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§1. Introduction.

In a series of papers [14] ,[15] , [6] , Osserman and Chern-Osserman
proved a number of fundamental results on the structure of complete minimal
surfaces M2 immersed in 'E3 and EN . These results center about properties
of the Gauss map G and its relation to the geometry of M . Recall that G
associates to p € M the tangent plane TPM translated to the origin, considered

as an element of the Grassmannian G2 N ° For instance, in [15] Osserman shows
’

that the Gauss map of a complete, non-planarminimal surface Mz c:l:'.3 either

- attains every value a € G2 3 = S2 infinitely many times, with the

possible exception of a set Z < 82 of logarithmic capacity zero, or

- attains every value a € G2 3 finitely many times, omitting at most
’

three values.

The single intrinsic invariant [ (-K)dA of the geometry of M , namely
M
the total Gaussian curvature, distinguishes between the two modes of behavior.
In the former case, the total curvature is infinite while in the latter it is
finite. In fact, a basic consequence of the theory is the quantization condition

(1.1) [ (-K)dA = 4Nm |,
M

N €Z+ , on the total curvature. There are similar results that hold for minimal
surfaces in 'EN ; c.f. [6]. Xavier has recently sharpened these results on the
value distribution of the Gauss map considerably : the image omits at most six
points [19]. It is a beautiful open question whether in fact the Gauss map omits

at most four points in general.

These structure theorems, reminiscent of the Picard theorem in one complex
variable, are based on the connection between minimal surfaces in 'EN and holo-

morphic curves in the Grassmanian G2 N inherent in the Weierstrass representatic
b



More precisely, the Grassmaninan is realized as the quadric zi+z§+---+z§ =0
. : : N-1 s ;
in complex projective space CP . The Gauss map of M2 gives rise to a
. ; N-1 : ; . .
holomorphic curve 1in G2 N cCP and one studies the value distribution of
b

this curve in the sense of Weyland Ahlfors. The two modes of behavior above
correspond exactly to the two coarsest characteristics of holomorphic curves in

G N ? namely transcendental or algebraic. The Gauss map is algebraic if there
b

2

is a compact Riemann surface M2 and a finite number of points {pi}; € M2

such that MZ is conformally equivalent to MZ ~ {p.}i and the Gauss map
-

ol

G : M2 = G2 N extends to a holomorphic curve G : M G2 N} thus the Gauss
’ b}
map compactifies the Riemann surface Mz . The Gauss map is transcendental if

the curve G(MZ) is not an open subvariety of a closed projective curve in G2 N
’

This paper is concerned with establishing the beginning of such a theory
for higher dimensional minimal submanifolds Mk in IEN . There are a number of
difficulties in carrying out such a program. First, one no longer has the tools
of complex function theory. More importantly, the topological structure of M ,
particularly regarding the asymptotic behavior, is more complicated. For example,

let V" be an n-dimensional smooth algebraic variety in GN . Under an affine

inclusion GN = EIPN " v is an open subvariety of a compact algebraic variety

Aot A yn .

V € CP and the complement NV may be an arbitrary algebraic variety

in GIPN-l . Similar behavior is exhibited by the Gaussian image ¢V < G, N(0:)
?

and the complement c(v™ ~ G(v™) . Moreover, the immediate generalization of
Osserman's theorem on the density of the Gaussian image to higher dimensions

is false. This is a consequence of the failure of the Bernstein conjecture in

dimensions greater than eight [2].

Finally, there are a number of notions of total curvature for submanifolds
in IEN . Perhaps the most natural are the total Gauss-Bonnet-Chern curvature

In Q , where Q 1is the Gauss—Bonnet-Chern integrand, and the total absolute

M

curvature jn K dV , in the sense of Chern-Lashof [5]. However, both may vanish
M



on non-planar minimal submanifolds; further, in odd dimensions, 2 = 0 . The

notion we concentrate on in this paper is the integral

A=[ |a|"av
M

where A 1is the second fundamental form of M in 'EN . It is easy to see that

for any submanifold M CEN .

joce J Iklav <, [ (al"av ,

Mn Mn Mn

for universal constants €12S, depending only on n . Moreover, A =0 if and

. n . o . -
only if M is an affine n-plane. It is important to note that all three inte-
grals are scale invariant quantities. The Gauss-Bonnet-Chern integral is clearly
an intrinsic isometric invariant. For minimal submanifolds of EN , A 1is also;
s A n/2 . "
in fact, = In (-1) » where T is the scalar curvature of M , suitably

M

normalized. For this reason, we call A the total scalar curvature of M .

The main theorem of this paper is the following generalization of the

.. . N ..
Chern-Osserman theorem on minimal surfaces in E of finite total curvature.

Theorem A. Let M™ be a complete, connected minimally immersed submanifold

@
of E' of finite total scalar curvature. Then M" is C diffeomorphic to a

© = —
compact C manifold M® punctured at a finite number of points {pi}i e Mt .
n-2 . —
The Gauss map G : M" - Gn N extends to a C map G : M® - Gn N of the

’

s e ; . 2 n n-2
compactification. Further, the metric ds on M extends conformally to a C

s s s n
complete Riemannian metric on M .

— T
Conversely, if M® s diffeomorphic to Mt~ U p; and the Gauss map
— 1
has a C1 extension to M" , then M" has finite total scalar curvature.

