divergence or momentum constraint while (1.2) is the Hamiltonian or scalar constraint.
They are the Gauss-Codazzi and Gauss equations respectively of a hypersurface embedded in a 4-dimensional
Ricci-flat Lorentzian space-time (M, g(4)).

The fundamental theorem of Choquet-Bruhat [7] guarantees that a smooth triple (M, g,K) satisfying the
constraints (1.1)-(1.2) form an initial data or Cauchy hypersurface of a space-time solution (M, g(4)) of the
vacuum Einstein equations Ricg(4) = 0. The metric and second fundamental form of g(4) induced on M are
given by (g,K).

The equations (1.1)-(1.2) are highly underdetermined; there are 4 equations for the 12 unknown compo-
nents of (g,K). A basic issue of interest has been to determine whether there is a natural space of “free” or
“unconstrained” data D, formally with 8 degrees of freedom, which upon specifying an element in D, reduce
the equations (1.1)-(1.2) to a determined set of equations. Ideally, one would then be able to uniquely solve
these equations, giving then an effective parametrization of the dynamical gravitational degrees of freedom
from the data in D.

A priori there are of course many possible choices for the free data space D. One would like D to be as
simple as possible topologically. On the other hand, very little seems to be known about the topology of the
space C of solutions of the constraint equations.

By far the best understood and most well-studied choice, especially for the case of closed manifolds
considered here, is that given by the conformal method of Lichnerowicz-Choquet-Bruhat-York, cf. for instance
[3], [8], [22], or one of its variants [3], [26]. For the conformal method, D has the following product structure.
Let C0 be the space of (pointwise) conformal equivalence classes [g] of C∞ smooth metrics g on M and let
T be the fibration over C0 with fiber over [g] given by the space of C∞ smooth symmetric 2-tensors σ which
are transverse-traceless with respect to [g], i.e. δg0σ = trg0σ = 0, where g0 is any representative of [g]. Next,
let C∞(M) denote the space of smooth scalar functions H on M . Then D (i.e. DC∞) is given by

D = T × C∞(M).

The class [g] represents the conformal class of the metric g, while σ and H represent the transverse-traceless
part and pure trace part of K; H thus represents the mean curvature. It is easily verified that D has formally
8 degrees of freedom and is contractible.

Given then a point in D, i.e. a triple (g0, σ,H) where g0 is a fixed representative in the conformal class
[g], the remaining data determining (g,K) are a conformal factor ϕ for the metric and a vector field X for
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the action of diffeomorphisms on symmetric bilinear forms. More precisely, using the York decompostion of
symmetric bilinear forms [35], one forms (g,K) by setting

(1.3) g = ϕ4g0,

(1.4) K = ϕ−2(σ + L̂Xg0) + H
3 ϕ

4g0,

where L̂ is the conformal Killing operator; L̂Xg0 = LXg0 − 2
3divg0Xg0. The constraint equations (1.1)-(1.2)

then become a coupled system of equations for (ϕ,X) which take the form

(1.5) δ(L̂Xg0) = − 2
3ϕ

6dH,

for the divergence constraint while the Hamiltonian or scalar constraint takes the form of the Lichnerowicz
equation

(1.6) ∆ϕ = 1
8R0ϕ− 1

8 |σ + L̂Xg0|2ϕ−7 + 1
12H

2ϕ5.

Here δ and ∆ are the divergence and Laplacian with respect to the fixed representative g0 ∈ [g] and R0 is the
scalar curvature of g0. The metric g0 is usually taken to be a Yamabe metric in [g] so that R0 is the Yamabe
constant Y [g] of [g]. It is well-known that the equations (1.5)-(1.6) form a determined elliptic system for
(ϕ,X), given (g0, σ,H), cf. also Section 2.

The basic question is then for what free data ([g], σ,H) ∈ D are these equations solvable, or even better,
uniquely solvable. This has been thoroughly answered only in the case where H = const, the CMC case,
where necessary and sufficient conditions for the existence and uniqueness of solutions have been developed,
cf. [22], based on work of [24], [8], [29] and others. This is briefly discussed further in Section 2. There
has been significant recent progress on this issue also in the near CMC case, where the derivative dH is
sufficiently small compared with H, cf. [23] and references therein for a recent survey. There has also been
some interesting progress in the far-from-CMC regime, cf. [25], [31], [32], [34], but in general this realm
remains not well understood.

The reason for the simplification in the CMC case is well-known; in this case one may set X = 0 in
(1.5) and the system (1.5)-(1.6) reduces to the Lichnerowicz equation (1.6) for ϕ involving only the given
data R0, σ,H. This equation is closely related to the well-understood Yamabe equation for constant scalar
curvature metrics.

In this paper, we take a somewhat different perspective from previous work on this issue, namely a global
analysis perspective going back to the work of Smale [33]. Let C be the space of all C∞ smooth pairs (g,K)
on M satisfying the constraint equations (1.1)-(1.2). Instead of studying the solvability of (1.5)-(1.6) for
fixed data ([g], σ,H) ∈ D, we consider the behavior of the natural (projection) map

(1.7) Π : C → D,

(g,K)→ ([g], σ,H).

The fibers of Π (if non-empty) are pairs

(ϕ,X)

satisfying the equations (1.5)-(1.6). Of course one requires ϕ > 0.
The main interest is the global behavior of the map Π. In particular, one would like to understand the

image of Π and the injectivity of Π, corresponding to the existence and uniqueness of solutions of (1.5)-(1.6).
As noted above, within the CMC class where H = const, the maximal domain

Ccmc+ ⊂ C ∩ {H = const}

on which Π is one-to-one is exactly understood. The restriction

Πcmc = Π|Ccmc+
: Ccmc+ → Dcmc = D ∩ {H = const}

is not surjective onto Dcmc but its image Dcmc+ = Im Πcmc is fully understood, and recalled briefly in Section
2.

Returning to the general situation regarding (1.7), let C′0 ⊂ C0 be the space of conformal classes which
have no essential conformal Killing field. Thus if M 6= S3, C′0 = C while if M = S3, we exclude the conformal
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class of the round metric [g+1]; by the well-known Obata theorem, this is the only conformal class with a
non-compact conformal group.

Let

(1.8) D′ ⊂ D

be the restriction of the fibration D to the domain C′0 and let

C′ = Π−1(D′) ⊂ C,

with the induced map

(1.9) Π′ : C′ → D′.

Next let

(1.10) D+ = {([g], σ,H) ∈ D′ : inf |H| > 0 and sup |σ| > 0 when Y [g] ≥ 0}.

Thus D+ consists of data for which the mean curvature function H never vanishes (so has a definite sign)
and, when the Yamabe constant of [g] is non-negative, the symmetric 2-tensor σ does not vanish identically.
The domain D+ is a connected, open domain in D′. Let

C+ = Π−1(D+);

more precisely C+ is defined to be the path component of Π−1(D+) containing the domain Ccmc+ . The
conditions defining D+ are closely related to the conditions defining Dcmc+ , cf. Section 2.

The main result of this paper is the following:

Theorem 1.1. The map

(1.11) Π+ : C+ → D+

is surjective. Thus for any data ([g], σ,H) ∈ D+ there is at least one smooth solution (ϕ,X) of the constraint
equations (1.5)-(1.6).

This result considerably extends the previously known region in D where the constraints (1.5)-(1.6) have
solutions. It gives a simple criterion for the existence of solutions in the far-from-CMC regime. There are
reasons to believe it can be extended further, i.e. we do not believe Theorem 1.1 is sharp. In particular,
the restriction that H have a definite sign when Y [g] > 0 may be superfluous; cf. Remark 4.3 for further
discussion.

We are not able to address the uniqueness issue at all in this work. In fact, it is not known if Π+ is
even generically finite-to-one on C+, i.e. if there are only finitely many solutions of the constraint equations
(in C+) for generic data ([g], σ,H) ∈ D+. This remains an interesting open problem. There have been
a number of recent works on non-uniqueness and bifurcation results for solutions (ϕ,X) of the constraint
equations, cf. [11], [32], [34] for example. To date, all such results involve extra matter sources or a non-zero
cosmological constant and so have not yet been applicable to the vacuum case per se. However, we expect
similar phenomena hold in the vacuum case in that the global map Π+ is likely to exhibit fold and bifurcation
behavior leading to multiple solutions in numerous regions. Of course it would be very interesting to explore
this further.

The methods of the paper do show that if Π+ is finite-to-one on C+, (or on a suitable open domain
U+ ⊂ C+), then the resulting map Π+ (or Π+|U+) is proper and can be shown to have a corresponding
Z2-valued Smale degree, cf. [33]. Further, the degree of Π+ would necessarily be 1 (mod 2). Such a degree
would give a parity count (even-odd) for the number of generic solutions (ϕ,X) of (1.5)-(1.6) in C+.

The method of proof of Theorem 1.1 is not based on traditional approaches, for instance via the construc-
tion of suitable barriers, i.e. sub and super solutions of the Lichnerowicz equation. Instead, the approach can
be considered as a generalization of the well-known method of continuity. Note first that it is not expected
that the continuity method itself can be implemented here, since it implies the absence of bifurcation or fold
behavior. (Recall that the continuity method requires openness of the set of solutions along a path; this fails
when there is a bifurcation in the space of solutions). On the other hand, as mentioned above, we have not
been able to prove that Π+ is proper, i.e. establish fully general apriori estimates for the set of solutions, in

3



order to obtain a well-defined degree. (On the other hand, note that properness does allow for bifurcations
in the space of solutions).

Instead, we develop an intermediate course between these two approaches. To describe this briefly here, we
simplify the discussion and consider the regular regions Creg+ ⊂ C+ and Dreg+ ⊂ D+ which have the structure
of smooth manifolds with

(1.12) Πreg
+ = Π|regC+ : Creg+ → Dreg+

a smooth Fredholm map between them. We will apply the global analysis methods introduced by Smale [33]
to analyse the surjectivity of Πreg

+ . The domain Creg+ is a large open set in C+, conjecturally dense, and we
show in Section 5 that the methods used to prove Theorem 1.1 in Creg+ extend to the full space C+.

An important starting point is the fact that CMC solutions are unique, i.e. solutions in Ccmc are uniquely
determined by the target data in Dcmc. (Actually this uniqueness is needed only for one solution). Let y(t),
t ∈ I = [0, 1] be a compact path in Dreg+ , transverse to Πreg

+ , with y(0) ∈ Dcmc+ . Although the properness
of Πreg

+ remains unknown, we show in Section 4 that Πreg
+ is proper along paths, i.e. if x(τ) is a path in

Creg+ with Πreg
+ (x(τ)) ∈ y(I), then the curve x(τ) is compact in Creg+ . As a consequence, following the basic

methodology of Smale [33], the path y(t) has a unique lift to a path x(τ) ∈ Creg+ , τ ∈ [0, 1] with x(0) the
unique lift of y(0), i.e. Π+(x(0)) = y(0). From this we show that x covers y in that Π+(x(I)) = y(I) and
hence Π+(x(1)) = y(1), i.e. the constraint equations are solvable at y(1). Although overly simplified here
for the sake of brevity, this is the main perspective underlying the proof of Theorem 1.1.

The contents of the paper are briefly as follows. In Section 2, we introduce background material and
results needed for the work to follow. In particular, the spaces Creg and Dreg are defined and shown to admit
smooth separable Banach manifold structures, cf. Corollary 2.4. We also summarize the known existence
and uniqueness results for CMC solutions and show how these relate to the definitions of C+ and D+. Some
basic initial a priori estimates for the map Π+ are derived in Section 3. Here one sees that solutions (ϕ,X)
of the constraints (1.5)-(1.6) cannot degenerate over compact sets in D+ provided one has a fixed sup bound
on ϕ. The definition of the domain D+ is largely motivated by these non-degeneration results in Section 3.

In Theorem 4.1 we prove that a sup bound on ϕ can be obtained from a bound on the Harnack constant
CHar(ϕ) = supϕ

inf ϕ , given a bound on H away from zero. Finally we show that a bound on the Harnack

constant of ϕ along paths can be obtained from a natural gauge condition, the divergence-free gauge – away
from the round conformal class of S3. This brings in the important rôle of the action of the diffeomorphism
group on the space of metrics and solutions of the constraint equations, which does not appear to have played
a significant rôle in previous approaches. (The proof of Theorem 4.1 is by a blow-up argument where again
the action of diffeomorphisms plays a crucial rôle). The proof of Theorem 1.1 in the regular region of C+,
(the region where (g,K) is not Killing initial data) is then completed in Section 4. Section 5 builds on the
methods of Section 4 and extends the proof of Theorem 1.1 to the singular region of C+ where (g,K) are
Killing initial data.

2. Background and Set-up

In this section, we present background material needed for the work to follow. Throughout the paper, M
denotes a compact 3-manifold, without boundary; cf. Remark 5.4 regarding the situation dimM > 3.

To begin, we discuss the topologies of the spaces C and D. The C∞ topology is a Fréchet space topology,
which is not suitable for analysing nonlinear Fredholm maps, mainly due to the failure of the inverse function
theorem.

