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This paper surveys aspects of the convergence and degeneration of Riemannian metrics on a
given manifold M, and some recent applications of this theory to general relativity. The basic
point of view of convergence/degeneration described here originates in the work of Gromov, cf.
[31]-[33], with important prior work of Cheeger [16], leading to the joint work of [18].

This Cheeger-Gromov theory assumes L* bounds on the full curvature tensor. For reasons
discussed below, we focus mainly on the generalizations of this theory to spaces with L*, (or LP)
bounds on the Ricci curvature. Although versions of the results described hold in any dimension,
for the most part we restrict the discussion to 3 and 4 dimensions, where stronger results hold and
the applications to general relativity are most direct. The first three sections survey the theory in
Riemannian geometry, while the last three sections discuss applications to general relativity.

I am grateful to many of the participants of the Cargese meeting for their comments and sugges-
tions, and in particular to Piotr Chrusciel and Helmut Friedrich for organizing such a fine meeting.

1. BACKGROUND: EXAMPLES AND DEFINITIONS.

The space M of Riemannian metrics on a given manifold M is an infinite dimensional cone,
(in the vector space of symmetric bilinear forms on M), and so is highly non-compact. Arbitrary
sequences of Riemannian metrics can degenerate in very complicated ways.

On the other hand, there are two rather trivial but nevertheless important sources of non-
compactness.

o Diffeomorphisms. The group D of diffeomorphisms of M is non-compact and acts properly on
M by pullback. Hence, if g is any metric in M and ¢; is any divergent sequence of diffeomorphisms,
then g; = ¢fg is a divergent sequence in M, (at least if the manifold M is compact for instance).
However, all the metrics g; are isometric, and so are indistinguishable metrically. In terms of a
local coordinate representation, the metrics g; locally are just different representatives of the fixed
metric g.

Partially supported by NSF Grant DMS 0072591.



Thus, for most problems, one considers only equivalence classes of metrics [g] in the moduli space
M =M/D.

(A notable exception is the Yamabe problem, which is not well-defined on M, since it is not
invariant under D).

e Scaling. For a given metric g and parameter A > 0, let gy = A2g so that all distances are rescaled
by a factor of \. If A = oo, or A — 0, the metrics g, diverge. In the former case, the manifold
(M, g»), say compact, becomes arbitrarily large, in that global invariants such as diameter, volume,
etc. diverge to infinity; there is obviously no limit metric. In the latter case, (M, g)) converges, as
a family of metric spaces, to a single point. Again, there is no limiting Riemannian metric on M.

Although one has divergence in both cases described above, they can be combined in natural
ways to obtain convergence. Thus, for g) as above, suppose A — o0, and choose any fixed point
p € M. For any fixed k > 0, consider the geodesic ball B, = B,(k/)), so the g-radius of this ball
is k/X — 0, as A = co. On the other hand, in the metric gy, the ball B, is a geodesic ball of fixed
radius k. Since k/X is small, one may choose a local coordinate system U = {u;} for B, with p
mapped to the origin in R”. Let uz)‘ = Au; = ¢, o u;, where ¢ (x) = Az. Thus ¢, is a divergent
sequence of diffeomorphisms of R", and Uy = {uz)‘} is a new collection of charts. One then easily
sees that

(1.1) 9A(9/0u, 8/0n)) = 9(8) s, 8] 9u;) = gi.

As A\ — oo, the ball B, shrinks to the point p and the coefficients g;; tend to the constants g;;(p).
On the other hand, the metrics g) are defined on the intrinsic geodesic ball of radius k. Since k
is arbitrary, the metrics ¢}g) converge smoothly to the limit flat metric go on the tangent space
T,(M), induced by the inner product g, on T,,(M),

(1.2) (M, ¢397) — (Tp M, go)-

This process is called “blowing up”, since one restricts attention to smaller and smaller balls,
and blows them up to a definite size. Note that the part of M at any definite g-distance to p
escapes to infinity, and is not detected in the limit go. Thus, it is important to attach base points
to the blow-up construction; different base points may give rise to different limits, (although in this
situation all pointed limits are isometric).