Thus, one obtains an intrinsic characterization of minimal immersions



Mn *'EN whose Gauss map achieves a limiting value on each end of M : namely,

the total scalar curvature A 1is finite.

We note that the proof gives a mew proof of the Chern-Osserman theorem,
without the use of Huber's theorem [9] on Riemann surfaces of finite total curva-

ture.

An interesting consequence of the theorem is an integrality condition on

the total Gauss-Bonnet-Chern curvature of M , similar to (1.1).

Theorem B. Let M® be a complete, oriented minimally immersed submanifold of

EN , of finite total scalar curvature. Then

r
(1.2)  a=xM - £ m ,

i
Mn i=1

where m, €z" is the multiplicity of the end {pi} - If n>3, then m =1,

for all 1 .

We refer to §5 for the definition of x(Mn) , in case n 1is odd, and of

m; . Eqn. (1.2) implies that fnﬂ < x(M™) , so that a generalization of the
M
Cohn-Vossen inequality holds for this class of minimal submanifolds of IEN .

Clearly, equality is never achieved as is the case for compact manifolds.

We also refer to §5 for further applications of the above theorems.



We now outline the contents of the paper. In §2, using P.D.E. and scaling

arguments, we obtain an estimate on the curvature decay of minimal submanifolds in

EN with 4 < oot

(1.3) sup IAP < u(r)
MNS(r) r

where u(r) - 0 as r —o. Thus, M locally becomes Euclidean near infinity. This
result easily implies that M is of finite topological type (Corollary 2.5).Section 3
contains the proof of Theorem A. The curvature estimate (1.3) is shown to imply
that each end of M" is diffeomorphic to sh-1 [0,0). Using the condition 4 < oo,
we show that the Gauss map extends continuously over each point at infinity. The
smooth extension of the Gauss map then follows from P.D.E. arguments.

In §4, we prove Theorem B by applying the Gauss-Bonnet formula to the
domains MNB(r); the control over the boundary terms again comes from (1.3).
Finally, in §5, we present several applications of the results above. The Bernstein-
type result, Theorem 5.2 is of particular interest.

I would like to thank R.Schoen and M. Micallef for useful discussions during

the early stages of this work. Special thanks to Myong-hi for her help and patience.

§2. Estimate of curvature decay

Throughout this paper, M" will denote a complete, connected, minimally
immersed submanifold of Euclidean space EN. We let it M" -~ EN denote the
immersion. The metric, or first fundamental form, of M is that induced from EN.
The second fundamental form A: TM © TM — NM is given by

AY) = (TN,

Occasionally, we will view A as a map TM — Hom( TM, NM), or NM — Hom( TM,
TM).The notation ¥V (respectively V), is used for covariant differentiation on EN
(M). One has §T = V where T denotes tangential projection. Finally, let B(r)
denote the open ball of radius r about the origin O in EN, S(r) = 9B(r) and A(r.s) =
B(s) - B(r).

The following theorem will be of importance in the work to follow.



Theorem 2.1. (Smooth Compactness Theorem) Let {Mn} be a sequence of

connected, minimally immersed submanifolds in B (1) such that aM“ N BN(I) =Q .

Suppose there is a constant C such that suplA;i(x) < C, for all i. Then there is

a subsequence of (M;}, denoted by (M;), that converges in the C* topology on
compact sets in BN(l) to a smooth minimally immersed submanifold Mo in BN(1)

with sup Al < C.

By C* convergence to M we mean the following: for any p € M, there is a
neighborhood U CC BN(I) of p such that each component of M;NU, for i
sufficiently large, may be graphed over UNTpMs by a function Fi: UﬂTpMoo —_
NpMeo. One requires the functions Fi to converge, in the usual C*° topology, to Feo,

the graphing function for M.

Proof: This theorem is rather well-known and we will only sketch the proof, c.f.[7]

. for further details. The curvature bound supIA-I(x) < C implies there is an ¢5 > 0,
depending only on C, n, N such that the components of M. ﬂBp (e), with pleM
Bp (e)CCBN(l) and e<e¢, may be graphed over Tp M. ﬂBp (e) by functions f;. Each
f; satisfies the elliptic system Mf, = 0, where M denotes the operator of the
minimal surface system. Further, the curvature estimate immediately implies a
uniform C"%* bound on {f;},- for a <l. The regularity theory of the operator M
implies that a subsequence of (fi} converges in the C* topology to a solution foo.
Now using an elementary covering argument ,[7] , it is not difficult to show that a
subsequence of {Mi) converges to an Mso in the C* topology and that Meo has the

required properties.

We now return to the minimal immersion i : M" — EN. we assume, without
loss of generality, that 0eci(M) and choose 0eM such that i(0) = 0. Let D(r) be the
geodesic ball of radius r about 0 in M, D(r,s) = {xeM : r<disty,(x,0) < s}, L(r) -
{xeM : distM(x,O) = r}, the geodesic sphere of radius r about 0. Finally, Dp(r)
denotes the geodesic r-ball about peM.