The simplest Banach spaces on which elliptic operators are well-behaved are the Hölder spaces Cm,α

and Sobolev spaces W k,p for suitable (m,α) or (k, p). For the Einstein evolution equations where energy
estimates play a key role, one usually uses the Sobolev spaces Hs = W s,2, for suitable s ≥ 2. However, we
will use the Hölder spaces Cm,α here, since the projection map Π in (1.7) is only known to be well-behaved
in Hölder spaces Cm,α. (It is possible one could work in the class of Morrey spaces [1], but this will not be
pursued here). Throughout the paper we assume m ≥ 3, α ∈ (0, 1). (We will not be concerned here with
obtaining the lowest possible regularity results).

Moreover, it is well-known that Hölder spaces Cm,α are not separable Banach spaces; they do not admit
a countable basis. Since separability will be an important property, we work instead with a maximal closed
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separable subspace of Cm,α, namely the so-called little Hölder space cm,α. This may be defined to be the
completion of Cm+1 or C∞ with respect to the Cm,α norm. Equivalently, functions f on smooth domains
Ω ⊂ Rn are in c0,α(Ω) if f ∈ C0,α(Ω) and, for x, y ∈ Ω,

lim
r→0

sup
0<dist(x,y)<r

|f(x)− f(y)|
dist(x, y)α

= 0.

The space cm,α(Ω) consists of functions f whose partial derivatives up to order m exist and are in c0,α(Ω).
The space cm,α is a separable Banach space, embedded as a closed subspace of Cm,α, cf. [6]. Note that

Cm,α
′ ⊂ cm,α for all α′ > α.

Let Metm,α(M) be the space of cm,α metrics g on M ; thus in a smooth atlas for M , the coefficients of

g are cm,α functions. Similarly let Sm−1,α
2 (M) be the space of cm−1,α symmetric bilinear forms K on M .

Define then

C := Cm,α ⊂Metm,α(M)× Sm−1,α
2 (M)

to be the subspace satisfying the constraint equations (1.1)-(1.2), with the induced topology.
Next, let Cm,α0 be the space of cm,α conformal equivalence classes of metrics in Metm,α(M); thus g1 ∼ g2

if g2 = ϕ4g1, for some positive function ϕ ∈ cm,α. Let T m−1,α be the fibration of cm−1,α transverse-traceless
tensors σ over Cm,α0 , i.e. the fiber over [g1] consists of σ such that trg1σ = δg1σ = 0; (this is well-defined,
cf. [26] for example). Define also

D := Dm−1,α = T m−1,α × cm−1,α(M).

Thus we have the map Π as in (1.7),

(2.1) Π : C → D.
It will be important in the work to follow to have an explicit parametrization of D, or more precisely a

parametrization of the base space C0 = Cm,α0 of conformal classes. It is not crucial for the following exactly
which background representative g0 is chosen for [g] as long as g0 varies in a compact set of representatives of
[g]. For convenience, we will always choose g0 to be a (minimizing) Yamabe metric, i.e. a metric of constant
scalar curvature and unit volume realizing the Yamabe invariant Y [g] of [g]. In the case Y (g) ≤ 0, such
Yamabe metrics are unique. This is not the case in general when Y (g) > 0, but by the solution to the
Yamabe problem the class of Yamabe metrics of volume 1 in [g] is compact when (M, g) 6= (S3, g+1), and a
specific choice within this class is not needed. Note that this compactness does not hold for the case of the
conformal class [g+1] of the round metric on S3; this is the basic reason that the round metric on S3 will
be excluded from the target space D, as in (1.8). This non-compactness is closely related to the Nirenberg
problem and the Kazdan-Warner obstruction on S3, cf. [21] for further details.

Given this choice, we now analyse the map Π in (2.1) in more detail. Let Λm−2,α
1 (M) be the space of

1-forms on M with coefficients in cm−2,α and consider the constraint map

(2.2) Φ : Metm,α(M)× Sm−1,α
2 (M)→ cm−2,α(M)× Λm−2,α

1 (M),

Φ(g,K) =

(
Rg − |K|2 +H2

δK + dH

)
.

A simple inspection shows that the map Φ is well-defined and is a C∞ smooth map of Banach spaces, (or more
precisely open domains of Banach spaces). If one fixes an element y = (g0, σ,H) ∈ D with representative
g0 ∈ [g] ∈ Cm,α0 , then it follows from the York decomposition as in (1.3)-(1.4) that the constraint map Φ
takes the form

(2.3) Φy : cm,α(M)× χm,α(M)→ cm−2,α(M)× Λm−2,α
1 (M),

Φy(ϕ,X) =

(
ϕ−5

ϕ−6

)
·

(
−∆ϕ+ 1

8R0ϕ− 1
8 |σ + L̂Xg0|2ϕ−7 + 1

12H
2ϕ5

δ(L̂Xg0) + 2
3ϕ

6dH

)
.

Here χm,α is the space of cm,α vector fields on M . Of course (ϕ,X) depend on the choice of background
metric g0 ∈ [g] while (g,K) do not. Again Φy is a smooth map of Banach spaces.

It is well-known and easy to see that the system (2.3) is a (non-linear, second order) elliptic system for the
unknowns (ϕ,X). For (g0, σ,H) ∈ Dm−1,α, the coefficients of the 2nd order derivatives of (ϕ,X) are in Cm,α,

5



(in fact in cm,α ⊂ Cm,α), the coefficients of the 1st order derivatives are in Cm−1,α while the coefficients
of the 0-order terms are in Cm−2,α. Basic elliptic regularity estimates, cf. [28, Theorem 6.2.5] for instance,
show that

|(ϕ,X)|Cm,α ≤ C[||DΦy(ϕ,X)||Cm−2,α + ||(ϕ,X)||C0 ],

where C depends only on the Hölder norms of the coefficients above. One has the same estimate for the
formal L2 adjoint of DΦy.

It follows from elliptic theory that the fiber map Φy = Φ|Φ−1(y) is Fredholm, i.e. at any (ϕ,X), the
linearization D(ϕ,X)Φy has finite dimensional kernel, finite dimensional cokernel, and is of closed range. It is
for this reason that we choose to work with Hölder spaces; this Fredholm property does not appear to hold
for Sobolev spaces.

The rows of (2.3), corresponding to the equations (1.5)-(1.6), are in general coupled, but are uncoupled
and of Laplace type at leading order. Hence the Fredholm index of the map Φy is zero. The full constraint
map Φ in (2.2) is an underdetermined elliptic operator; the linearization DΦ is semi-Fredholm, with finite
dimensional cokernel but infinite dimensional kernel.

Given (g,K), let D(g,K)Φ be the linearization of Φ at (g,K) and let (DΦ)∗ denote the L2 adjoint. Define
the regular set

(2.4) Creg∗ ⊂ C

to be the set of points (g,K) ∈ C such that Ker(D(g,K)Φ)∗ = 0, cf. also the discussion following (2.6). This
provisional definition of the regular set will be modified slightly below in (2.14). We then have:

Proposition 2.1. The space Creg∗ ⊂ Cm,α is a smooth separable Banach manifold.

Proof: Naturally, the proof uses the implicit function theorem for Banach manifolds. To begin, one has
the L2 orthogonal splitting

(2.5) cm−2,α(M)× Λm−2,α
1 (M) = ImDΦ⊕Ker(DΦ)∗.

Since Ker(DΦ)∗ = 0 on Creg∗ , to apply the implicit function theorem, we need to show that DΦ has closed
range and KerDΦ splits. As discussed above, the fiber map DΦy is of closed range with image of finite
codimension. Let S be a slice to ImDΦy, so that S is finite dimensional. Since DΦ has dense range, one
may perturb S slightly if necessary so that S ⊂ ImDΦ and choose a finite collection of “vectors” (hj , κj) in
the domain of DΦ such that the collection {DΦ(hj , κj)} span S. It then follows easily that DΦ is of closed
range.

To see that KerDΦ splits, write

T (Metm,α(M)× Sm−1,α
2 (M)) = H ⊕ V,

where V = ι(T (cm,α(M)×χm,α(M))); here T (cm,α(M)×χm,α(M)) is the domain of DΦy and ι is the natural
“inclusion” map ι(ϕ,X) = (g,K) as in (1.5)-(1.6), given fixed data in D. The subspace H corresponds to
TD. Since KerDΦy is finite dimensional and splits, one has

V = KerDΦy ⊕ L,

where L closed and of finite codimension in V . By construction, KerDΦ∩L = 0. We claim that KerDΦ⊕L
is of finite codimension in T (Metm,α(M)×Sm−1,α

2 (M)). To see this, let (g′,K ′) be any variation of (g,K) in

T (Metm,α(M)× Sm−1,α
2 (M)) and let DΦ(g′,K ′) = w. Recall that ImDΦy is of finite codimension. Thus if

w ∈ ImDΦy, there exists unique (ϕ′, X ′) ∈ L such that DΦ(g′,K ′)− ι(ϕ′, X ′)) = 0. This proves the claim.
Since any space of finite codimension splits, it follows that KerDΦ splits.

This shows that DΦ is a submersion on Creg∗ and the implicit function theorem (or regular value theorem)
for Banach manifolds implies that the zero set

Creg∗ = Φ−1(0)

is a smooth Banach manifold. Thus Creg∗ is an open Banach submanifold within C.
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Remark 2.2. Proposition 2.1 is discussed in detail and proved in the C∞ setting in [15] and [17], by working
in Sobolev spaces Hs ×Hs−1 and passing to the limit s→∞. The proof of Proposition 2.1 is partly based
on this method and perspective but differs in certain respects. Namely as pointed out in [4], the proof of
the manifold structure given in [15] or [17] does not hold when restricting to Sobolev spaces Hs of finite
differentiability. This issue is also discussed in detail in [10].

Let

(2.6) Csing∗ ⊂ C

denote the space of solutions with Ker(D(g,K)Φ)∗ 6= 0, so that Csing∗ = C \ Creg∗ is closed. The structure of C
near points (g,K) ∈ Csing∗ has been analysed in detail in particular by Moncrief, Fischer and Marsden. To
describe this, let (M, g(4)) be the maximal vacuum Cauchy development of the initial data set (M, g,K).
Let ν be the unit (future-directed) time-like normal to M in (M, g(4)). Then by [27], (N,Y ) ∈ Ker(DΦ)∗ if
and only if the vector field Z = Nν + Y ∈ TM|M extends to a space-time Killing field on (M, g(4)).

Let Ccmc ⊂ C denote the subspace of solutions where H = const. It is proved in [17] that the space C has

cone-like singularities at the locus Csing∗ ∩ Ccmc. Moreover, it is proved in [14], cf. also [5], that the closed

set Csing∗ ∩ Ccmc is nowhere dense in Ccmc; any point in Csing∗ ∩ Ccmc is a limit of points in the open regular
domain Creg∗ ∩ Ccmc; cf. the discussion concerning (2.17). This basic property appears to remain unknown
however when H 6= const, cf. [5].

Next, before introducing the analogous decomposition of D into its regular and singular part, we need
to discuss the action of diffeomorphisms. Let Diffm+1,α(M) be the group of cm+1,α diffeomorphisms of
M . This group acts continuously, but not smoothly, on the spaces Metm,α(M), C and D by pullback;
(ψ, (g,K))→ (ψ∗g, ψ∗K) and similarly on the factors of D. The map Π is equivariant with respect to these
actions and so induces an action on the fibers of Π: (ψ, (ϕ,X))→ (ϕ ◦ ψ,ψ∗X).

Now the conformal automorphism group Conf(M, [g]) acts on the space of conformal factors ϕ: if ψ ∈
Conf(M, [g]) and ψ∗g0 = λ4g0, then (ψ,ϕ) → ϕ̃ = λϕ, since ϕ4λ4g0 = ϕ4ψ∗g0 = ϕ̃4g0. If Conf(M, [g])
is compact, then this indeterminacy in the choice of (ϕ, g0) plays no significant rôle. On the other hand,
if Conf(M, [g]) is non-compact, so that Conf(M, [g]) = Conf(S3, [g+1]) by the well-known Obata theorem,
then the non-compactness of the choice of ϕ becomes an important issue. As discussed above, it is for this
reason that (S3, [g+1]) is excluded from D+ in (1.10)

A well-known natural local slice to the action of Diffm+1,α(M) on the space of metrics Metm,α(M) is given
by the divergence-free gauge condition, the Palais-Ebin slice. Given an arbitrary fixed g ∈ Metm+1,α(M),
consider nearby metrics g̃ ∈ Metm,α(M); then there is a diffeomorphism ψ ∈ Diffm+1,α(M) close to the
identity and unique up to isometry, such that

(2.7) δgψ
∗g̃ = 0.

To prove this, the linearization of (2.7) is given by

δg(g̃ + δ∗gY ) = 0,

equivalent to

(2.8) δgδ
∗
gY = −δg g̃.