There is an analogous, although more subtle blowing up process for Lorentzian metrics due to
Penrose, where the limits are non-flat plane gravitational waves, cf. [42].

If (M, g) is complete and non-compact, one can carry out a similar procedure with A — 0, called
“blowing down”, where geodesic balls, (about a given point), of large radius B,(k/\) are rescaled
down to unit size, i.e. size k. This is of importance in understanding the large scale or asymptotic
behavior of the metric and will arise in later sections.

This discussion leads to the following definition for convergence of metrics. Let {2 be a domain in
R" and let C* denote the usual Holder space of C* functions on Q with a-Hélder continuous k™
partial derivatives. Similarly, let L¥P denote the Sobolev space of functions with k& weak derivatives
in LP. Since one works only locally, we are only interested in the local spaces Clko’ca and Lfo’f and
corresponding local norms and topology.

Definition 1.1. A sequence of metrics g; on n-manifolds M; is said to converge in the L*® topology
to a limit metric g on the n-manifold M if there is a locally finite collection of charts {¢y} covering
M, and a sequence of diffeomorphisms F; : M — M;, such that

(1'3) (Fi*gi)a,@ — Gap
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in the Lfo’f topology. Here (F; g;)ap and gop are the local component functions of the metrics F;"g;
and g in the charts ¢g.

The same definition holds for convergence in the C*® topology, as well as the weak L¥P topology.
(Recall that a sequence of functions f; € LP(Q2) converges weakly in LP to a limit f € LP(Q) iff
[ fig— [ fg, for all g € LY(Q), where p~ ' + ¢ 1 = 1).

It is easily seen that this definition of convergence is independent of the choice of charts {¢y}
covering M. The manifolds M and M; are not required to be compact. When M is non-compact,
the convergence above is then uniform on compact subsets.

In order to obtain local control on a metric, or sequence of metrics, one assumes curvature
bounds. The theory described by Cheeger-Gromov requires a bound on the full Riemann curvature
tensor

(1.4) |Riem| < K,

for some K < oo. Since the number of components of the Riemann curvature is much larger than
that of the metric tensor itself, (in dimensions > 4), this corresponds to an overdetermined set of
constraints on the metric and so is overly restrictive. It is much more natural to impose bounds on
the Ricci curvature

(1.5) |Ric| < k,

since the Ricci curvature is a symmetric bilinear form, just as the metric is. Of course, assuming
bounds on Ricci is natural in general relativity, via the Einstein equations. Thus throughout the
paper, we emphasize (1.5) over (1.4) whenever possible.

The Cheeger-Gromov theory may be viewed as a vast generalization of the basic features of
Teichmiiller theory to higher dimensions and variable curvature, (although it was not originally
phrased in this way). Recall that Teichmiiller theory describes the moduli space M, of constant
curvature metrics on surfaces, cf. [46] and references therein. On closed surfaces, one has a basic
trichotomy for the behavior of sequences of such metrics, normalized to unit area:

e Compactness/Convergence. A sequence g; € M, has a subsequence converging smoothly,
(C®), to a limit metric ¢ € M,. As in the definition above, the convergence is understood to be
modulo diffeomorphisms. For instance this is always the case on S?, since the moduli space M, is
a single point for S2.

e Collapse. The sequence g; € M, collapses everywhere, in that
(1.6) injy,(z) = 0,

at every x, where injgy, is the injectivity radius w.r.t. g;. This collapse occurs only on the torus T2
and such metrics become very long and very thin, (if the area is normalized to 1). There is no limit
metric on T2. Instead, by choosing (arbitrary) base points x;, one may consider based sequences
(T2, gi, z;), whose limits are then the “collapsed” space (R, guo,Too)- Here R is the real line, and
Joo 18 any Riemannian metric on R; recall that all metrics on R are isometric. The convergence
here is that of metric spaces, i.e. in the Gromov-Hausdorff topology, cf. [31], [43].