N

Propostion 2.2: Let M" - E" be a complete minimal immersion (not necessarily

N

proper) in E", n > 2, of finite total scalar curvature. Then there is a constant
R0 = RO(M) such that
(2.1) sup [A[3(x) < Rlz H <f|AI"dV>,
x € L(R) D(_g_ , 2R)
for all R 2Ry, where u(e) > 0as €= 0.
2 _1 2

Proof: First it is useful to recale the metric. Let dsR =R ds™ be the

metric induced on M by the immersion 1R = 6R~>1, where GR is the dilation

N

of E° about 0 by the factor -% . Metric quantities on M measured with

respect to dsg will be denoted by a subscripted R. Thus for example,

2

|A|§ = R? |A|2; Dp(s), the geodesic ball of radius s about 0 w.r.t. dsps

satisfies DR(s) = D(sR).
Now it is easily seen that (2.1) is equivalent to the estimate
(2.2) sup A1) < u (fialgavg)
X e Lol Da(3» 2)
for the minimal immersion iR' Note that since M has finite total scalar

curvature, for all e > 0 there is an R0 such that
n n
[IAlgavg = f|A| v < e,
1 R
DR('E' ’ °°) D(f ’ °°)

for all R>R Thus, to prove (2.2), it suffices to prove the following

0
statement.

(S) There is an € > 0 such that if h: X" — EN is any minimal immersion

with D, (1) nd X =¢ for some xe X and



f|A|n dvV = e < €,
D, (1)

X
2
then sup |A|%(p) < &,
1
p € Dx(f
where 8§+ 0 as e — 0.

We will first prove the statement (S') below, from which (S) will follow
easily.
(S') There is an € > 0 such that if h: X — EV s any minimal immersion

with Dx(l) NaxX=¢ for some x € X and

j]A]n dV = € < €5
D, (1)

then
2 2
(2.3) sup [t° sup|A|“] < 4.
t € [091] Dx(l‘t)
To prove (2.3) we argue by contradiction. If (2.3) were false, there must
exist a sequence of minimal immersions h, = Xi —E" with hi(xi) =0 and

Dxi(l) naxX; =9 such that
n
f|A|1. v, — 0
Dy; (1)

but Sup [tzsup |A|§] > 4
t DXi(l-t)

for all i. Choose t, € [0,1] such that

ti2 sup|A|$ = sup [tz supIAI%]

Dy;(1-t5) te [0,1] Dy (1-t)



_lo_

and choose Yi € Dxi(l‘ti) such that

2 - 2
|A]5(Y3) = suplA[j
One easily sees that
2 2
(2.4) sup|A|s < 4[A[5(Y;)
Dy; (t4)
2
and by assumption
2 4
(2.5) AI5(Y4) > na

i

2
i
be the metric on Xi induced by the minimal immersion 61 * h,

.I’
N about hi(Yi) by the factor |A|§(Yi). (by translation, we

Now again it is useful to rescale the metric. Let ds% = |A|§(Yi) . ds?

where 85 is
- the ditation of E
may assume hi(Yi) = 0). Metric quanties on X; measured with respect to
&E? will be superscripted with a ~ . Thus, for pe Xi’ IKIi (p) =
[|A[1.(Y1.)]"1 [A]i(p), ﬁ}(s) = DP([|A|1.(Y1.):I'1 *s), and so on. In particular,
(2.5) implies that Byj(l)ﬂ 3X; = ¢, while (2.4) implies that

sup|i]$ <4
Dy, (1)

—~

and |R}i(Yi) = 1. Thus the sequence hi = 5}1 -*—EN is a sequence of minimal
immersions of open geodesic balls of radius 1, of uniformly bounded curvature,
translated so that E}(Yi) = 0. By the smooth compactness theorem, Theorem 2.1,

2

a subsequence converges in the C~ topology on compact subsets, to a smooth

~ o~ N
minimal immersion h_= Dy (1) —E .
We have ﬁiﬂ dv, < ﬂAI? dv, — 0
Dy; (1) Dy; (1)
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so that ﬁyw(l) is isometric to a domain in a flat n-plane. However, the

fact that |Z\'|i(vi) =1, for all i, implies that |A|_(Y_) = 1, which gives

a contradiction. This proves (S').

We now prove statement (S) from (S*) and thus complete the proof of
Proposition 2.2. Once more, we argue by contradiction. If (S) were false,
there must exist a sequence of minimal immersions gi:Zi —>]EN with gi(zi) =0
and DZ1.(1) NdZ; = ¢ such that

IIAI? dvy — 0
0, (1)
but

2>0

supIAI,g >C
1
Dzi(?)
for some constant C. For i sufficiently large, we may apply (2.3) with
1

t= 5 to obtain

suplAlf < 16
D7)

As above, a subsequence of 9; :Dzi(%) ——»EN converges smoothly on compact

subsets to a minimal immersion g_: Dzw(%) — EV and we have
f|A|2 v_=0
1
Since suplAlzz c? > 0, this contradiction establishes (S).
Dzm(?)

Remark: Part of the proof of statement (S'), namely the estimates (2.3) - (2.5),
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are due to Choi-Schoen, and used in their proof of Proposition 2 of (7] ; c.f.
also the related results [17:Th=~23. We note that the rest of the proof of

Prop. 2.2 gives an elementary proof of’ Prop. 2 of [7]].

We mention explicitly the following "gap phenomemon"; this is related to
recent work of Kasue [11].

N

Corollary 2.3: Let M" —E" b a complete minimal immersion. Then there

is a constant €5 = g5(n, N) such that if

JIAI™ @v < €

M" v

then M" is an affine n-plane.