The operator δgδ
∗
g is formally elliptic and self-adjoint, with kernel given by the space of Killing fields on

(M, g). If g ∈ Metm+1,α(M) the operator δgδ
∗
g : Metm+1,α(M) → Λm−1,α

1 (M) is Fredholm and so in

particular the operator δg has closed range, (cf. again [28, Theorem 6.2.5] for example). One thus has the L2

orthogonal splitting Im δ ⊕Ker δ∗ = Λm−1,α
1 (M). Note that δg g̃ ∈ Im δδ∗. By elliptic regularity theory, the

equation (2.8) is uniquely solvable for Y ∈ χm+1,α modulo Ker δ∗, i.e. modulo Killing fields. The statement
(2.7) then follows from the implicit function theorem. This shows that the condition

(2.9) δg g̃ = 0,

gives a local slice to the action of Diffm+1,α(M) on Metm,α(M), cf. [12] for further details.
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It is well-known that the action of Diffm+1,α(M) on Metm,α(M) is not C1; for X a cm+1,α vector field

on M and g ∈ Metm,α(M), δ∗gX ∈ S
m−1,α
2 (M) 6= T (Metm,α(M)). This explains the need to form slices as

in (2.9) based at metrics g ∈Metm+1,α(M). For the same reason, the L2 orthogonal splitting

(2.10) Sm,α2 (M) = TgMetm,α(M) = Im δ∗ ⊕Ker δ,

holds for g ∈ Metm+1,α(M) but not for general g ∈ Metm,α(M). However, since Metm+1,α(M) is dense in
Metm,α(M), this does not create any undue difficulties.

The gauge condition (2.9) will be important in the analysis in Section 4.

We now turn the regular and singular decomposition of D. Let Creg0 = (Creg0 )m,α be the space of cm,α

conformal classes which have no (non-zero) conformal Killing field. Note here that we are not excluding only
essential conformal Killing fields (i.e. the round conformal class on S3) but the larger space of conformal
classes containing a conformal Killing field. It is clear that Creg0 is open in C0; it is also well-known that Creg0

is connected and dense in C0, cf. [12] for instance. Let then

(2.11) Dreg ⊂ D,
be the restriction of the fibration π : D → C0 to Creg0 , so that the fibers over [g] are the transverse trace-free
symmetric 2-tensors over [g] ∈ Creg0 . It is clear that Dreg is also connected, open and dense in D. Note that
Dreg ⊂ D′ for D′ as in (1.8).

Proposition 2.3. The space Dreg = (Dreg)m−1,α is a smooth separable Banach manifold and the projection
map π : Dreg → Creg0 is a smooth bundle map.

Proof: This result is essentially well-known; the proof is based on the York decomposition [35], cf. also
[15], [16]. To begin, consider the operator

δ0 = δ + 1
3dtr : Metm,α(M)× Sm−1,α

2 (M)→ Λm−1,α(M), (g, h)→ δgh+ 1
3dtrgh.

Note that δ0 is the L2 adjoint of the conformal Killing operator L̂. We first claim that δ0 is a submersion,
so that the implicit function theorem implies that Z = δ−1

0 (0) is a smooth separable Banach submanifold of

Metm,α(M)× Sm−1,α
2 (M). To see this, analogous to (2.5), one has

Λm−1,α
1 = Im δ0 ⊕Ker δ∗0 .

By assumption, Ker δ∗0 = 0. To show that δ0 has closed range, let g̃ be a metric in (Creg0 )m+1,α sufficiently

close to g ∈ (Creg0 )m,α and let δ0 = (δ0)g, δ̃0 = (δ0)g̃. As in (2.8), consider the mapping

(2.12) δ0δ̃
∗
0 : χm+1,α → Λm−1,α

1 .

This is an elliptic operator and so Fredholm for g̃ sufficiently near g. Also Ker δ0δ̃
∗
0 = 0, since this operator

is a small perturbation of δ0δ
∗
0 which has no kernel by definition. It follows that δ0 is of closed range and

surjective.
To see that the kernel splits, given any h ∈ T (Sm,α2 (M)), form δ0h. The discussion above shows that for

any such δ0h, there is a unique X such that δ0δ̃
∗
0X = δ0h. Hence h = (h − δ̃∗0X) + δ̃∗0X is the required

splitting since δ̃∗0X ∈ Sm,α2 (M). It thus follows from the implicit function theorem that Z is a smooth
separable Banach manifold.

Next, observe that the trace operator tr : Metm,α(M)×Sm−1,α
2 (M)→ cm,α(M), (g, h)→ trgh is clearly

a smooth submersion, so that V = tr−1(0) is a smooth separable Banach submanifold of Metm,α(M) ×
Sm−1,α

2 (M). The intersection Z ∩ V is transverse, cf. [16] for instance, and hence Dreg = Z ∩ V is a smooth

separable Banach submanifold of Metm,α(M)× Sm−1,α
2 (M).

The fact that π : Dreg → Creg0 is a bundle projection follows then again from the transversal intersection
of Z ∩ V.

Note that since space-time Killing fields Z need not be tangent to M , it is not true that Π(Csing∗ ) ⊂
Dsing = D \ Dreg. For the same reason, Creg∗ does not map to Dreg under Π. Thus we need to modify the
definition of the regular set Creg∗ slightly and define

(2.13) Creg = Creg∗ ∩Π−1(Dreg),
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with Csing = C \ Creg. Since Dreg is open and dense in D, Creg is open and dense in the manifold Creg∗ ; (the
dense property follows easily from the fact that Π is a projection map). Thus one has a well-defined smooth
map

Πreg : Creg → Dreg,
between separable Banach manifolds.

Corollary 2.4. The map

(2.14) Πreg : Creg → Dreg

is a smooth Fredholm map of Banach manifolds of Fredholm index zero.

Proof: This follows directly from Propositions 2.1 and 2.3, using the well-known Fredholm alternative
and the fact that DΦy is Fredholm of index zero.

While it is currently unknown in general if the closure Creg = C, it is clear from the remarks above that
Dreg = D′, where the closure here is taken in D′.

As discussed in (1.12), we first prove Theorem 1.1 for the map (2.14) in Section 4.

Next we discuss briefly the results established in the CMC case where H = const, cf. [22], [26]. Let
Dcmc ⊂ D be the subset of ([g], σ,H) where H = const. Let Y [g] be the Yamabe constant of [g]. Define a
connected open set Dcmc+ ⊂ Dcmc by

(2.15) Dcmc+ =

 Y [g] < 0 : H 6= 0,
Y [g] = 0 : σ 6= 0 and H 6= 0,
Y [g] > 0 : σ 6= 0.

Thus if Y [g] < 0, then ([g], σ,H) ∈ Dcmc+ if the constant H 6= 0, if Y [g] = 0 then ([g], σ,H) ∈ Dcmc+ if H 6= 0
and σ is not identically zero, while if Y [g] > 0, then ([g], σ,H) ∈ Dcmc+ if σ is not identically zero.

Let Ccmc+ = Π−1(Dcmc+ ). Then the map

Πcmc
+ : Ccmc+ → Dcmc+ ,

is a smooth, proper homeomorphism; in particular Πcmc
+ is one-to-one and onto. In the region where Y [g] ≥ 0,

Πcmc
+ is a diffeomorphism, but this may not be the case everywhere when Y [g] < 0.
Let Dcmc− = Dcmc \ Dcmc+ be the complementary closed set, so that Dcmc− ⊂ Dcmc is given by

(2.16) Dcmc− =

 Y [g] < 0 : H = 0,
Y [g] = 0 : σ = 0 or H = 0,
Y [g] > 0 : σ = 0.

Correspondingly, let Ccmc− = Π−1(Dcmc− ). Then

Πcmc
− : Ccmc− → Dcmc− ,

is the empty map, i.e. Ccmc− = ∅, except in the exceptional, boundary, situation where Y [g] = 0, σ = H = 0
in which case one has the trivial solutions (ϕ,X) = (const, 0) with g = c4g0 scalar-flat metrics with K = 0.

This gives a very clear distinction between the regions of existence and non-existence of solutions of the
constraint equations (1.5)-(1.6). The map Πcmc

+ must thus degenerate essentially everywhere on approach
to ∂Ccmc+ . Since X = 0, this means that ϕ must degenerate, as a positive function in cm,α, on approach to
essentially any point in ∂Ccmc+ . This will be seen in further detail in the analysis in Section 3. Referring to
the definition (1.10), one clearly has

Dcmc+ ⊂ D+.

Note also that setting Πcmc
1 = π1 ◦ Πcmc

+ where π1 is projection onto the base space C0 of conformal classes
within D, an inspection of the form of Dcmc+ in (2.15) shows that

Πcmc
1 : Ccmc+ → C0

is surjective.
In addition, we point out that although Ccmc∩Csing 6= ∅, the intersection is meager; in fact the complement

Ccmc∩Creg is open and dense in Ccmc. To see this, it is proved in [14] that for H = const, space-time Killing
9



fields Z are necessarily tangent to M (so N = 0 in the context of the discussion following (2.6)), except in
the trivial case where g0 is flat, ϕ = const and N = const. In particular, it follows that

(2.17) Creg∗ ∩ Ccmc = Creg ∩ Ccmc,

except in this very special case. It is well-known (cf. [12] for instance) that the space Metm,α0 (M) of metrics
without Killing fields is open and dense in Metm,α(M). From the structure of Dcmc and Ccmc above, this
proves the claim.

Next we note a few standard elliptic regularity estimates to be used below. Let (ϕ,X) be a solution of
the constraint equations (1.5)-(1.6). Elliptic regularity applied to the divergence constraint (1.5) gives the
estimate

(2.18) |X|C1,α ≤ C|ϕ6|L∞ |dH|L∞ ,

where the C1,α and L∞ norms are with respect to g0; the constant C depends only on M and g0 ∈ D,

cf. [28, Theorm 6.2.5]. Also, observe that, modulo constants, |X|Cm,α ≤ |δL̂Xg0|Cm−2,α ≤ |ϕ6dH|Cm−2,α , so
that

(2.19) |X|Cm,α ≤ c|ϕ6|Cm−2,α |H|Cm−1,α ,

with again c depending only on M and g0 ∈ D. The estimates (2.18) and (2.19) require that (M, g0) has no
conformal Killing fields; they hold for general g0 ∈ Metm,α(M) if one assumes that X is L2 orthogonal to
the space of conformal Killing fields on (M, g0).

Finally, as noted above, solutions (ϕ,X) of (1.5)-(1.6) depend on the choice of background metric g0 ∈ [g].
This choice has been fixed to be a choice of unit volume Yamabe (minimizing) metric in [g]. However, for
later purposes, it will be important to understand the behavior of the data (g0, σ,H) and the fibers (ϕ,X)
under rescalings of g0.

Lemma 2.5. For fixed geometric or physical data (g,K), suppose the background metric g0 is changed by a
rescaling

(2.20) g̃0 = m4g0.

Then

(2.21) ϕ̃ = m−1ϕ, σ̃ = m−2σ, X̃ = m−6X,

while H remains unchanged, H̃ = H.

Proof: One has g = ϕ4g0 = ϕ̃4g̃0, which gives the first statement in (2.21). Similarly, since K =
ϕ−2(σ + LXg0) + 1

3Hϕ
4g0 remains invariant, one has

ϕ̃−2σ̃ = ϕ−2σ, and ϕ̃−2LX̃ g̃0 = ϕ−2LXg0.

The first term gives σ̃ = m−2σ. For the second term, LX̃ g̃0 = m−2LXg0, so LX̃g0 = m−6LXg0, which gives
the last equality in (2.21).

It is easy to verify that all terms in the Lichnerowicz equation (1.6) scale in the same way, namely as
m−5. Similarly, both sides of the divergence constraint (1.5) scale as m−6.

3. Initial estimates.

In this section, we derive initial estimates on the behavior of solutions (ϕ,X) of the constraint equations.
These will be used later in Section 4.

We assume throughout this section (and the following) that (ϕ,X) solve the constraint equations (1.5)-
(1.6) with data (g0, σ,H) ∈ D. If moreover g0 has conformal Killing fields, it is always assumed that X is
L2 orthogonal to the space of conformal Killing fields.
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Lemma 3.1. Suppose there is a constant D <∞ such that

(3.1) 0 < D−1 ≤ inf ϕ ≤ supϕ ≤ D <∞.
Then there is a constant C, depending only on D and the background data (g0, σ,H) ∈ D such that

(3.2) |ϕ|Cm,α + |X|Cm,α ≤ C.

Proof: By (3.1), ϕ and ϕ−1 are bounded in L∞ by a fixed constant D. In particular, the right side of
(1.5) is thus bounded in L∞, since dH is bounded in Cm−2,α. Elliptic regularity applied to the divergence
constraint (1.5) then gives

|X|C1,α ≤ C,
since X is L2 orthogonal to Ker δL̂g0. The right side of the Lichnerowicz equation (1.6) is thus bounded
in Cα and elliptic regularity applied to (1.6) implies ϕ is bounded in C2,α. In turn, this implies the right
side of the divergence equation (1.5) is bounded in Ck,α, k = min(2,m− 2), and so elliptic regularity again
implies X is bounded in Ck+2,α. Continuing this process inductively gives (3.2).

Proposition 3.2. Let

(3.3) supϕ = M0.

Then there is a constant C <∞, depending only on M0, and the target data (g0, σ,H) ∈ D, such that

supϕ ≤ C inf ϕ.