o Cusp Formation. This is a mixture of the two previous cases, and occurs only for hyperbolic
metrics, i.e. on surfaces ¥, of genus g > 2. In this case, there are based sequences (X4, g;,z;)
which converge to a limit (X, goo, Too) Which is a complete non-compact hyperbolic surface of finite
volume, hence with a finite number of cusp ends S' x RT. The convergence is smooth, and uniform
on compact subsets. As one goes to infinity in any such cusp end S x RT, the limit metric collapses
in the sense that injg. (zx) — 0, as zp — oo. There are other based sequences (3, g;,y;) which
collapse, i.e. (1.6) holds on domains of arbitrarily large but bounded diameter about y;. As before,
limits of such sequences are of the form (R, goo , Yoo )-



2. CONVERGENCE/COMPACTNESS.

To prove the (pre)-compactness of a family of metrics, or the convergence of a sequence of metrics,
the main point is to establish a lower bound on the radius of balls on which one has apriori control
of the metric in a given topology, say C¥® or L¥P. Given such uniform local control, it is then
usually straightforward to obtain global control, via suitable global assumptions on the volume or
diameter. (Alternately, one may work instead on domains of bounded diameter).

To obtain such local control, the first issue is to choose a good “gauge”, i.e. representation of the
metric in local coordinates. For this, it is natural to look at coordinates built from the geometry
of the metric itself. In the early stages of development of the theory, geodesic normal coordinates
were used. Later, Gromov [31] used suitable distance coordinates. However, both these coordinate
systems entail loss of derivatives - two in the former case, one in the latter. It is now well-known
that Riemannian metrics have optimal regularity properties in harmonic coordinates, cf. [23]; this
is due to the special form of the Ricci curvature in harmonic coordinates, known to relativists long
ago.

Given the choice of harmonic gauge, it is natural to associate a harmonic radius r, : M — R*,
which measures the size of balls on which one has harmonic coordinates in which the metric is well
controlled. The precise definition, cf. [1], is as follows.

Definition 2.1. Fix a function topology, say L*P, and a constant ¢, > 1. Given z € (M, g), define
the L¥P harmonic radius to be the largest radius rj,(z) = r’,j’p (z) such that on the geodesic ball
By (rp(z)) one has a harmonic coordinate chart U = {u,} in which the metric g = gop is controlled
in L*? norm: thus,

(2.1) ¢y '00p < gap < Codap, (as bilinear forms),

0

(2.2) b ()7 / 10" gaslPdV < co— 1.
Bara(@)

Here, it always assumed that kp > n = dimM, so that L*? embeds in C?, via Sobolev embedding.
The precise value of ¢, is usually unimportant, but is understood to be fixed once and for all. Both
estimates in (2.1)-(2.2) are scale invariant, (when the harmonic coordinates are rescaled as in (1.1)),
and hence the harmonic radius scales as a distance.

Note that if r,(x) is large, then the metric is close to the flat metric on large balls about z, while
if 7, () is small, then the derivatives of gos up to order k are large in L? on small balls about z.
Thus, the harmonic radius serves as a measure of the degree of concentration of g, in the Lk
norm.

It is important to observe that the harmonic radius is continuous with respect to the (strong)
LFP topology on the space of metrics, cf. [1], [3]. In general, it is not continuous in the weak L-P
topology.

One may define such harmonic radii w.r.t. other topologies, for instance C*® in a completely
analogous way; these have the same properties.

Suppose g is a sequence of metrics on a manifold M, (possibly open), with a uniform lower
bound on 7. On each ball, one then has L¥? control of the metric components. The well-known
Banach-Alaoglu theorem, (bounded sequences are weakly compact in reflexive Banach spaces),
then implies that the metrics on the ball have a weakly convergent subsequence in L*P, so one
obtains a limit metric on each ball. Using elliptic regularity associated with harmonic functions,
it is straightforward to verify that the overlaps of these charts are in L¥T'P_ and so one has a
limit L*¥P metric on M. The convergence to limit is in the weak L*® topology and uniform on
compact subsets. Strictly speaking, one also has to prove that the harmonic coordinate charts for
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gk also converge, or more precisely may be replaced by a fixed coordinate chart, but this also is not
difficult, cf. [1], [3] for details.