Proof: This follows easily from statement (S) of Prop. 2.2. Let €9 be the
quantity given by statement (S). Applying (S) to the immersions Spei where
GR is the dilation of EN by é‘ we have, since

) :
flAlR dVp < g,
Dr(1)
2 2 ¢ ;
that suplAlR(P) <38 or sup|A|” < 2. Ifwelet R— =, we obtain the
Pe DR(i) PeD(R/2)

result.

Remark: Another proof of Proposition 2.2. for n>2 can be given using Simons’

equation for IAl and a Moser type iteration argument, c.f.[1].

We use Proposition 2.2 to study the behavior of M at infinity. This is done in

a sequence of elementary lemmas.
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Lemma 2.4. Let M be as in Proposition 2.1. Then M is properly immersed in

EN and there exists Ro such that

. 1
(2.16.) 1> |vr| >3
on M~B(R) .

(o]

Proof. Let +y(r) be any length-minimizing geodesic ray in M , starting at

O and let T =yv"'(r) , X =-;-Vr2 the position vector field. We have

T <X,T> = 1+a%(T,T) > 1-]A|-|xX] .

Evaluating this at t , using (2.1) and the fact that |%(x)| £ t , we have

(2.7) T<X,T>(1) > 1-p() .

&l

Choose R such that (1) < , Vt > R . Integration of (2.7 ) from R to

T gives

<X, Ty(x) 3%(1-;1) + <X,T>(R) .

Since r = |X| > <X,T> , this implies that M is properly immersed. Also,

which implies (2..6)

Using elementary Morse theory, (2.6) gives the following Corollary.

Corollary 2.5. Let M be as in Propositicn 2.1. Then for Ry sufficiently

large, there is a diffeomorphism

$ : M\B(Ro) ——— [MnS(Ro)] x [0,») .
~

In particular, M has only finitely many ends, each of finite topological type.




Vr . . .
Proof. Let U = TV—I'T be the unit vector field defined on M\B(Ro) and let

0 denote its locai l-parameter group. Note that for s >0 , 0 M\B(Ro) -

M\B(RO) . Define
¢(p) = (o_.(P),t) ,

where t 1is the unique number such that (p_t(p) € S(Ro) . It is clear that ¢

is a diffeomorphism.

Finally, the following Lemma will be of importance in the next section.

Lemma 2.6. Let M be as in Proposition 2.1. Let B® denote the second funda-

mental form of M N S(r) ¢ M , with respect to the inward unit normal. Then

given e > 0 , there is an Ro such that

r 1 €
(2.8) 8" -zl <2

for all r > Ro , where I denotes the identity matrix.
Proof. One easily computes that, for Y € Tp(MnS(r)) .

0%y (1,1) = (B2 (1,Y) + <A(Y,Y),TcHNs .

2 2

Now D°r” = 2I , so by Proposition 2.2, one has ]ll Dzrz-IH < pu(r) , or
2 =

1% - 2l <22 .
r = T

Since Bf = TV—lrl- D2r , the result now follows by (2.6 ) .
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§3. Behavior at Infinity.

In this section, we complete the proof of Theorem A. Recall by §2 that
if 1 : M" aﬁEN is a complete minimal immersion of finite total scalar curvature,
then M has a finite number of ends, each of finite topological type

In particular, for R0 sufficiently large,

_1 r
i M~BR)) = U V_ ,
° k=1

where V, are disjoint, smooth domains in M . We will identify Vk with its

k
image i(Vk) cEY when there is no danger of confusion. In the discussion to

follow, we work on each end separately, and so let V denote one element in

r
{Vj}1 =
Consider the submanifolds
(3.1) I ==(V 0 S) e s) .

For each r > Ro» I is a compact immersed (n-l)-manifold in S(1) and there
is a natural isotopy between Zr and Ly » VI,8 > Ro . The behavior of I
= <
as r +» o reflects the asymptotic properties of the end V in IEN . Let A
r

denote the second fundamental form of Vr =-%(V N B(r)) in ‘EN ; then
(3.2) 1A% = £?[al2 (0 < ue|xD

where p(r) 1is defined by (2.1)'. In particular, [Ar|2 + 0 uniformly as
r > » on any fixed annulus A(§,1-§) < B(1l) . Also, let c, denote the second
fundamental form of I < S(1) . Using the fact that |Vr[(x) ~1 as [x| > =,

one easily deduces that
2
£3.3) lc | < e,

for r > R° , where e(r) >0 as r +» = .
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We claim there is a uniform bound on the number of components np of V. N
Bx[%]’ for any x € S(1), r > 0. To see this, first note that by the monotonicity

formula for volume of minimal varieties 1in EN, we have
vol (Vy a By {};DZ c-np [}1]"

Thus, it suffices to show the volume of Vo, N A [%. %] has a uniform upperbound.
Using the fact that IVrl - 1 and for instance the coarea formula, one sees it is
sufficient to bound vol(3 ;) from above. (Since V is properly immersed, we need

only estimate np, for r large.)

First, suppose n > 3. Then X ; C S(1) has dimension - > 2 and by (3.3), ICyl
—- 0 asr — oo. It follows that for r sufficiently large, the Ricci curvature Ricz of
r
> r satisfies Ricz > ¢ > 0, for some constant c. The well-known comparison
r

theorems of Rauch and Myer’s theorem then imply vol(3 ;) is bounded from above.