In particular, under an upper bound on ϕ, inf ϕ can approach 0 only if supϕ approaches 0.

Proof: The proof uses the well-known Moser iteration argument; we follow closely the description of
this method as described in [18, pp.194-198]. All computations below are with respect to the background
Yamabe metric g0 with Rg0 = Y [g] (or more generally a compact set of such metrics).

By rescaling the background metric g0 by a bounded amount m = M0 as in Lemma 2.5, the potential ϕ
may be rescaled to satisfy

(3.4) supϕ = 1.

We assume this has been done in the following. The bound (3.4), (or (3.3)), will only be used however in
the arguments after (3.9).

To begin, from (1.6) we have

(3.5) −ϕ7+k∆ϕ = − 1
8R0ϕ

k+8 + 1
8 |σ + L̂Xg0|2ϕk − 1

12H
2ϕ12+k.

Integrating over M and applying the divergence theorem gives

(3.6) −
∫
ϕ7+k∆ϕ =

∫
〈dϕ7+k, dϕ〉 = (7 + k)

∫
ϕ6+k|dϕ|2 =

7 + k

(4 + (k/2))2

∫
|dϕ4+(k/2)|2.

Here and throughout the following, the integration over M is with respect to the volume form of (M, g0).
Also, constants c, C, cS , used below may change from line to line, or even inequality to inequality, but only
depend on the target data (M, g0, σ,H). The Sobolev constant cS of g0 is uniformly controlled, so that

(

∫
ϕ6)1/3 ≤ cS

∫
(|dϕ|2 + ϕ2).

Applying this to ϕ4+(k/2) and using (3.6), one obtains from (3.5) that

(3.7)
7 + k

(4 + k/2)2
(

∫
ϕ24+3k)1/3 ≤ C(

∫
|L̂Xg0|2ϕk +

∫
ϕk +

∫
ϕ8+k),

for k + 7 > 0, where we have dropped the negative H2 term.

If k + 7 < 0, the sign changes; in this case we may drop the σ and L̂Xg0 terms and obtain

(3.8)
|7 + k|

(4 + k/2)2
(

∫
ϕ24+3k)1/3 ≤ C(

∫
ϕ8+k +

∫
H2ϕ12+k),

provided k + 8 6= 0. The case k + 8 = 0 (the log case), will be considered later.
11



We begin with the case k + 7 > 0, (the subsolution case). First, standard elliptic estimates for the
divergence constraint (1.5) imply that

|L̂Xg0|L4 ≤ c|X|L1,4 ≤ c|X|L2,2 ≤ c|δL̂Xg0|L2 ≤ c(
∫
ϕ12)1/2,

where we have used Sobolev for the second inequality. By the Hölder inequality, this gives∫
|L̂Xg0|2ϕk ≤ (

∫
|L̂Xg0|4)1/2(

∫
ϕ2k)1/2 ≤ c(

∫
ϕ2k)1/2

∫
ϕ12.

Inserting this in (3.7) implies that

1

k
(

∫
ϕ24+3k)1/3 ≤ c(

∫
ϕ2k)1/2

∫
ϕ12 + c

∫
ϕk + c

∫
ϕk+8,

where c depends only on the target data (g0, σ,H). One may then iterate these inequalities, as in the usual
Moser iteration, and starting with k = 4, obtain

(3.9) supϕ ≤ C|ϕ|L4 ≤ C|ϕ|L2 ,

where the last inequality follows from a standard interpolation inequality, [18, p.146]. Again C depends only
on (g0, σ,H) ∈ D. Note that the estimate (3.9) does not require the assumption (3.3).

Next, as in [18], consider the two cases −1 < k + 7 < 0 and k + 7 < −1. First, by (3.4), H2ϕ12+k =
H2ϕ8+kϕ4 ≤ H2ϕ8+k, so that (3.8) implies that

(3.10)
|7 + k|

(4 + k/2)2
(

∫
ϕ3(8+k))1/3 ≤ C

∫
ϕ8+k.

Now first choose k+ 8 = p ∈ (0, 1) small. Then Moser iteration starting at p and ending at k+ 8 = 2 shows
that

(3.11)

∫
ϕ2 ≤ c(

∫
ϕp)2/p,

for any p > 0 small, with c = c(p).
Next one may perform the same Moser iteration for k + 8 < 0 to obtain, for p ∈ (0, 1) as in (3.11),

(3.12) (

∫
ϕ−p)−1/p ≤ c inf ϕ,

with again c = c(p). To connect the estimates (3.11) and (3.12), we claim that there is a constant C =
C(g0, σ,H) and p0 ∈ (0, 1) such that

(3.13)

∫
ϕp0

∫
ϕ−p0 ≤ C.

For this, the log case, we return to the Lichnerowicz equation (1.6) and write it as

(3.14) ϕ−1∆ϕ = 1
8R0 − 1

8 |σ + L̂Xg0|2ϕ−8 + 1
12H

2ϕ4.

Integration, the divergence theorem and the estimate (3.4), together with the control on R0 and H imply
that ∫

|d logϕ|2 ≤ C,

Next, still following [18, p.198], given any p ∈ M and r small, let η = η(p, r) be a cutoff function satisfying
η = 1 on the geodesic ball Bp(r), η = 0 on M \Bp(2r) with |dη| ≤ C/r. One has

(3.15)

∫
Bp(r)

|d logϕ| ≤ c(
∫
Bp(r)

|d logϕ|2)1/2r3/2 ≤ cr3/2(

∫
Bp(2r)

|dη logϕ|2)1/2.

Multiplying (3.14) by η2 and integrating by parts in the same way, using also the Cauchy-Schwarz inequality
and the scale change r → 2r, gives for r small,∫

Bp(2r)

|d logϕ|2 ≤ cr,
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and hence by (3.15) ∫
Bp(r)

|d logϕ| ≤ Cr2.

It then follows from the John-Nirenberg estimate [18, p.166], as in [18, p.198], that∫
ϕp0

∫
ϕ−p0 ≤ C,

for some p0 ∈ (0, 1), which proves (3.13).
Combining then (3.4), (3.9), (3.11)-(3.13) shows that

1 = supϕ ≤ C(

∫
ϕp0)1/p0 ≤ C(

∫
ϕ−p0)−1/p0 ≤ C inf ϕ,

which proves the result.

Proposition 3.2 shows that an upper bound on supϕ gives control of the Harnack constant

(3.16) CHar(ϕ) =
supϕ

inf ϕ
,

of ϕ, given control of the target data in D. A converse of this result is proved in Theorem 4.1 below. As an
application of Proposition 3.2, we prove the following:

Proposition 3.3. Continuing under the assumption (3.3), suppose there is a constant s0 > 0 such that
inf |σ| ≥ s0 > 0. Then there is a constant κ0 > 0, depending only on M0, s0 and (g0, σ,H) ∈ D, such that

(3.17) inf ϕ ≥ κ0 > 0.

Moreover, if Y (g) ≤ −y0 < 0, then

(3.18) inf ϕ ≥ κ0 > 0,

where κ0 depends only on M0, y0 and (g0, σ,H) ∈ D.

Proof: To prove (3.17), by Proposition 3.2 it suffices to obtain a lower bound on m0 = supϕ. Namely
if m0 ≤ 1 then the bound on CHar from Proposition 3.2 shows that a lower bound on inf ϕ and supϕ are
equivalent. Now integrating the Lichnerowicz equation (1.6) over (M, g0) gives∫

M

|σ + L̂Xg0|2ϕ−7 ≤ 1
8 |R0|

∫
M

ϕ+ 1
12 supH2

∫
M

ϕ5 ≤ cm0,

for a fixed constant c. We assume here without loss of generality that m0 ≤ 1. Since ϕ−7 ≥ m−7
0 , it follows

that

m−7
0

∫
M

|σ|2 ≤ m−7
0

∫
M

|σ + L̂Xg0|2 ≤
∫
M

|σ + L̂Xg0|2ϕ−7 ≤ cm0,

so that ∫
M

|σ|2 ≤ cm8
0.

Now |σ|2 is controlled in cm−1,α and so the bound inf |σ| := |σ|(p) ≥ s0 > 0 implies there is a fixed r0 such
that |σ|(x) ≥ s0/2 for all x ∈ Bp(r0). It follows that

r4
0s

2
0 ≤

∫
M

|σ|2 ≤ cm8
0.

This gives a lower bound for m0 in terms of σ and s0, which thus proves (3.17).
For (3.18), evaluating the Lichnerowicz equation (1.6) at minϕ = inf ϕ gives

0 ≤ 1
12H

2(inf ϕ)5 + 1
8R0 inf ϕ,

(regardless of the behavior of σ and L̂Xg0). Recall that R0 is the Yamabe constant Y [g] of [g]. If R0 < 0,
then H2(inf ϕ)4 ≥ 3

2 |R0|, which proves (3.18).
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Remark 3.4. Simple examples show that (3.17) is not true without the assumption on σ. Thus, suppose
g0 is the standard product metric on S1(1)× S2(1), so that Rg0 = 2. Choose

σ = κ(−dθ2 + 1
2gS2(1)),

for some constant κ. The form σ is transverse-traceless with respect to g0 and has constant norm |σ|2 = 3
2κ

2.
Let also H = c, an arbitrary constant. Then the divergence constraint (1.5) is satisfied by setting X = 0
while the Lichnerowicz equation (1.6) holds if ϕ = ε = const and

0 = 1
4ε−

1
8 |σ|

2ε−7 + 1
12H

2ε5.

This holds by choosing κ so that 3
2κ

2 = 2ε8 + 2
3H

2ε12.
This example shows that one may have Y (g) > 0 with H an arbitrary constant, with ϕ→ 0 uniformly as

σ → 0 uniformly.

Summarizing briefly, the results of this section show that, given control on the target data in D′, there
is no degeneration of the fiber data (ϕ,X) when Y (g) < 0 is bounded away from 0, or when Y (g) ≥ 0 and
σ bounded away from 0 at some point, provided one has a sup bound on ϕ. This shows that control of the
target data in D+ and control of supϕ implies control of the fiber data (ϕ,X). This behavior is one of the
main ingredients in the definition of D+.

4. Control on ϕ.

In this section, we address the existence of a sup bound on ϕ and prove the main part of Theorem 1.1.
We begin with a general discussion of convergence or blow-up of metrics in the current context.

Let (gi,Ki) ∈ C be a sequence of vacuum Einstein initial data with target data controlled in D′, so that

(4.1) gi0 → g0 in Metm,α(M),

as representatives of [gi]→ [g], and similarly,

(4.2) σi → σ in Sm−1,α
2 (M), and Hi → H in cm−1,α(M).

Let pi be any sequence of points in M such that

(4.3) mi = ϕi(pi)→∞, as i→∞.

(The points pi may or may not realize the maximum of ϕi). We first perform a rescaling of the background
metrics gi0 as in (2.20). Let

(4.4) g̃i0 = m4
i g
i
0,

so that, by (2.21),

ϕ̃i = m−1
i ϕi.

Thus ϕ̃i > 0 with ϕ̃i(pi) = 1. As discussed in Section 2, the physical data (g,K) do not change under

such rescalings. One has also the rescaled data (σ̃i, X̃i) as in (2.21). The rescaled, tilded data satisfy the
constraint equations (1.5)-(1.6).

Now if ϕi → ∞ at a sequence of points pi ∈ M , then of course the sequence {g̃i0} (as well as {gi})
is also blowing up and has no limit. As originally made clear by Gromov [19], this can be corrected or
compensated by diffeomorphisms which blow up or dilate the coordinates around pi. Thus, the metrics gi0
have uniformly bounded curvature by (4.1) and hence the metrics g̃i0 have curvature |Rmg̃i0

|g̃i0 converging to

0 as i→∞. By the Cheeger-Gromov convergence theorem, cf. [30] and references therein, the control (4.1)
implies that the sequence {g̃i0} based at pi converges to the tangent space TpM = R3 to M at p = lim pi (in
a subsequence), endowed with a flat Euclidean metric gEucl = g0|Tp(M). The convergence is locally in cm,α

modulo diffeomorphisms.
This means the following in this context. Let xk, k = 1, 2, 3 be a fixed system of local coordinates around

p (and so also around pi for i sufficiently large). Define new coordinates

yk = m2
ix
k.
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This gives a sequence of local diffeomorphism from a domain in R3 (with y-coordinates) to a domain in
M (with x-coordinates) containing p. A unit ball in the y-coordinates maps to a very small ball in the
x-coordinates. These mappings may be extended to a sequence of global embeddings

(4.5) ψi : R3 →M,

which locally, in domains of bounded R3-distance to p, are of the form ψi(y
k) = xk. The dilations ψi pull

back very small balls to balls of unit size; the coordinates are being blown-up. Note that

dyk = m2
i dx

k, while
∂

∂yk
= m−2

i

∂

∂xk
.