The same type of arguments hold w.r.t. the C*® topology, via the Arzela-Ascoli theorem; here
weak LFP convergence is replaced by convergence in the cke topology, for o/ < a.

Thus, the main issue in obtaining a convergence result is to obtain a lower bound on a suitable
harmonic radius 7, under geometric bounds. The following result from [1] is one typical example.

Theorem 2.2. (Convergence I). Let M be a closed n-manifold and let M(\,i,, D) be the space
of Riemannian metrics such that

(2.3) |Ric| <k, inj > iy, diam < D.
Then M(\, 4o, D) is precompact in the C1* and weak L*P topologies, for any o < 1 and p < co.

Thus, for any sequence, there is a subsequence which converges, in these topologies, to a limit
C1® N L?*P metric go, on M.

Sketch of Proof: As discussed above, it suffices to prove a uniform lower bound on the L??

. . 2
harmonic radius r,, = rh’p

(2.4) rh(z) > 1o = 1o(ky 10, D),

under the bounds (2.3).

Overall, the proof of (2.4) is by contradiction. Thus, if (2.4) is false, there is a sequence of metrics
g; on M, satisfying the bounds (2.3), but for which r4(z;) — 0, for some points z; € M. Without
loss of generality, (since M is closed), assume that the base points z; realize the minimal value of
rp, on (M, g;). Then rescale the metrics g; by this minimal harmonic radius, i.e. set

, L.e.

(2.5) gi = ru(@) 7% - gi-
If 7, denotes the harmonic radius w.r.t. g, by scaling properties one has
(2.6) Th(zi) =1, and 7p(y:) > 1,

for all y; € (M,g;). By the remarks preceeding the proof, the pointed Riemannian manifolds
(M, g;,z;) have a subsequence converging in the weak L*P topology to a limit L*P Riemannian
manifold (N, §oo, Zoo)- (Again, this convergence is understood to be modulo diffeomorphisms, as in
Definition 1.1). Of course diamg, M — oo, so that the complete open manifold N is distinct from
the original compact manifold M. The convergence is uniform on compact subsets.

So far, nothing essential has been done - the construction above more or less amounts to just
renormalizations. There are two basic ingredients in obtaining further control however, one geo-
metric and one analytic.

We begin with the geometric argument. The limit space (N, ) is Ricci-flat, since the bound
(2.3) on the Ricci curvature of g; becomes in the scale g;,

(2.7) |Ricg;,| < k-rp(z;) =0, as i — oo.

Actually, it is Ricci-flat in a weak sense, since the convergence is only in weak L?P. However, it is
easy to see, (cf. also below), that weak L?P solutions of the (Riemannian) Einstein equations are
real-analytic, and so the limit is in fact a smooth Ricci-flat metric.

Next, by (2.3), the injectivity radius of g; satisfies

(2.8) injg, > o (i)t = 00, as i — oo,

so that, roughly speaking, the limit (N, g ) has infinite injectivity radius at every point. More
importantly, the bound (2.8) implies that (M, g;) contains arbitrarily long, (depending on %), mini-
mizing geodesics in any given direction through the center point z;. It follows that the limit (N, goo)
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has infinitely long minimizing geodesics in every direction through the base point z,. This means
that (N, goo) contains a line in every direction through z..

Now the well-known Cheeger-Gromoll splitting theorem [17] states that a complete manifold
with non-negative Ricci curvature splits isometrically along any line. It follows that (N, o) splits
isometrically in every direction through z,, and hence (N, gs) = (R",go), where go is the flat
metric on R”.

Now of course (R",gg) has infinite harmonic radius. If the convergence of (N, g;) to the limit
(R, go) can be shown to be in the strong L?P topology, then the continuity of 7, in this topology
immediately gives a contradiction, since by (2.6), the limit (N, §oo) has 7, (zo) = 1.