For n = 2, we use the Gauss-Bonnet theorem on the end V. We have

R - K = 2xx(VnB(r) — JK
VnS(r) VnS(rO) VnB(r)

where K and K are the geodesic and Gaussian curvatures respectively. By the
results above, we know that the right-hand side is uniformly bounded. Further,
setting v(r) = vol(VnS(r)l‘ one easily computes, using the fact that IVrl > 0 on V,
that
vir) = |*

V-S(r)

Thus, v'(r) < ¢, for some ¢, so that v(r) < ¢’ - r and so vol(3 ;) = V—f.rz <L ch
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We may now apply the smooth compactness theorem (Theorem 2.1) together
with the estimate (3.2) on each component of V, N Bx[%]. [t follows that, for any
fma'n{ "~ x € S(1), there are sequences {r;} — o such that V,-i N By [%] converges,
in the C® topology on compact subsets, to a finite collection of planes, each
possibly with multiplicity, in Bx[%]. We may allow x to vary on S(1) and, by' (3:2),
find there are sequences {ri} — oo such that V,-i converges to a finite collection of
planes with multiplicity, smoothly on compact subsets of B(l) — (0}. Finally, since
> r € S(1) are connected, immersed submanifolds, by (3.2) or (3.3) again, we see that

in fact Vri converges to a single plane T with multiplicity.

The collection of linear planes {Ty} spanned by the equatorial spheres S"'1 C

SN 1(1) which are limits of sequences (ZR) are called the tangent planes at infinity

of V. The dlscussmn above implies that the manifolds R—[V N B(Ra )] converge to
m-Tg in the C - topology on compact subsets of B(1) - (05 We need to prove there

is a unique tangent plane at infinity.

Theorem 3.1. Let M" be a complete minimally immersed submanifold of EN w

finite total scalar curvature. Then each end V of M has a unique tangent plane at

Proof: Consider the normal Gauss map G : V — GN-n,N y G(X) = NyM. If T is a
tangent plane at infinity of V, determined by the sequence {ri} say, then it is
easily seen that Xi-Im len Al Ve, 56 is contained in a small neighborhood of T'L
in GN-n,N for any ¢ > o fixed,and i sufficiently large. Further the sets Xi shrink
to T as i— o. Thus, for R large , G maps V—B(R) into a small tubular
neighborhood of a curve o in GN-n,N .

We claim that o is either a point or a geodesic in GN-n,N’ If o is a point, then
clearly T is the unique tangent plane at infinity to V. Suppose then that o is
neither a point nor a geodesic. We may choose an arc aco such that the geodesic
curvature of o in GN n,N is bounded away from zero. Let U be a small Jtubular
neighborhood of o and Q@ = G~ [UnA(r ity

Now it is well known that G : Q — GN-n,N is a harmonic map. We claim the

)] for i large.

image of a harmonic map cannot be contained in a small tubular neighborhood of <.
To see this, we may write U = Dxa, where D is a small normal disc to a. Consider

the vector field Z = f.7, where f is a smooth funtion, 0 < f < 1, of compact



support in U and 7 is the geodesic curvature field of the curves ap = p x a in U.
Clearly T is smooth and we assume { x ¢ U : f(x) < 1} is a small neighborhood of
3U. Let ¢, be the flow of Z. It is not difficult to verify that, for vectors T
tangent to the ap curves in U, d%u(m),(T)L _, < 0, while for vectors Y tangent to
the D factor in U, ‘%‘ﬂ(¢t),(Y)|t=o= 0. In other words, to first order in t, ¢,
decreases the lengths of the ap curves, keeping lengths in the D factor constant.

It follows that %E(c&toG)t —o < 0, where E is the energy. This contradicts
the fact that G is harmonic. Thus, G maps V—B(R) into a small neighborhood of a
geodesic o in GN-n,N , for R large.

Since ImG is recurrent, either o is a finite geodesic arc or o is a closed
geodesic. First suppose o is a geodesic arc. Let p, be one of the endpoints of o
and choose a point p, on o close to py. Consider the function r;0G: V — R, where
r,(x) = dist(x,p,) in GN-n,N' If p, is sufficiently close to p,, r, is a convex function
in a neighborhood W of p, so that r,oG is subharmonic on G(W). However, r,oG
achieves a local maximum in G™'(W), which gives a contradiction.

Thus, o is a closed geodesic in GN-n,N' The preceeding argument shows that G
maps V roughly monotonicaily onto o, i.e. all integral curves p(t) of the vector
field Vr are mapped almost monotonically onto o. In particular, if U is a small
tubular neighborhood of o and *: U — o is the nearest point retraction, then the
map *oG taking p(t) to o is homotopic ( rel endpoints ) to the universal covering p:
R — S!. Thus, there is a sequence r; —» ™ such that G maps S(ri) N V into a
small neighborhood Tg of T'LE GN-n,N and 7 oG restricted to A(ri,ri +1) - G'I(Td) is
of degree 1 as a map of p(t) into o - Td"

We now complete the proof using an approach inspired by a technique of Brian
White [18]). Let C be the Chern-Lashof-Gauss map [S],