By (4.4), one has (g̃i0)k` in the x-coordinates is of order ∼ m4
i , but ψ∗i (g̃i0)k`, now in the y-coordinates, is on

the order of 1. The convergence theory above implies that, in a subsequence,

(4.6) ψ∗i g̃
i
0 → gEucl,

locally in Cm,α, uniformly on compact subsets of R3. Thus, when restricted to any ball B(R) of finite radius
in R3, the metrics ψ∗i g̃

i
0 converge in Cm,α to the Euclidean metric on B(R) ⊂ R3.

As in Section 2, diffeomorphisms ψ act on the physical data (g,K) in the usual way by pullback,

(g,K)→ (ψ∗g, ψ∗K),

and similarly on the target data ([g], σ,H) ∈ D and fiber data (ϕ,X),

([g], σ,H)→ ([ψ∗g], ψ∗σ,H ◦ ψ)., (ϕ,X)→ (ϕ ◦ ψ,ψ∗X)

Since the physical data (g,K) are generally covariant, the map Π in (1.7) is equivariant with respect to these
actions of Diffm+1,α(M) on the domain and target of Π. The constraint equations (1.5)-(1.6) are invariant
under this action.

Let ḡi0 = ψ∗i g̃
i
0 and similarly let σ̄i = ψ∗i σ̃i, X̄i = ψ∗i X̃i, H̄i = Hi ◦ ψi. We begin with an analysis of σ̄i.

One has
σ̄i = σ̄ik`dy

kdy` = σ̃ik`dx
kdx`.

Since yk = m2
ix
k, σ̄ik` = m−4

i σ̃ik` → 0. In addition, by (2.21), σ̃i = m−2
i σi. Since ḡi0(∂yk , ∂y`) → δk`, it

follows that

(4.7) |σ̄i|ḡi0 = O(m−6
i )→ 0.

(An equivalent calculation is as follows. One has |σ̄i|2ḡi0 = |σ̃i|2g̃i0 . Since g̃i0 = m4
i g
i
0, orthornormal bases scale

as ẽk = m−2
i ek and hence |σ̃i|2g̃i0 = m−8

i |σ̃i|2gi0 = m−12
i |σi|2gi0 . Since |σi|2gi0 is uniformly bounded, one has

|σ̄i|2ḡi0 = O(m−12
i ) as in (4.7)).

Next, dropping the index i from the notation, note that

(4.8) |(ḡ0)k` − δk`| = O(m−4).

To see this, ḡ0(∂yk , ∂y`) on B(R) ⊂ R3 equals g0(∂xk , ∂x`) on B(Rm−2) ⊂ (M, g0). The metrics g0 = gi0 are
uniformly controlled in Cm,α and one has then the uniform estimate |(g0)k` − δk`| = r2|Rm|g0 + o(r2). The
|Rm|g0 term is uniformly bounded, and since r ∼ m−2, (4.8) follows. Similar estimates hold up to order
m+ α.

At this point, to simply the discussion and notation, we assume that the sequence pi in (4.3) satisfies

(4.9) mi = ϕi(pi) ≥ c0 supϕi,

for some fixed constant c0 > 0. The constants appearing below depend then on c0. (It is simple to generalize
the discussion below to the general case of (4.3), where (4.9) may not hold; however one then loses the
uniform bound (4.11) below).

Next, (2.21) gives X̄ = m−6X while |X|g0 ≤ Cm6 by (2.18) and (4.9), so that

(4.10) |X̄|ḡ0 = m2|X̄|g0 ≤ Cm2.

Thus, apriori, |X̄i|ḡi0 could be unbounded as i → ∞. On the other hand, since for any vector field Y ,

|∇̄Y |ḡ = m−4m4|∇Y |g, (since the covariant derivative ∇ is scale-invariant), it follows that

(4.11) |∇̄X̄|ḡ0 = m−6|∇X|g0 ≤ C,
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again by (2.18) and (4.9).

Finally, observe that H̄i = ψ∗i (Hi) converges in Cm−1,α
loc to the constant function H̄ = H(p) on R3.

In sum, in such blow-ups, the target data converges to ”trivial data”,

(4.12) (M, [gi0], σi, Hi)→ (R3, [gEucl], 0, H(p)),

where [gEucl] is the conformal class of the Euclidean metric on R3 and H(p) = limHi(pi) is a constant
function on R3. Moreover,

(4.13) (M, ḡi0, pi)→ (R3, gEucl, 0),

The convergence in (4.12) and (4.13) is in Cm,α, uniformly on compact subsets of R3.

Using the analysis above, we first, we prove a sup bound on ϕ in the special case where ϕ satisfies an
apriori global Harnack inequality.

Theorem 4.1. Suppose there is a constant H0 > 0 such that |H(x)| ≥ H0, for all x ∈ M . If ϕ satisfies a
uniform Harnack inequality, i.e. there is a constant C (depending only on the target data in D′) such that

(4.14) CHar =
supϕ

inf ϕ
≤ C,

then there is a constant K, depending only on H0, C and the target data in D′ such that

(4.15) supϕ ≤ K.

Proof: The proof is by contradiction, using a blow-up argument. Thus, if (4.15) fails under the given
hypotheses, then there is a sequence (gi,Ki) ∈ C′, with Π(gi,Ki) = ([gi], σi, Hi) bounded in the metric on
D′, and points pi ∈M such that

ϕi(pi)→ +∞.
As above, we fix background metrics gi0 → g∞0 , representing the convergence of the conformal classes. We
then blow-up or rescale the background metrics gi0, based at pi, to the metrics ḡi0 as described above with

mi = ϕi(pi).

Observe that by the assumption (4.14), there is a uniform constant c such that

(4.16) 0 < c ≤ ϕ̄i ≤ c−1,

globally on M . Throughout the rest of this section, we will often use the relation

L̂Xg = 2δ∗0X,

where δ∗0 is the trace-free part of the adjoint δ∗ of δ with respect to (M, g).
Consider then the divergence constraint (1.5) in bar data, i.e.

(4.17) δ̄δ̄∗0X̄i = − 1
3 ϕ̄

6
i dH̄i,

where δ̄ and δ̄∗0 are taken with respect to ḡi0. As noted above, ϕ̄i is uniformly bounded, while H̄i → const
and |dH̄i| = O(m−2

i )→ 0.
Although X̄i may be unbounded in the ḡi0 norm, by (4.11) the covariant derivative ∇̄X̄i and hence δ̄∗0X̄i

remains bounded as i→∞. It follows then from (4.17) and the analysis above that

δ̄δ̄∗0X̄i → 0,

in Cm−2,α
loc (R3).

Consider first the limit operator δ̄δ̄∗0 on R3. We temporarily drop the bar notation in the following. First,
a standard Weitzenbock formula on R3 gives βδ∗ = 1

2D
∗D, where β is the Bianchi operator β = δ + 1

2dtr.

One has βδ∗ = δδ∗ − 1
2dδ, so that δδ∗ = 1

2D
∗D + 1

2dδ. Also, δ∗0W = δ∗W + 1
3δWg so that δδ∗0 = δδ∗ − 1

3dδ.

This gives on R3,

δδ∗0W = 1
2D
∗DW + 1

6dδW.

On the blow-up sequence, although X̄i may be unbounded, D̄X̄i remains bounded, and hence the limit DX
on R3 satisfies

(4.18) D∗DX + 1
3dδX = 0.
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Next, take the divergence δ of (4.18); since δ commutes with D∗D on R3, one obtains

−∆δX − 1
3∆δX = − 4

3∆δX = 0.

Since by (4.11), δX is bounded, the Liouville theorem on R3 implies δX = const and hence dδX = 0. It
follows that

(4.19) D∗DX = 0.

Formally then, the components of X (in a Cartesian frame) are thus harmonic functions and since DX is
bounded, it follows again from the Liouville theorem on R3 that the components of X are affine functions,
and DX is parallel on R3. In particular, |DX| = const and so |δ∗0X| = const.

We now return to the analysis of the blow-up sequence. The analysis above shows that

(4.20) D̄∗D̄X̄i = O(m−2
i ),

since as in (4.17), |dH̄i| = O(m−2
i ). Here D̄∗D̄ is the rough Laplacian with respect to ḡi0. It follows then

from (4.8) that

(4.21) D∗eDeX̄i = O(m−2
i ),

where D∗eDe is now the Euclidean Laplacian on R3. This holds for any choice of base points pi, given the
uniform behavior in (4.16). At this point, we specialize the choice of the base points pi by requiring

|X̄i|(pi) = max |X̄i|,

where the norms are with respect to ḡi0. By (4.8) and (4.10),

(4.22) ||X̄i| − |X̄i|gEucl | ≤ C,

for some constant C and so in particular

(4.23) |max |X̄i| −max |X̄i|gEucl | ≤ C,

Around pi → p ∈ M , (in a subsequence), choose flat Cartesian coordinates yj (depending on i and
centered at pi) so that, dropping the index i from the notation,

X̄ =
∑

aj∂yj ,

and, at p, i.e. pi,

X̄(p) = a1(p)∂y1 ,

a1(p) > 0, so that a2 = a3 = 0 at p. In particular by (4.22)-(4.23),

(4.24) |max |X̄|gEucl − a1(p)| ≤ C.

Of course we may have aj = aji →∞ uniformly as i→∞ in general.
Now let

(4.25) X̂ = X̄ − a1(p)∂y1 ,

with coordinates â1 = a1 − a1(p), âk = ak for k = 2, 3. The point pi realizes the maximum of |X̄| and by
(4.24),

â1 ≤ C.
By (4.21),

∆Euclâ
1 = O(m−2),

i.e. ∆Euclâ
1
i = O(m−2

i ) on R3; here ∆Eucl is the scalar Euclidean Laplacian. By the Liouville theorem, any
harmonic function on R3 which is bounded above is constant. Since â1(p) = 0, it follows that

â1 → 0,

uniformly on compact sets in R3 and so in Cm,αloc (R3). It then follows that also

âk → 0,

in Cm,αloc (R3), for k = 2, 3 and hence X̂ → 0 in Cm,αloc (R3).
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Since in (4.25) we have just subtracted a constant vector field a1
i (p)∂y1i from X̄i, using (4.8) once more,

it follows that

(4.26) L̂X̄i ḡ
i
0 = 2δ̄∗0X̄i → 0.

This completes the analysis of the rescaling blow-up of the divergence constraint equation.
Consider now the same rescaling of the Lichnerowicz equation (1.6), i.e.

(4.27) ∆̄ϕ̄i = 1
8 R̄0ϕ̄i − 1

8 |σ̄ + L̂X̄i ḡ0|2ϕ̄−7 + 1
12H

2ϕ̄5
i ,

where again we have dropped the index i from ∆̄, σ̄ and H. Here all terms are bounded and converge (in a
subsequence) to a limit on R3. One has R̄0 = Rḡi0 → 0, σ̄i → 0 and (4.26) then implies that

(4.28) ∆ϕ̄ = 1
12H

2ϕ̄5,

on R3 with ϕ̄ uniformly bounded and H = limH(pi) = const. Now the standard Bochner-Weitzenbock
formula on R3 states

1
2∆|du|2 = |D2u|2 + 〈d∆u, du〉.

Setting u = ϕ̄ and using (4.28) gives

(4.29) 1
2∆|dϕ̄|2 = |D2ϕ̄|2 + 5

12H
2ϕ̄4|dϕ̄|2 ≥ 0.

Since |dϕ̄|2 is uniformly bounded, evaluating (4.29) on a maximizing sequence for |dϕ̄|2 shows that dϕ̄ = 0,
so that ϕ̄ = const. Then (4.28) implies necessarily H = 0. However, the hypothesis implies that H is
uniformly bounded away from 0. This contradiction proves the result.

Remark 4.2. It does not appear straightforward to generalize the proof of Theorem 4.1 to the situation
where the hypothesis (4.14) is removed. The essential difficulty is obtaining a bound on |∇X̄|ḡ0 , or a bound
on δX, without use of a Harnack inequality. Such a generalization of the proof would make the different
arguments to follow below unnecessary.

Remark 4.3. It is possible that a more careful analysis of the proof of Theorem 4.1, in particular regarding
the limiting behavior of the equation (4.27), would allow one to remove the hypothesis inf |H| ≥ H0 > 0
when Y [g] = Rg0 ≥ r0 > 0. If so, this would give a generalization of Theorem 4.1 (and thus of Theorem 1.1)
in the region where Y [g] > 0. Note that this is consistent with the behavior of Πcmc

+ on Dcmc+ defined as in
(2.15). We will not pursue this issue further here however.

Remark 4.4. There are numerous examples of curves (gt,Kt), t ∈ [0,∞) with Y (gt) ≤ −c < 0 where
Ht → 0, σt → 0 and ϕt → ∞ pointwise as t → ∞. The simplest examples are the Milne universe or
hyperbolic cone metric

g(4) = −dt2 + t2g−1,

where (M, g−1) is a hyperbolic 3-manifold. This is a flat (and hence Ricci-flat) Lorentz metric on R+ ×M .
One easily sees that on the slices M = Mt = {t = const}, σ = 0, ϕt =

√
t→∞ and Ht = 3

t → 0 as t→∞.
Similar behavior occurs in the long-time future behavior of vacuum space-times near the flat hyperbolic

cone space-time by the work of Andersson-Moncrief [2], as well as in the U(1)-symmetric space-times of
Choquet-Bruhat-Moncrief [9].