The second or analytic part of the argument is to prove strong L?P convergence to the limit. The
idea here is to use elliptic regularity to bootstrap or improve the smoothness of the convergence.

In harmonic coordinates, the Ricci curvature of a metric g has the following especially simple
form:

1 .
(2'9) _EAQa,B + Qa,@ (ga (99) = chaﬂa

where A = ¢*# 0o 0p is the Laplacian w.r.t. the metric g and @ is quadratic in g, its inverse, and
dg. In particular, if r,(z) = 1 and rp,(y) > r, > 0, for all y € 8B,(1), then one has a uniform L7
bound on @ and uniform L?P bounds on the coefficients for the Laplacian within B, (1 + %ro).

If now Ric is uniformly bounded in L*°, then standard elliptic regularity applied to (2.9) implies
that gas is uniformly controlled in L%, for any ¢ < oo, (in particular for ¢ > p). More importantly,
if g; is a sequence of metrics for which (Ricg,)as converges strongly in LP to a limit (Ricy,,)ag,
then elliptic regularity again implies that the metrics (g;)ap converge strongly in L?P to the limit
(9o0)ap- For the metrics g;, (2.7) implies that Ric — 0 in L*°, and so Ric — 0 strongly in L, for
any q < o0.

These remarks essentially prove that the L?P harmonic radius is continuous w.r.t. the strong L?P
topology. Further, when applied to the sequence g; and using (2.6), they imply that the metrics g;
converge strongly in L?? to the limit go,. This completes the proof.

It is easy to see from the proof that the lower bound on the injectivity radius in (2.3) can be
considerably weakened. For instance, define the 1-cross Cro1(z) of (M, g) at x to be the length of
the longest minimizing geodesic in (M, g) with center point z and set

Croi(M,g) = inf Croi(x).
T

We introduce this notion partly because it has a natural analogue in Lorentzian geometry, when
a minimizing geodesic is replaced by a maximizing time-like geodesic, cf. §5. Then one has the
following result on 4-manifolds, cf. [4].

Theorem 2.3. (Convergence II). Let M be a 4-manifold. Then the conclusions of Theorem 2.2
hold under the bounds

(2.10) |Ric| <k, Croy > ¢, vol > v,, diam < D.

The proof is the same as that of Theorem 2.2. The lower bound on Cro; implies that on the blow-
up limit (N, §oo, Zoo) above, one has a line. Hence, the splitting theorem implies that N = N’ x R.
It follows that N’ is Ricci-flat and hence, since dimN' = 3, N’ is flat. Using the volume bound
in (2.10), it follows that (N,gs) = (R*, go), cf. (2.12)-(2.13) below. (The volume bound rules
out the possibility that N’ is a non-trivial flat manifold of the form R3/T"). This gives the same
contradiction as before.
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Of course, in dimension 3 any Ricci-flat manifold is necessarily flat, and so the same proof shows
that one has C® and L?P precompactness within the class of metrics on 3-manifolds satisfying

(2.11) |Ric| <k, vol > v,, diam < D.
Thus, no assumptions on inj or Cro; are needed in dimension 3.

Remark 2.4. (i). Although (2.4) gives the existence of a lower bound on 7, in terms of the
bounds k, i, and D, currently there is no proof of an effective or computable bound. Equivalently,
there is no direct proof of Theorem 2.2, which does not involve a passage to limits and invoking a
contradiction. This is closely related to the fact there is currently no quantitative or finite version
of the Cheeger-Gromoll splitting theorem, where one can deduce definite bounds on the metric in
the presence of (a collection of) minimizing geodesics of a finite but definite length.

If however the bound on |Ric| in (2.3) is strengthened to a bound on |Riem/|, as in (1.4), then it
is not difficult to obtain an effective or computable lower bound on 7, cf. [36].

(ii). The proof above can be easily adapted to give a similar result if the L* bound on Ric is
replaced by an L4 bound, for some ¢ > n/2; one then obtains convergence in weak L%9.