C: SN(V) — sN-L
where SN(V) is the unit normal sphere bundle of M in EN : C() is the parallel -
translate of v fo the origin. By the argument above, C maps into a small tubular
neighborhood of a closed curve T(t) of totally geodesic (N-n-1) spheres S-r(t) in sN-1
corresponding to the geodesic o in the Grassmannian GN-n,n' The sequence r; above
determines maps Ci - CIA(ri"'ﬂ) , wSich for i large, map a[A(ri ’ ri+1)] into a small
tubular neighborhhod T(§) of S = sN-1n 71, Further, for any v € Im C; - T(6),

(34) deg~ v = sgn{det C, (x)] = 1.
v - T ol o)
However,
de v = [
I 8¢c;
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where XK is the Lipschitz-Killing curvature [S5]. One easily sees that |K| < ChN IAID

for a universal constant Ch.N depending only on dimensions. Thus, given € > 0, there
b

is an i large, such that

deg~ v < €.
I Gy
SN-I

Since degc_ v is constant on connected components of SN -1 Cl[a(A(r 1+1))] and
[8 A(rl,rﬁ_l))] is contained in T(§), it follows that degc v =0, for v € gN-1 _
T(§). This contradicts ( 3.4 ), showing that C cannot map mto SNl - T(3), which

completes the proof.
The discussion above leads to the main result.

Theorem 3.2. Let M" - IEN be a completé minimally immersed submanifold of finite

total scalar curvature. Then M" is C* diffeomorphic to a compact manifold M"

punctured at a finite number of points (p) The Gauss map

i=1 "

. M" o
G: M Gn,N

extends to C“’2 map G :M" - GnN of the compactification. Further the
’

metric on M" conformally extends t to a complete C“'2 Riemannian metric on M"

Proof By the results above, M™ has a finite number of ends, each diffeomorphic to
a punctured n-ball. Let I : rRN — {0} —» RN - {0} be the inversion through the
origin , I(x) = lx% . Foranend Vof M, let W = [(V) C BN(I) - {0}). By Theorem
3.1, one sees that W = W U (0} is a C' submanifold of BN(I) diffeomorphic to the
n-ball BM, with TOW = T, the tangent plane at infinity of V.
In this way, we obtain a C' compactification I\Z" of M". Since on each end v,

llun Gol(x) = T , the Gauss map has a C° extension to MM . Further, since I is a
conformal map of RN the metric ds induced on W is a C° metric which is

conformal to the metric on V.
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Suppose first n = 2. Then Gol : (W,ds~2) — G2,N is a harmonic map with
continuous extension to W. It is then well known (e.g.[7] ) that Gol extends
analytically to W.

Now assume n > 2. We need to estimate the rate of decay of V to its tangent
plane T at infinity. Let {xi}rl\J be standard coordinates on EN and assume T = span
< Xy, -+, Xp>. We may extend V to a complete manifold V in EN by gluing on a

ball B" to 3V = V N S(Ry). Similarly, we may extend the metric ds?’y, to a

complete metric on V which is smoothly quasi-isometric to the flat metric on E".
Now let u be one of the coordinate functions {xi)y-rwl on V. By Theorem 3.1,
we see Idul - 0 as Ixl| — oo. Recall that u is a harmonic function on V. Thus we

may extend u to a smooth function on V so that

(3.5) Au = f

on V, where f has support in V-V. Let G denote the (negative) Green’s function for

the Laplace-Beltrami operator A on V. It is well-known [12] that G satisfies an

estimate of the form

IG(x,y)I —
Gyl < [dist(x,y)]""?

for n >2. Recall that the metric on V approximates the flat metric at a rate o(r ).

Using the Schauder estimates for A on V, see [8], it is easily seen that

c(k)

(3.6) DXGIx,y) <
Y [dist(x,y)I1~2*K

first for k = 1,2, and by iteration for any k. We may define
w(x) = / G(x,y)f(y)dy
v

on V. Note that w is well defined since f has compact support, and IDiw(x)I -
O(r'""+2) as Ix| - o. Let z = u - w so that z is harmonic on V. By the Bochner-

Lichnerowicz formula [3], we have



(37) 1AIVZI? = V%21 + Ric(VZ,Vz).

We estimate (3.7) on V. Combining the above estimate for IDlwl with Young's

inequality, one finds

7%z > (1 - OVl - (1 + el St
r

. N
for any € in (0,1) and some constant ¢y >0. On V, one calculates that IVul* -IAV U2
and Ric(Vz,Vz) = -IA(Vz)? > -IAPIVz?. Expanding IVzI? and using Young’s

inequality again gives

N
3.8) IAIVZE = (1 - IAY U2 - 1AV TuR) - (1 + hHL
: r

Recall that IVTuI — 0 and IVNul — 1 as Ix|l — oo. Summing over u = Xjp 1 = n+l,

«.uN, it follows that there are constants c,, c; such that

N
(3.9 D _AVzZP > AP - 2%
i=n+1 f

on V, where Zi = u; - W On the other hand, one computes on V that

(p-2)[n-pIVri?]
A[rpl-zl - P

r
so that

A(Zivz® - 2] > AP - 22 + 2 [n - pivVel] > o,
r r r

provided ¢, is chosen sufficiently large and p = (n-1) + o, for 0 < o < 1. Thus

c , . .
2IVz;? - ——%— is subharmonic on V, negative on 3V and converges to zero at
r

infinity. By the maximum principle,

2 Cs
vzl < -3+’

for z = z., any i.