Theorem 4.1, together with the results of Section 3, shows that it suffices to obtain a bound on the global
Harnack constant

CHar(ϕ) =
supϕ

inf ϕ
,

to obtain control on the fiber data (ϕ,X).

The remainder of the argument (for the proof of Theorem 1.1 below) does not use the constraint equations
(1.5)-(1.6) per se at all. It just involves the space of metrics Metm,α(M) (away from the round metric
(S3, g+1)).

To begin, recall from Section 2 that the group Diffm+1,α(M) acts on the fiber data (ϕ,X) by pullback.
It is clear that the basic invariants of ϕ used above, in particular, supϕ, inf ϕ, and CHar(ϕ) etc, are
invariant under this action when Conf(M, [g]) = {id}. When Conf(M, [g]) is compact, there is a bounded
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indeterminacy in the choice of ϕ which does not effect the arguments below. However, to avoid an unbounded
indeterminacy, we exclude the round conformal class (S3, [g+1]).

To understand the local behavior of ϕ, in particular CHar(ϕ) on C′, it suffices to understand this behavior
transverse to the Diffm+1,α(M) action, i.e. on slices satisfying the divergence-free gauge condition (2.9).

We first express the divergence-free condition in terms of the target data in D. The following Lemma is
a standard calculation; for completeness we include the proof.

Lemma 4.5. On a Riemannian 3-manifold (M, g), if g = ϕ4g0, then

(4.30) δϕ4g0h = ϕ−4δg0h− ϕ−6h(∇g0ϕ2, ·) + 2ϕ−4(trg0h)d logϕ.

Proof: By definition, for Y a vector field on M , one has∫
δ̃h(Y )dvg̃ =

∫
〈h, δ̃∗Y 〉g̃dvg̃.

Now δ̃∗Y = 1
2LY ϕ

4g = 1
2 [ϕ4LY g + 4ϕ4Y (logϕ)g] so that∫

〈h, δ̃∗Y 〉g̃dvg̃ =

∫
〈h, ϕ4δ∗Y + 2ϕ4Y (logϕ)g〉g̃dvg̃

=

∫
〈h, ϕ−4δ∗Y + 2ϕ−4Y (logϕ)g〉gdvg̃ =

∫
〈h, ϕ2δ∗Y + 2ϕ2Y (logϕ)g〉gdvg.

This gives ∫
ϕ6δ̃h(X)dv =

∫
〈δ(ϕ2h)(X) + 2ϕ2(trgh)d logϕ)(X).

Since Y is arbitrary, it follows that

δ̃h = ϕ−6δ(ϕ2h) + 2ϕ−4(trgh)d logϕ,

which then easily leads to (4.30).

Proposition 4.6. Let g ∈Metm,α(M) and suppose g̃ is a nearby metric in the divergence-free slice through
g, so that (2.9) holds. Let D = diamg0(M). Then there is a fixed numerical constant c such that if

(4.31) |g̃0 − g0|C1 ≤ µ,
then

(4.32) CHar(ϕ̃) ≤ cecµD[CHar(ϕ)]1+cµ,

Proof: Set h = g̃ = ϕ̃4g̃0 in Lemma 4.5. Then (4.30) becomes

δϕ4g0(ϕ̃4g̃0) = (
ϕ̃

ϕ
)4δg0(g̃0)− ϕ−4g̃0(∇g0 ϕ̃4, ·)− ϕ−6ϕ4g̃0(∇g0ϕ2, ·) + 2(

ϕ̃

ϕ
)4(trg0 g̃0)d logϕ,

which gives

δϕ4g0(ϕ̃4g̃0) = (
ϕ̃

ϕ
)4δg0(g̃0)− (

ϕ̃

ϕ
)4g̃0(∇g0 log ϕ̃4, ·)− (

ϕ̃

ϕ
)4g̃0(∇g0 logϕ2, ·) + 2(

ϕ̃

ϕ
)4(trg0 g̃0)d logϕ,

By (2.9), δϕ4g0(ϕ̃4g̃0) = 0, so that dividing by ( ϕ̃ϕ )4, gives

δg0(g̃0)− g̃0(∇g0 log ϕ̃4, ·)− g̃0(∇g0 logϕ2, ·) + 2(trg0 g̃0)d logϕ = 0.

Next write g̃0(∇g0 logϕ2, ·) = 2d logϕ + 2(g̃0 − g0)(∇g0 logϕ, ·), g̃0(∇g0 log ϕ̃4, ·) = 4d log ϕ̃ + 4(g̃0 −
g0)(∇g0 log ϕ̃, ·) = 4d logϕ + 4d log ϕ̃

ϕ + 4(g̃0 − g0)(∇g0 logϕ, ·) and trg0 g̃0 = 3 + trg0(g̃0 − g0), δg0 g̃0 =

δg0(g0 − g̃0). This implies that

(4.33) 4d log
ϕ̃

ϕ
= δg0(g̃0 − g0) + 2trg0(g̃0 − g0)d logϕ− 6(g̃0 − g0)(∇g0 logϕ, ·).

It follows that if (4.31) holds, then

|d log
ϕ̃

ϕ
| ≤ cµ|d logϕ|+ cµ,
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where the norm is taken with respect to g0, so that

(4.34) |d log ϕ̃| ≤ (1 + cµ)|d logϕ|+ cµ,

The quantity |d logϕ| is the infinitesimal Harnack constant and a bound on |d logϕ| gives a bound on the
Harnack constant by integration. Thus (4.34) shows that the growth of the infinitesimal Harnack constant
is controlled by the distance of the background metrics g0 in C1 norm. In particular, integration of (4.34),
or more precisely (4.33), along a minimizing geodesic joining points realizing sup ϕ̃ and inf ϕ̃ shows that

CHar(ϕ̃) ≤ cecµD[CHar(ϕ)]1+cµ,

for g̃ and g satisfying (4.31). This proves the result.

The Harnack constant CHar(ϕ) is a continuous function of ϕ ∈ cm,α(M), but of course a priori it may not
be a smooth or even differentiable function. Nevertheless, one may linearize the argument above to obtain
a bound on the upper derivative

D̄ϕCHar(ϕ
′) := lim sup

t→0

1

t
[CHar(ϕ+ tϕ′)− CHar(ϕ)].

Namely let g0(t) be a curve in Metm,α(M) of the form g0(t) = g0 + tµ′. Setting then µ(t) = tµ′, and
correspondingly ϕt = ϕ+ tϕ′ in (4.32), it follows easily that

(4.35) D̄ϕCHar(ϕ
′) ≤ c|µ′|C1 [[CHar(ϕ) + 1].

Thus an infinitesimal bound on the metric variation in D′ gives a bound for the infinitesimal variation of
the Harnack constant CHar.

Theorem 4.7. Let x(t) = (g(t),K(t)) be a smooth curve in C+ such that the image curve y(t) = Π+(x(t)) =
(g0(t), σ(t), H(t)) has bounded length in D+:

`(g0(t), σ(t), H(t)) ≤ L <∞.
Then there is a constant c, depending only on inft dist(y(t), ∂D+) > 0, such that the length of x(t) is bounded
by

`(g(t),K(t)) ≤ cL.

Proof: By the results of Section 3 and Theorem 4.1, it suffices to obtain a bound on the Harnack constant
CHar(g(t)). Without loss of generality we may assume that t is arclength parameter for the curve y(t) ∈ D+,

so that |dg0(t)
dt |C1 ≤ 1.

Let h = dg(t)/dt. As in (2.12) and (2.10), for any fixed t, we may write

h = δ∗g̃Z + h0,

where δgh0 = 0 and g̃ ∈ Metm+1,α(M) is arbitrarily close to g, i.e. g(t). The derivative of the Harnack
constant CHar(g(t)) in the direction δ∗g̃Z may be made arbitrarily small since its derivative in the direction
δ∗gZ vanishes; recall here that CHar is diffeomorphism invariant, cf. the discussion preceding Lemma 4.5.
On the other hand, by (4.35) the variation of CHar in the h0 direction is bounded above by the variation
µ′ = |dg0(t)/dt|C1 of g0(t). This gives

d̄

dt
CHar(g(t)) ≤ C|dg0(t)

dt
|C1 [CHar(g(t)) + 1] ≤ C[CHar(g(t)) + 1],

where d̄
dt denotes the upper derivative. It follows that the Harnack constant CHar of g(t) can increase at

most exponentially in t. This proves the result.

Note that given the results in Section 3 and Theorem 4.1, the proof of Theorem 4.7 itself depends only on
the curve g(t) of metrics in Metm,α and the image curve [g(t)] = g0(t) under Π′, i.e. the constraint equations
are not used. The proof above breaks down when curves g(t) approach metrics g which have an essential
conformal Killing field, i.e. g is conformal to the round metric on S3.

We now combine the results above to prove Theorem 1.1. We first prove the result in the regular region

Creg+ = C+ ∩ Creg,
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cf. (2.13). More precisely, Creg+ is defined to be the collection of components of C+ ∩ Creg intersecting
Ccmc+ . In the following section, the proof will be adapted to include the complementary singular region

Csing+ = C+ ∩ Csing. We note that as discussed in Section 2, it is not known whether

(4.36) Creg+ = C+,

i.e. whether the closure of Creg+ in the Cm,α × Cm−1,α topology is all of C+. Apriori, it is possible that the

singular set Csing+ has non-empty interior so that ∂Creg+ 6= Csing+ .

While one may treat the two cases Creg+ and Csing+ together as a whole, we discuss them separately for
clarity of the exposition.

Note also that we prove Theorem 1.1 in the more general setting (g,K) ∈ Cm,α × Cm−1,α, m ≥ 3, and
not directly in the C∞ setting.

Proof of Theorem 1.1: Regular region of C+.

We begin by recalling some basic facts from global analysis on separable Banach manifolds first developed
by Smale [33]. Let F : X → Y be a smooth Fredholm map of index zero between connected separable
Banach manifolds X, Y . A point x ∈ X is a regular point of F if the linearization DxF : TxX → Tf(x)Y of
F at x is a surjective bounded linear map. Since the Fredholm index is zero, DxF is then an isomorphism
of Banach spaces. A point is a singular point if it is not a regular point. By the inverse function theorem,
the map F is locally a diffeomorphism onto its image in a neighborhood of a regular point. A point y ∈ Y
is a regular value of F if every point in the inverse image F−1(y) is a regular point. It follows again from
the inverse function theorem that F−1(y) is then a discrete, countable collection of points in X. A point
y′ ∈ Y is a singular value of F if it is not a regular value, i.e. some point x′ ∈ F−1(y′) is a singular point of
F . Note that by definition, any point y /∈ ImF is a regular point of F .

By the Sard-Smale theorem [33], the regular values of F are of second category in Y , so given as the
intersection of a countable collection of open and dense sets in Y . Moreover, let V be a compact connected
finite dimensional manifold, possibly with boundary, of dimension at least one. Then for any ε > 0, any
smooth embedding g : V → Y admits a smooth perturbation g′ : V → Y , ε-close to g, such that g′ is
transverse to F ; this means that for any (x, v) ∈ X × V such that F (x) = g′(v) = y, TyY is spanned by the
image of DxF and Dvg

′. In addition, for such maps g′ transverse to F , the inverse image F−1(g′(V )) is a
smooth embedded submanifold of X of dimension equal to dimV .

The results above do not require that F is a proper Fredholm map. If F is proper, then the regular
values are open and dense. The restriction F |K : K → Y of F to any compact domain K ⊂ X is of
course a proper map; in particular, for any regular value y of F |K , the cardinality of the inverse image
(FK)−1(y) = F−1(y) ∩K is finite.

We apply the perspective above to the separable Banach manifold X = Creg+ and the Fredholm map

F = Πreg
+ := Π+|Creg+

: Creg+ → Dreg+ .

Pick an arbitrary base point y = y(0) ∈ Dreg+ and assume y(0) is a regular point of Πreg
+ . (Note that the

notion of regular point of Πreg
+ is quite different than the notion of regular point of C in the sense of (2.13)).

Choose any other regular point of Πreg
+ in Dreg+ and let y(t) = ((g0(t), σ(t), H(t)), t ∈ I = [0, 1] be a smooth

compact curve in Dreg+ with endpoints y(0), y(1). As discussed above, without loss of generality, we will
assume that y(t) is transverse to Πreg

+ . The inverse image (Πreg
+ )−1(y(I)) is a countable collection of curves

in Creg+ , (Πreg
+ )−1(y(I)) = ∪nxn(I).

Let x(τ) ⊂ (Πreg
+ )−1(y(I)) be any component curve in the inverse image. The exact parametrization

τ ∈ I = [0, 1] chosen for x does not play any significant role; the image curve x(I) is the primary object.
Theorem 4.7 implies that x(τ) is a curve of bounded length in Creg+ . This implies that x(τ) cannot “run off

to infinity” in Creg+ . However, there may be points τi such that x(τi)→ ∂Creg+ ⊂ Csing+ . This will be analysed
in Section 5 (using essentially the same methods) and thus we assume here that any such component x(τ)
is a compact curve in Creg+ :

(4.37) x(I) ⊂⊂ Creg+ .
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This is equivalent to the statement that the closure

(Πreg
+ )−1(y(I)) ∩ Csing+ = ∅.