In the opposite direction, the convergence can be improved if one has bounds on the derivatives
of the Ricci curvature. This will be the case if Ric satisfies an elliptic system of PDE, for instance
the Einstein equations. In this case, one obtains C'*™° convergence to the limit.

(iii). The assumption that M is closed in Theorem 2.2 is merely for convenience, and an
analogous result holds for open manifolds, away from the boundary.

The bounds on injectivity radius in (2.3), or even the 1-cross in (2.10), are rather strong and one
would like to replace them with just a lower volume bound, as in (2.11).

An elementary but important result, the volume comparison theorem of Bishop-Gromov [31],
[43], states that if Ric > (n — 1)k, for some k, on (M, g), n = dimM, then the ratio

vol By(r)

(2.12) vol Bg(r)

is monotone non-increasing in r; here volBg(r) is the volume of the geodesic r-ball in the n-
dimensional space form of constant curvature k. In particular, if the bounds (2.11) hold, in dimen-
sion n, then (2.12) gives a lower bound on the volumes of balls on all scales:
vol M

2.13 | B > ————— - volBy(r).
(2.13) vol By (1) > 2ol Br(D) vol By ()
Note that the estimate (2.13) also implies that, for any fixed r > 0, if volB,(r) > vy > 0, then
volBy(r) > v1 > 0, where v; depends only on vg and diste(z,y). Thus, the ratio of the volumes of
unit balls cannot become arbitrarily large or small on domains of bounded diameter.

Now a classical result of Cheeger [16] implies that if (2.11) is strengthened to

(2.14) Kp > —K, vol > v,, diam < D,

where Kp is the sectional curvature of any plane P in the tangent bundle T'M, then one has a
lower bound on the injectivity radius, injs(M) > iy(K,v,, D). However, it was observed in [2] that
this estimate fails under the bounds (2.11). It is worthwhile to exhibit a simple concrete example
illustrating this.

Example 2.5. Let gy be the family of Eguchi-Hanson metrics on the tangent bundle T'S? of §2.
The metrics gy are given explicitly by

(2.15) or = 11— V7 40200 = ()90 + 763+ 63).

T
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Here 601,6,05 are the standard left-invariant coframing of SO(3) = RP3, (the sphere bundles in
TS?) and r > A. The locus 7 = ) is the image of the 0-section and is a totally geodesic round S2(\)
of radius A.

The metrics gy are Ricci-flat, and are all homothetic, i.e. are rescalings (via diffeomorphisms) of
a fixed metric; in fact,

(2.16) g =223 (g0),

where 9, (r) = Ar, and ) acts trivially on the SO(3) factor. As A — 0, i.e. as one blows down
the metrics, gy converges to the metric go, the flat metric on the cone C(RP?). The convergence is
smooth in the region 7 > r,, for any fixed r, > 0, but is not smooth at 7 = 0. Since S%()) is totally
geodesic, the injectivity radius at any point of $%()) is 27\, which tends to 0. On the other hand,
the volumes of unit balls, or balls of any definite radius, remain uniformly bounded below.

One sees here that the metrics (T'S?, g)) converge as A — 0 to a limit metric on a singular space
C(RP3). The limit is an orbifold R* /Zy, where Z5 acts by reflection in the origin.

The Eguchi-Hanson metric is the first and simplest example of a large class of Ricci-flat ALE
(asymptotically locally Euclidean) spaces, whose metrics are asymptotic to cones C(S3/T), T C
SO(4), on spherical space forms. This is the family of ALE gravitational instantons, studied in
detail by Gibbons and Hawking, cf. [30] and references therein, in connection with Hawking’s
Euclidean quantum gravity program.

It is straightforward to modify the construction in Example 2.5 to obtain orbifold degenerations
on compact 4-manifolds satisfying the bounds (2.11). Thus, one does not have C*® or even C°
(pre)-compactness of the space of metrics on M under the bounds (2.11). Singularities can form
in passing to limits, although the singularities are of a relatively simple kind. The next result from
[1] shows that this is the only kind of possible degeneration or singularity formation.