1’
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If n>3, it follows by integration that Izl grows slower than any positive power

of r. By the DeGiorgi-Nash-Moser theory [13], z must be a constant .If n = 3, we

note that for p = l+e¢,
p P-2ry 2 VNZ 2
(3.10) AlVzI® >plVzi” "[FAIVzI® + (p-2)IA “1.

Substituting (3.8) in (3.10) and summing over i as before leads to the estimate

C3
-3+’
n-sta

IVzlp <

so that the argument above shows z is constant. By translating V in EN, we may
assume the constant functions are zero.

Thus, for k>0, r = Ixl, we have

k c(k)
(3.11) ID*ul(x) < r——n-2+k .
Noting that A, or equivalently DG, can be expressed in terms of D?u, as u ranges

over (xk};?”, we obtain

k _ c(k) k c(k)
(3.12) IDTAN < r_n+k ID*GI < —rn+k—l s
We use these estimates to study W near 0. We may write V = {(x,F(x)) : xeT-
B(R)}, as the graph of a function F: T — T, Then W = [(V) is described by
1?(x,l"’(x)), where R?= IxI? + IF(x)?. Let r?=Ix* and y=I(x), so y=%X . Then
r

L00F ) = (vly PRU)-L

By (3.11) , F(x) = O(xI™?) , so that in = 1 + O(lyl™ and IlyPF(I(y)) = O(yI™) as
lyl-0. Similarly, DX(ly?F(I(y)) = OClyI™¥).

Thus W behaves near 0 as the graph of the function ly|™. It follows that W =
WU{0} is a Cﬂ'1 submanifold of B™(1). Further, the Gauss map G and the metric d§2

have C"'2 extensions to W.
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3
The converse of Theorem ¥.2 is considerably easier to prove.

3
Theorem A.3. Let " i —>EN be a complete minimal immersion such that M" is

Cl diffeomorphic to a compact manifold M® , punctured at a finite number of

points {pi} . Suppose the Gauss map of M" extends to a Cl map of Mt .

Then ﬂAludvo].M < =
MR
Proof. The hypotheses imply that the metric g on M extends conformally to

; 2 : . o~ s o s n .
a continuous Riemannian metric g on the compactification M , as in Theorem 4.2.

Note also that there is a natural identification of A with the derivative DG .

Thus

f |A|“dvo1M = lDGIndvcolM .

M M®

These integrals are conformally invariant, so that

f1a]%avo1, = J |G| davol
Mn Mn Mn

The fact that the Gauss map has a Cl extension to M" implies the latter

integral is finite.

§4. The Gauss Bonnet Theorem on M".

In this section, we prove a preliminary version of Theorem B of the
Introduction; the final proof is given in §5 (Theorem 5.1). Once again, the results of

this section follow basically from the estimate (1.3).
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N .. . .
Theorem 4.1. Let Mn > E be a complete minimal immersion of a connected,

oriented manifold M® of finite total scalar curvature. Then

1 . Vol(MNS
(4.2) X(Mn) - I Q + - . 1im _L}'in_# ,
. n n-1 r>e r
M
where  1is the Gauss—Bonnet-Chern form on M and On—l = vol Sn-l(l) .

Remark. In case n 1is odd, we define x(M) = I Ind (Vrz) , where
i i
r(x) = |x| and p; are the zeros of Vr2 on M . By Lemma 2.4 the sum is

finite.

Proof. We apply the Gauss-Bonnet-Chern theorem to the domains

U(r) = i-l(MnnB(r)) = M" ’

and consider the limiting behavior as r -+ o . First, the structure equations

on M" are given by

n .
" = & w,.0
=1 M
(4.3) .
ij
dw = I w., Aw . *¥Q..
i ik Tkj i]

where ij and gij are the connection l-forms and curvature 2-forms respéc-
tively of M , with respect to the orthonormal coframing {e‘}f . One may
express Qij in terms of the second fundamental form A = {AP} s H =1,...N-n

by

- H oM _ MM kR
9.4) Qij kzg[ﬁ AjkAig AikAjzle A B .
’

The Gauss—-Bonnet-Chern form is the n-form on M defined by
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. Le. . Q.. Asee A Qi { n
2 n-1ln

2m

(9.5) Q

2m+1

=]
[}

where the sum is over all permutations o = (il,...in) of (1,...n) and

€; ; = sgn(9) . For 0% k.ﬁ'% [n-1] , define (n-1) forms Q, on the
1°"""n

tangent sphere bundle $M of M by

Aoo-om.

(4.6) Qk(V) = Ck, . Ie, Q. . AeeeAQ. A mi2k+1v i

S B TS s Y2k-1"2k

for V € M and constants given by

_¢p* 1 -,
)inmzmkk! 1.3...(n-2k-1) n=em
Ck’n — (-1)k+1 m
- A (k) n = 2m+l

m,
™ an!

Now note that by Corollary 2.5 the domains y(r) , for r sufficiently
large, have c” boundary in M and are diffeomorphic to M . Further, the

smooth vector field Vrz on M has only finitely many zeros : define

x(WU(r))= £ Ind (Vrz) .

i opy

_ Vr 5 ) .
Note also that V = TV;T is the unit outward normal to 3u(r) , so that, in
case n 1is even, x(U(r)) 1is a topological invariant. The Gauss-Bonnet-Chern
formula [4] then reads
1
[5(a-1)]

(4.8) x@W() =fa - I J v .
u(r) k=0 3u(r)

We now examine the boundary integrals more closely. For p € 23U (r) frame

the tangent spaces Tp(lI(r)) by eigenvectors of the second fundamental form
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B of 3U(r) in M . Thus {ei}rll-1 € Tp(aU(r)) satisfy

Br(ei) = —Aiei .