Given any finite collection xj , j = 1, . . . , ` of such curves, one may choose a large connected compact
submanifold K ⊂ Creg+ such that K∩(Πreg

+ )−1(y(I)) = ∪`j=1xj(I) and consider the proper map Πreg
+ |K : K →

D+. By transversality, the images xj(I) of the curves xj are compact embedded 1-manifolds over y(I) in Creg+ .
Hence each such curve x(I) ∈ {xj(I)} is either an embedded circle, or a curve with endpoints x(0) and x(1) in
the discrete fibers (Πreg

+ )−1(∂y(I)) ⊂ Creg+ . Thus either ∂x(I) = ∅ or ∂x(I) ⊂ (Πreg
+ )−1(∂y(I)), cf. [13, p.74]

for further discussion. Note here that it is not asserted that x(0) ∈ (Πreg
+ )−1(y(0)) or x(1) ∈ (Πreg

+ )−1(y(1)).
Simple examples based on fold maps x→ x2 = y : R→ R show that this may not be the case. We will say
the component curve x(τ) covers y(I) if Πreg

+ (x(I)) = y(I), so that Πreg
+ ◦ x surjects onto Imy. This is the

case exactly when the endpoints x(0) and x(1) are in distinct fibers of Πreg
+ (∂y(I)).

Now choose the initial regular value point y(0) ∈ Dreg+ of y(t) to be a point with mean curvature H(0) =
const. As discussed in Section 2, since y(0) ∈ Dcmc+ , there is a unique solution (ϕ(0), X(0)) = (ϕ(0), 0) of
the constraint equations (1.5)-(1.6), i.e. the fiber over y(0) consists of a single point

(Π+)−1(y(0)) = x(0).

It is then easy to see that there are many initial regular value points y(0) ∈ Dcmc.
Consider an arbitrary regular point y = y(1) which may be joined to y(0) in Dreg+ by a compact curve

(of finite length) transverse to Πreg
+ and satisfying (4.37). There is then a unique lift, i.e. a smooth curve

x(τ) with Πreg
+ (x(I)) ⊂ y(I), with x(τ) starting at the point x(0). If x(1) = x(0) then the curve x(τ) is not

an embedded submanifold-with-boundary, giving a contradiction. An equivalent argument is as follows. For
any compact n-dimensional ball B ⊂ Creg+ containing x(0), for t small (depending on B), the values y(t) are
regular values of (Πreg

+ )|B and the intersection of the fiber (Πreg
+ )−1(y(t)) with B consists of a unique point

x(t) near x(0). If x(0) = x(1) then for t > 0 small, the inverse image (Πreg
+ )−1(y(t)) ∩ B would consist of

two distinct points x(τ), x(τ ′), τ ∼ 0, τ ′ ∼ 1, which contradicts the uniqueness above.
It follows that one must have x(1) ∈ (Πreg

+ )−1(y(1)) and hence y(1) ∈ Im Πreg
+ . This proves that Πreg

+ is
surjective onto the regular values in Dreg+ , provided (4.37) holds. It is then also surjective onto the singular
values in Dreg+ , since any singular value in Dreg+ may be joined by a short curve in Dreg+ to a regular value in
Dreg+ and one may apply the argument above to this extended curve. This completes the proof of Theorem
1.1 in the regular region Creg+ .

Remark 4.8. Observe that the proof above proves Theorem 1.1 in the case that Creg+ is dense in C+, i.e. (4.36)
holds. As in the last paragraph of the proof of Theorem 1.1 above, this follows from the compactness of the

lifts x(τ) from Theorem 4.7, which hold equally well for curves x(τ) ∈ Creg+ and not only x(τ) ∈ Creg+ .
Recall that Dreg+ is dense in D+, cf. the discussion following (2.11), and it is conjectured that Creg is dense

in C, cf. [5].
Recall further that Creg+ is dense in (Creg∗ )+ = C+ ∩ Creg∗ , cf. (2.13) and the discussion following (2.11).

5. Singular locus of C.

In this section we extend the results of Sections 3-4 to the singular region Csing of C+, i.e. remove the
assumption (4.37) and thus complete the proof of Theorem 1.1. As noted above in Remark 4.8, the significant

part of the singular set for this purpose is Csing∗ as in (2.6).

The singular region Csing∗ of C+ is the locus of (g,K) ∈ C+ such that

Ker(D(g,K)Φ)∗ 6= 0.

In the following let (γ, κ) denote a typical element in Csing∗ ; we use (g,K) to denote general points (regular
or singular) in C+. If (N,Y ) ∈ Ker(D(γ,κ)Φ)∗ then the vector field Z = Nν + Y extends to a space-time

Killing field of the maximal Cauchy development (M, g(4)) of (M,γ, κ). It is then well-known, cf. [5] for
instance, that the data (γ, κ) and (N,Y ) satisfy the Killing initial data equations

(5.1) 1
2LY γ = −Nκ,
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D2N = N(Ric+Hκ− 2κ2)− LY κ,
where the Hessian D2 and Ricci curvature are taken with respect to (M,γ), H = trγκ.

Following [15], the structure of the singular locus Csing∗ is analysed by means of the Lyapunov-Schmidt
method based on the splitting (2.5), i.e.

(5.2) cm−2,α(M)× Λm−2,α
1 (M) = ImD(γ,κ)Φ⊕Ker(D(γ,κ)Φ)∗.

Thus, fix a given (γ, κ) ∈ Csing∗ with the associated space of space-time Killing fields K∗ = Ker(D(γ,κ)Φ)∗

and let k = dimKer(D(g,K)Φ)∗. While it is most common to work with the slice K∗ to ImDΦ as in (5.2),
it will be more convenient in the following to work with the space

(5.3) K̂ = {(0, Y ) : (N,Y ) ∈ K∗},

i.e. we only consider the shift component Y of a Killing field Z, setting the lapse N to 0. To prove K̂ gives
a slice to ImDΦ as in (5.2), we need the following:

Lemma 5.1. One has dimK̂ = dimK∗ and K̂ is a complementing space to ImDΦ, so that

(5.4) cm−2,α(M)× Λm−2,α
1 (M) = ImD(γ,κ)Φ⊕ K̂.

The splitting (5.4) is a direct, but not L2 orthogonal, sum of closed subspaces.

Proof: Since the splitting (5.2) is L2 orthogonal, it suffices to show that for any 0 6= (N,Y ) ∈ K∗, (0, Y )
is not L2 orthogonal to K∗. This implies in particular that if (Ni, Yi), i = 1, . . . , k is a basis for K, then

(0, Yi) is a basis for K̂.
Suppose instead that (0, Y ) is L2 orthogonal to K∗, so that in particular 〈(0, Y ), (N,Y )〉 = 0 for the L2

pairing with respect to γ. This implies that ∫
M

|Y |2 = 0,

so that Y = 0 and so the Killing vector field Z = Nν. It follows from the first equation in (5.1) that Nκ = 0,
so that either N = 0 or κ = 0. If N = 0, then Z = (N,Y ) = 0 which is ruled out. Since then κ = 0, H = 0
which is also ruled out since (γ, κ) ∈ C+. Note also that if κ = 0, the second equation in (5.1) implies that
D2N = NRic. Taking the trace implies that ∆N = NRγ . Since κ = 0, the Hamiltonian constraint (1.2)
gives Rγ = 0, so that ∆N = 0 and hence N = const. It follows again from the second equation in (5.1) that
Ricγ = 0, so that (M,γ) is a flat 3-manifold. This corresponds to the exceptional case discussed following
(2.16).

For (g,K) near (γ, κ), consider the local “enhanced” constraint domain

(5.5) Cenh? = Φ−1(K̂).

Thus the local space Cenh? consists of pairs (g,K) near (γ, κ) such that

Φ(g,K) = (0, Y ),

for (N,Y ) ∈ K∗. Let π1 be the projection onto the first factor in (5.4) along the slice K̂. The splitting (5.4)
implies that the linearization π1 ◦ Φ is a submersion onto ImDΦ at (γ, κ) and it follows from the implicit
function theorem that (π1 ◦ Φ)−1(0) = Cenh? is a smooth separable Banach manifold near (γ, κ). The space

C ∩ Cenh? ⊂ Cenh?

is then given locally near (γ, κ) by the zero set of a smooth function

(5.6) F = π2 ◦ Φ|Cenh?
: Cenh? → Rk,

i.e. C+ ∩ Cenh? = F−1(0). Here π2 is projection onto the second factor K̂ in (5.3). We will assume in

the following that the local space Cenh? is maximally extended in Metm,α(M) × Sm−1,α
2 (M) as a smooth

connected Banach submanifold. Roughly speaking, Cenh? represents a k-dimensional manifold thickening of
C+ near (γ, κ).

Now the projection map
Πenh : Cenh? → D,
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is defined just as before, Πenh(g,K) = ([g], σ,H) ∈ D. However, only the open-dense region Dreg ⊂ D
(cf. (2.11)) is a smooth Banach manifold. Since we need to work in the context of smooth Banach manifolds,
throughout the following we work with the restriction

(5.7) Cenh = Cenh? ∩Π−1(Dreg),

as in (2.13). Note that the singular region Csing∗ ∩ Cenh are exactly vacuum Killing initial data with no
non-tangential conformal Killing field; in particular the lapse N is typically non-zero. As in Remark 4.8,
the main point is that Cenh is open and dense in Cenh? so that the restriction to Cenh does not cause any
significant problems.

It now follows that the projection map

Πenh : Cenh → Dreg,

is a smooth Fredholm map between smooth separable Banach manifolds. Note that the Fredholm index of
Πenh is now k. The inverse image of a regular point y ∈ Dreg of Πenh is a collection (possibly infinite)

of connected k-dimensional submanifolds V k = (Πenh)−1(y) ⊂ Cenh. Since K̂ is non-compact, one cannot
expect the components V k to be compact. The inverse image of a curve y(t), t ∈ I = [0, 1], in Dreg transverse
to Πenh is a collection of connected (k+ 1)-dimensional submanifolds W k+1 ⊂ (Πenh)−1(y(I)) ⊂ Cenh again
typically non-compact.

Given such a path y(t), consider the map F as in (5.6),

(5.8) F : W k+1 → Rk.

The components of F−1(0) give the components of the inverse image Π−1
+ (y(I)) ⊂ C+ ∩W k+1. The basic

compactness property analogous to Theorem 4.7 that is needed is given by the following result.

Proposition 5.2. let q ∈ Rk be a regular value of F . Then F−1(q) is a countable collection of compact
connected manifolds of codimension k in W k+1, i.e. a collection of compact 1-manifolds {xq} ⊂W k+1.

Proof: The (finite dimensional) regular value theorem implies that the components {xq} are 1-manifolds,
so one needs to prove compactness. For this, it suffices to show that all the estimates and results of Sections
3-4 hold for (g,K) in the local enhanced spaces

Cenh+ = (Πenh)−1(Dloc+ ) ⊃ Cloc+ .

Observe that when k = 0, Proposition 5.2 is essentially equivalent to Theorem 4.7, cf. the proof of Theorem
1.1 in Section 4. To prove that the components xq are compact, fix the data Π(γ,K) = (γ0, σ0, H0) ∈ Dreg+

and consider a neighborhood Dloc+ ⊂ Dreg+ of (γ0, σ0, H0). Given fixed data (N,Y ) ∈ K∗ = Ker(DΦ(γ,κ))
∗,

elliptic regularity implies that (N,Y ) ∈ cm,α × χm,α, so that in particular Y ∈ χm,α(M). We consider all
fiber data (ϕ,X) over Dloc+ such that

Φ(ϕ,X) ∈ K̂,
for K̂ as in (5.3).

To begin, the divergence and Lichnerowicz equations (1.5)-(1.6) now take the form

(5.9) δ(L̂Xg0) = (− 2
3dH + Y )ϕ6,

(5.10) ∆ϕ = 1
8R0ϕ− 1

8 |σ + L̂Xg0|2ϕ−7 + 1
12H

2ϕ5.

Thus the only change is to the divergence constraint. (This is the reason for working with K̂ in place of K∗).

For such fixed Y ∈ K̂ consider the set of solutions (ϕ,X) ∈ Cenh+ of (5.9)-(5.10). We then list the changes
needed to the proofs of the results in Sections 3-4.

To begin, given the control on Y , a simple and straightforward inspection shows that the proof of Lemma
3.1 and proofs of Propositions 3.2 and 3.3 remain valid with the presence of Y , without any further changes
besides constants depending on |Y |Cm,α .

The proof of Theorem 4.1 does require some non-trivial changes. First note that the shift vector fields Y

in K̂ (and (N,Y ) ∈ K∗) are independent of the scale chosen for the background metric g0; thus they remain
the same when passing from gi0 to the rescaled background metrics ḡi0 = m4

i g
i
0. As before, one passes to
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the Euclidean limit gEucl by means of a sequence of blow-up diffeomorphisms. Under this convergence, Y
converges to a constant or parallel vector field on R3, (namely the field Y (p) parallel translated to R3).