Theorem 2.6. (Convergence III). Let {g;} be a sequence of metrics on a 4-manifold, satisfying
the bounds

(2.17) |Ric| <k, vol > v,, diam < D.

Then a subsequence converges, (in the Gromov-Hausdorff topology), to an orbifold (V,g), with a
finite number of singular points {q;}. Each singular point q has a neighborhood homeomorphic to a
cone C(S3/T), for T a finite subgroup of SO(4).

The metric g is CY* or L*P on the reqular set

Vo =V \U{gj},
and extends in a local uniformization of a singular point to a C° Riemannian metric. Further,
there are embeddings
Fi:Vo—-M

such that F}(g;) converges in the Cb® topology to the metric g.

Here, convergence in the Gromov-Hausforff topology means convergence as metric spaces, cf. [31],
[43]. We mention only a few important issues in the proof of Theorem 2.6. First, the Chern-Gauss-
Bonnet formula implies that for metrics with bounded Ricci curvature and volume on 4-manifolds,
one has an apriori bound on the L? norm of the full curvature tensor:

=L / R4V < x(M) + O(k, V,),
M

where C(k,V,) is a constant depending only on k from (2.17) and an upper bound V, on vol,M:
Xx(M) is the Euler characteristic of M. Second, with each singular point ¢ € V, there is a associated
a sequence of rescalings g; = )\?gi, Ai — 00, and base points z; € M, x; — q, such that a subsequence
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of (M, g;, z;) converges in C1®* N L?P to a non-trivial Ricci-flat ALE space (N, goo) as above. It is
not difficult to see that any such ALE space has a definite amount of curvature in L?. This implies
basically that there are only a finite number of such singular points. Further, the ALE spaces N
are embedded in M, in a topologically essential way.

3. CoLLAPSE/FORMATION OF CUSPS.

In this section, we consider what happens when
vol - 0 or diam — o

in the bounds (2.11). This involves the notion of Cheeger-Gromov collapse, or collapse with bounded
curvature.

For simplicity, we restrict the discussion to dimension 3. While there is a corresponding theory in
higher dimensions, cf. [18], there are special and advantageous features that hold only in dimension
3 in general. Further, the relations with general relativity are most direct in dimension 3, in that
the discussion can be applied to the behavior of space-like hypersurfaces in a given space-time.

The simplest non-trivial example of collapse is the Berger collapse of the 3-sphere along S! fibers
of the Hopf fibration. Thus, consider the family of metrics on S® given by
(3.1) gx = A?01 + (63 + 63),
where 01,0, 05 are the standard left-invariant coframing of S3. The metrics gy have an isometric S*
action, with Killing field K dual to 6;, with length of the S* orbits given by 2w ). Thus, in letting
A — 0, one is blowing down the metric in one direction. (This is exactly what occurs on approach
to the horizon of the Taub-NUT metric, cf. [35]). A simple calculation shows that the curvature
of g) remains uniformly bounded as A — 0. Clearly voly, S ~ X\ — 0. The metrics g, collapse S*
to a limit space, in this case S2.

This same procedure may be carried out, with the same results, on any 3-manifold (or n-manifold)
which has a free or locally free isometric S' action; locally free means that the isotropy group of
any orbit is a finite subgroup of S', i.e. there are no fixed points of the action. Similarly, one
may collapse along the orbits, as in (3.1), of a locally free T*-action, where T* is the k-torus.
Remarkably, Gromov [32] showed that more generally one may collapse along the orbits of an
isometric nilpotent group action, and furthermore, such groups are only groups which allow such
a collapse with bounded curvature. Thus for instance collapsing along the orbits of an isometric
G-action, where G is semi-simple and non-abelian, increases the curvature without bound.

A 3-manifold which admits a locally free S! action is called a Seifert fibered space. Such a space
admits a fibration over a surface V, with S' fibers. Where the action is free, this fibration is a
circle bundle. There may exist an isolated collection of non-free orbits, corresponding to isolated
points in V. Topologically, a neighborhood of such an orbit is of the form D? x S', where the S!
acts by rotation on the S' factor and by rotation through a rational angle about {0} in D2.