We have V*w. = w, = -A,0% , where {8'} are the 1-forms dual to {e.}
i,v i,v i i

This gives for Q0 .
n-1 1

* 2 (-yn-1l,. _ . . 1 n-
Vv Q, (-1) (n=-1)! 2 n ( Ill Ai)e Aee-AB .

Lemma 2.6 implies that )‘i is asymptotic to % as r>= , i,e.
J\i = ;]:'- + o(%) . Thus we obtain the est imate

=(n=-D!c_ |
(8.9) V*q = 2R gy +

o n—-1
r

B,
r r

where dVr denotes the volume form on 3U(r) .

On the other hand, if k > 0 , each summand of U*Qk is of the form

A***Aw.
v w

Awi v
2k+1 n-1

¢II<= n. . A"’AQ- i
2k-1"2k

11 12 1

: *
and is thus small compared to V Qo . In fact, using (§.4), (2.1 ) and Lemma 2.6,

we see that on 3U(r) , there is a fixed constant ¢ such that

r)

uzk(
n-1

I
(%.10) lo ] < e - .+ |dv|

for all I = (il,...,in_l), k > 0 . Substituting this into (¥.8) gives

(.11) x(U(r)) = U{rs; + [a=Dt]e, [+o(D)] VLHSI—E{&

We have already remarked that x(U(r)) 1is independent of r , for r

sufficiently large. In particular, 1lim x(U(r)) = x(M) . Also, the pointwise

o>

inequality
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n
[Q|(X) _<_ c - HA” (X) ’

together with the assumption of finite total scalar curvature implies by the

dominated- convergence theorem that

lim Q@ =/@
> U(r) M

vol(3U(r))

= exists and is finite.
r

and also |[[Q] <+ . As a consequence, lim
M o
The theorem follows by taking the limit of (4.11) as r > ® and evaluation of

the constants. &

§5. égglications.

In this section, we prove Theorem 5.1 referred to in the introduction.

This formula is known in the case n = 2 (e.g. [10]) ; however certain novel

features appear in higher dimensions. Several consequences of this are deduced;

in particular, we prove a Bernstein-type theorem for submanifolds M of finite

total scalar curvature with n > 3 .

Recall from §3 that if M" is a complete minimal submanifold of finite
total scalar curvature, then x(i) = £ Ind (Vrz) is well defined. If {Vi}z L
i i =

are the collection of ends of M" , the multiplicity m, of Vi is given by

vol(VinS(r))

n-1

m. = lim
i
r

- o
n—1

where o _, is the volume of the unit (n-1) sphere.



- ¢c —

N

n .. . .
Theorem 5.1. Let M -+ E be a complete minimal immersion of an oriented manifolc

of finite total scalar curvature. Then

(5.1) Ja=xu +

Mn 1

[ ae s |
=]

where m, €z’ is the multiplicity of the end P; e . If n >3, then

mi=1,Vi,sothat

(5.2) [ 2= xMMH+r . o

Mn

Proof. Eqn. (5.1) is an immediate consequence of Theorem 3.1 together with the
result from §® that the manifolds -llj(Vi N S(r)) converge smoothly to an equa-
torial (n-1)-sphere with multiplicity m, €z’ . Further for r sufficiently

n-1

large, %(Vi N S(r)) represents an mi-fold covering of an equator S (= SN_I(I)

If n> 2, it follows that m, = 1 , for all i . This proves (5.2).

Remarks. 1) One should consult the paper of Jorge-Meeks [10] for a discussion

of related topics.
2) The smooth convergence of the manifolds %(M N S(r)) of course implies

that all ends of M are embedded if n > 2 .

We now present 2 Bernstein-type theorem, valid however only in dimensions

greater than two.

Theorem 5.2. Let M" "EN be a complete minimal immersion of finite total

scalar curvature. If n > 2 and M" has one end, then M" is an affine n-plane.

vol(M N B(r))

n
; o

of multiplicity one by Theorem 5.1, one has

Proof. Let v(r) = vol(Mr) = . Then, since M has only one end,

lim v(r) = lim ————VOI(MZB(I)) =0

e e r



where W is the volume of the unit ball in EN . On the other hand, it is well
kpown that v(r) 1is monotonically non-decreasing in r , with v(0) = u_ . Thus,
n

v(r) = W It follows from standard methods  that M" must be

an affine n-plane.

Remarks. 1) The theorem is clearly false for n = 2 , as is demonstrated for
instance by Enneper's surface.

2) R. Schoen [1B] has recently proved a certain analogue of Theorem 5.2
for embedded minimal hypersurfaces in ‘EN having either one or two ends. He
proves that the only such submanifolds which are regular at infinity are the
‘plane and the higher dimensional catenoid. Theorem 5.2 generalizes these results

in the case of one end.

3) Theorem 5.2 may be used to derive a local pointwise curvature estimate

for minimally immersed n-discs in B(1) , n > 3 ; c.f. [1]..
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