Now perform the same analysis on the rescaled divergence equation (5.9) as in (4.17)-(4.20). The equation
(4.18), on the sequence X̄i and ḡi0, takes the component form

∆aj + 1
3∂yj (divX̄) = ϕ6〈Y, ∂yj 〉+O(m−2

i ),

where all metric data are with respect to the Euclidean metric and we have dropped the subscript i. One
has ∂yjdivX̄ = div(∂yj X̄) and 〈Y, ∂yj 〉 = cj for some constant cj . This gives

(5.11) ∆aj + 1
3div(∂yj X̄) = cjϕ̄6 +O(m−2

i ).

Recall from Section 4, in particular (4.11), that although {aj} = {aji} may be unbounded, the derivatives
daj are uniformly bounded and pass to the limit R3, remaining uniformly bounded. This gives the equation

(5.12) ∆aj + 1
3div(∂yj X̄) = cjϕ̄6,

on the limit R3. Now choose r large and integrate (5.12) over the r-ball B(r). The divergence theorem
implies that

(5.13)

∫
S(r)

(∂ra
j + 1

3 〈∂yj X̄, ∂r〉) = cj
∫
B(r)

ϕ̄6.

Since ∂ra
j and 〈∂yj X̄, ∂r〉 are uniformly bounded, it follows that the left side of (5.13) is bounded by Cr2,

for some constant C, independent of r large. On the other hand, ϕ̄ is uniformly bounded away from 0 and
infinity, so the right side of (5.13) grows as r3 unless cj = 0. It follows that Y = 0 on the limit R3. The
remaining part of the proof of Theorem 4.1 now carries forward, without any further changes.

Finally, the results of Section 4 after Theorem 4.1 do not depend on the constraint equations (1.5)-(1.6)
and so remain valid here also. This proves the result.

The 1-manifolds {xq} of Proposition 5.2 may be embedded S1’s, so have empty boundary, or are embedded
intervals with boundary in ∂W k+1 ⊂ (Πenh)−1(∂y(I)). These regular curves {xq} are local analogs of the
curves x in Section 4. In particular they satisfy the conclusion of Theorem 4.7.

Now let q = qε be a regular value of F with |qε| ≤ ε, with inverse image a collection of curves {xε(τ)}. The
compactness of each xε and continuity of F implies that for any given τ ∈ I and for any given sequence εi → 0,
a subsequence of xεi(τ) converges to a limit point x(τ) ∈ C+ ∩WN+1 = F−1(0) with x(τ) ∈ Π−1

+ (y(I)).

Thus as ε→ 0, the qε-level sets xε(I) of F converge in the Hausdorff topology on W k+1 to the zero level set
F−1(0) = C+ ∩W k+1. Without further information, F−1(0) may be an arbitrary closed set in W k+1 and so
{xε} is a smooth ε-Hausdorff approximation to F−1(0).

Remark 5.3. Given (γ, κ) ∈ (Csing∗ )+, let L be any finite dimensional space of vector fields in χm,α(M)

containing the kernel K̂, i.e. (0, L) ⊃ K̂. In analogy to (5.7), define the local space

CenhL = Φ−1(L) ∩Π−1(Dreg+ ).

It is then easy to see that all the discussion above, including Lemma 5.1 and Proposition 5.2 hold for the
larger space CenhL ⊃ Cenh. Namely to obtain a splitting for cm−2,α(M)× Λm−2,α

1 (M) as in (5.4), write

L = K̂ ⊕ K̂⊥,

and let dimK̂⊥ = p. The space K̂⊥ intersects ImD(γ,κ)Φ in a closed subspaceH ⊂ ImD(γ,κ)Φ of codimension
p and in analogy to (5.4), one has

(5.14) cm−2,α(M)× Λm−2,α
1 (M) = H ⊕ L.

As before, let π1 be the projection onto the first factor in (5.14) along the slice L. It follows that the
linearization π1 ◦ Φ is a submersion onto H at (γ, κ). Hence, the implicit function theorem implies that
(π1 ◦ Φ)−1(0) ∩Π−1(Dreg+ ) = CenhL is a smooth separable Banach manifold near (γ, κ). Again, the space

C ∩ CenhL ⊂ CenhL
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is then given locally near (γ, κ) by the zero set of a smooth function

(5.15) F = π2 ◦ Φ|CenhL
: CenhL → Rk,

i.e. C ∩ CenhL = F−1(0), where π2 is projection onto the second factor L in (0, L) ⊃ K̂.

Similarly, the proof of Proposition 5.2 does not require the vector fields Y to be in K̂. The same proof
holds for any finite dimensional vector space L ⊂ χm,α. As above, we assume CenhL is chosen to be the

maximal open domain in Metm,α(M)× Sm−1,α
2 (M) on which it is a smooth connected submanifold.

We will use these larger spaces CenhL for the following reason. Consider a pair of local spaces Cenh1 and Cenh2

built from points (γ1, κ1) and (γ2, κ2) with kernels K̂1 and K̂2. Suppose, as will be the case generically, that

K̂1∩K̂2 = 0. Then either Cenh1 ∩Cenh2 = ∅ or the intersection is given by Cenh1 ∩Cenh2 = C+∩Cenh1 ∩Cenh2 . Thus
it is not possible to simply glue together such local spaces to obtain a manifold thickening of C+ globally.

Completion of Proof of Theorem 1.1.

The proof of Theorem 1.1 is now completed much as in the regular case in Section 4 but with the extra
technical substructure developed above. For each (γ, κ) ∈ C+ ∩ Π−1(Dreg+ ) = (Creg+ ∪ Csing+ ) ∩ Π−1(Dreg+ )

we have constructed above an open manifold neighborhood, either Creg+ itself or a local space Cenh, with

Cenh = Creg when dimK̂ = 0. The projection maps Π+ : Creg+ → D+ or Πenh : Cenh → D+ are defined and
consistent on intersections.

Let y(t), t ∈ I = [0, 1] be a smooth curve of finite length in Dreg+ as in the proof of Theorem 1.1 in Section
4 with y(0) a regular value of Πreg

+ with H = const. We will inductively construct over y a finite collection

of local enhanced spaces Cenh and then using Remark 5.3 assemble these to a single, global enhanced space

C̃enh over y. The methods used in Section 4 will then be applied to C̃enh.
To begin, as discussed in Section 4, there is a maximal first interval I0 = [0, t0) ⊂ I for which y(t), t ∈ I0,

has a unique lift to a curve

(5.16) x(τ) ⊂ Π−1
+ (y(I0)) ∩ Creg+

starting at the unique lift x(0) = Π−1
+ (y(0)) of y(0). The parametrization τ is chosen so that Π+(x(τ0−δ)) =

y(t0−δ) for δ small. We may assume that there is a δ > 0 such that x(τ0−δ) ∈ Cenh1 , for some local enhanced
space Cenh1 based at (γ1, κ1) ∈ Csing. (For otherwise, if there is no such t0 < 1 then x satisfies (4.37) and the
result follows from the proof in Section 4).

Consider then the path y(I) ⊂ Dreg+ . By a slight perturbation of y if necessary, we may assume that y is

transverse to Πenh : Cenh1 → Dreg+ . Let W1 = W k1+1
1 ⊂ Cenh1 be the component of Cenh1 over y containing the

point x(τ0− δ) for some δ sufficiently small. The image Πenh(W1) then contains a neighborhood of y(t0− δ)
in Dreg+ . If the intersection of Π−1

+ (y(I)) ⊂ C+ with W1 is compactly contained in the interior of W1, the
inductive construction terminates.

If not, then there exist points (γ2, κ2) ∈ W1 ∩ Π−1
+ (y(I)) arbitrarily near ∂W1. For a fixed choice of

such (γ2, κ2), let Cenh2 be the local enhancement associated to (γ2, κ2) with Πenh
2 : Cenh2 → Dreg+ . As before,

perturb y slightly if necessary so that y is transverse to Πenh
2 and choose the component W2 = W k2+1

2 of Cenh2

intersecting W1, (so containing (γ2, κ2)). We note that it is possible that k2 = 0 so that Cenh2 = Creg+ . This

process is then repeated inductively, giving a collection of spaces Wj = W
kj+1
j and maps Πenh

j : Wj → y(I).

By construction and the compactness results of Theorem 4.7/Proposition 5.2, each image Πenh
j (Wj) contains

a subpath of definite length within y(I). Hence this process terminates at some finite j ≤ jmax = m.

Now for each (γj , κj), we have the kernels K∗j and K̂j . Form then

L := K̂1 ⊕ K̂2 ⊕ · · · ⊕ K̂m ' RN ,

where N =
∑
kj . (Recall that it is possible that kj = 0 for some collection of j’s). We now use the

construction in Remark 5.3 to produce a larger enhanced space containing the local spaces Wj = W
kj+1
j

defined above. Thus at each j, consider the splitting (5.4). Write

L = K̂j ⊕ (K̂j)
c,
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so that dim(K̂j)
c = N − kj . As in Remark 5.3, ImDγj ,κj)Φ ∩ (K̂j)

c is a closed subspace Hj of codimension
N − kj in ImD(γj ,κj)Φ and the projected map πHj ◦ Φ is a submersion onto Hj at (γj , κj). The implicit
function theorem then gives a local manifold structure to

(5.17) C̃enhj = (πHj ◦ Φ)−1(0) ∩Π−1(Dreg+ )

near each (γj , κj). Thus C̃enhj consists of all (g,K) ∈ Π−1(Dreg) near (γ, κ) such that Φ(g,K) ∈ L. As

before, we assume C̃enhj is maximally extended as a smooth connected Banach submanifold satisfying (5.17).

By construction, the previously defined spaces Cenhj satisfy Cenhj ⊂ C̃enhj . The intersection of consecutive

spaces C̃enhj ∩ C̃enhj+1 is an open subset of each. Hence the union

C̃enh = ∪mj=1C̃enhj ,

is a smooth, path connected Banach manifold.
As before, one has the projection map

Π̃ : C̃enh → Dreg+ ,

and again by a small perturbation of y : I → Dreg+ , we may assume Π̃ is transverse to y. Let WN+1 be the

component of Π̃−1(y(I)) ⊂ C̃enh containing the initial curve x(I0) as in (5.16). Thus

Π̃ : WN+1 → y(I).

The boundary ∂WN+1 = V N (0) ∪ V N (1) is contained in Π̃−1(∂y(I)). Here V N (i) denotes the components

(possibly empty) of ∂WN+1 over Π̃−1(y(i)), i = 0, 1.
Now consider the map

F = π2 ◦ Φ : WN+1 → L ' RN .
As in the discussion preceding Remark 5.3, choose a regular value Yε ∈ L of F , ε-close to 0, so that
|Yε|Cm,α < ε. The inverse image F−1(Yε) is a collection of regular curves {xε} in WN+1 with Φ(xε) = O(ε).
As above, the boundary of each curve xε(τ) is either empty (giving an embedded S1) or gives a cobordism

between its endpoints in the fibers Π̃−1(∂y(I)) ⊃ ∂WN+1 = V N (0) ∪ V N (1).
Now among the collection {xε} of curves in F−1(Yε), we choose a component xε such that

xε(0)→ x(0),

on some sequence ε = εi → 0 where x(0) is defined as in (5.16). Without loss of generality, assume
xε(0) ∈ V N (0). The endpoint xε(1) must lie in one of the boundary component regions V N (0) or V N (1).
If xε(1) ∈ V N (0), one has exactly the same contradiction to uniqueness as in the proof of Theorem 1.1 in
Section 4. Hence xε(1) ∈ V N (1). As before, this implies that xε covers y(I). Letting ε = εi → 0 and using
the compactness from Proposition 5.2 (as discussed preceding Remark 5.3) gives a point x(1) ∈ C+ such that
Π+(x(1)) = y(1). Since y(1) is arbitrary in Dreg+ , this proves that

(5.18) Π+|C+∩Π−1(Dreg+ ) : C+ ∩Π−1(Dreg+ )→ Dreg+

is surjective onto Dreg+ .
Finally, C+ ∩ Π−1(Dreg+ ) is dense in C+ and Dreg+ is dense in D+. As in Remark 4.8, the compactness

results Theorem 4.7/Proposition 5.2 imply that the continuous extension Π+ of (5.18) to C+ is surjective
onto D+. This completes the proof of Theorem 1.1.

It is possible that the proof above could be streamlined by using the structure of polyfolds introduced
and developed by Hofer-Wysocki-Zehnder [20]. While it may be of interest to bring in polyfold structures
into the study of the constraint space C, we will not pursue this further here.

We conclude the paper with a few remarks.

Remark 5.4. Although the analysis here has been restricted to the physically most interesting dimension
dimM = 3, it is not difficult to verify that all of the results, and in particular Theorem 1.1, remain valid for
M a compact n-dimensional manifold.
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Similarly, we expect the methods used here can be extended to the situation of complete asymptotically
flat initial data sets, as well as the vacuum constraint equations with non-zero cosmological constant Λ,
provided one has the uniqueness result for CMC solutions used in the proof of Theorem 1.1. We will not
pursue this further here however.
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