The collection of Seifert fibered spaces falls naturally into 6 classes, according to the topology
of the base surface V, i.e. V = 82, T?, or Y4, g > 2, and according to whether the S! bundle is
trivial or not trivial. These account for 6 of the 8 possible geometries of 3-manifolds in the sense

——

of Thurston [46]. These geometries are: S? x R, R3, H? x R, $3, Nil, and SL(2,R), respectively.
The two remaining geometries are Sol, corresponding to non-trivial torus bundles over S!, and the
hyperbolic geometry H?3.

Now suppose N is a compact Seifert fibered space with boundary. The boundary is a finite
collection of tori, on which one has a free S! action. In a neighborhood of the boundary, this S*
action then embeds in the standard free T2 action on T2 x I. Given a collection of such spaces Nj,
one may then glue the toral boundaries together by automorphisms of the torus, i.e. by elements
of SL(2,7Z). For example, the glueing may interchange the fiber and base circles.
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Definition 3.1. A graph manifold G is a 3-manifold obtained by glueing Seifert fibered spaces by
toral automorphisms of the boundary tori.

Thus, a graph manifold has a decomposition into two types of regions,
(3.2) G=SUL.

Each component of S is a Seifert fibered space, while each component of L is T2 x I, and glues
together different boundary components of elements in S. The exceptional case of glueing two
copies of T? x I by toral automorphisms of the boundary is also allowed; this defines the class of
Sol manifolds, up to finite covers. The Seifert fibered components have a locally free S' action, the
T? x I components have a free T action; in general, these group actions do not extend to actions
on topologically larger domains.

Graph manifolds are an especially simple class of 3-manifolds; they were introduced, and their
structure was completely classified, by Waldhausen [48]. The terminology comes from the fact that
one may associate a graph to G, by assigning a vertex to each component of S, and an edge to each
component of L which connects a pair of components in S.

It is not difficult to generalize the construction above to show that any closed graph manifold G
admits a sequence of metrics g; which collapse with uniformly bounded curvature, i.e.

(3.3) |Ricg;| <k, wolg,G — 0.

The metrics g; collapse the Seifert fibered pieces along the S' orbits, while collapsing the toral
regions T2 x I along the tori. Thus the collapse is rank 1 along S, while rank 2 along L. (Of course
a bound on the full curvature is the same as a bound on the Ricci curvature in dimension 3).

If the graph manifold is Seifert fibered, then the collapse (3.3) may be carried out with bounded
diameter,

(3.4) diamg; S < D, for some D < oc.

In fact, if S is a Nil-manifold, then the collapse may be carried out so that diamg, S — 0, cf. [32].
On the other hand, suppose G is non-trivial in that it has both S and L components. If N
denotes any S or L component, then it follows from work of Fukaya [27] that

(3.5) diamg, N — 0o

under the bounds (3.3). This phenomenon can be viewed as a refinement of the remark following
(2.13), in that one has uniform control on the relative size of the injectivity radius on domains of
bounded diameter, (cf. also [31]). In particular, the transition from Seifert fibered domains to toral
domains takes longer and longer distance the more collapsed the metrics are. One obtains different
collapsed “limits” depending on choice of base point. This “pure” behavior on regions of bounded
diameter is special to dimension 3, cf. [5] for further details.

The discussion above shows that one may collapse graph manifolds with bounded curvature. The
Cheeger-Gromov theory, [18], see also [33], implies that the converse also holds.

Theorem 3.2. (Collapse). If M is a closed 3-manifold which collapses with bounded curvature,
i.e. there is a sequence of metrics such that (3.8) holds, then M is a graph manifold.

In fact, this result holds if M admits a sufficiently collapsed metric, i.e. |Ricy| < k and volg M <
€0, for some € = ¢,(k) sufficiently small. Note of course that a collapsing sequence of metrics g; is
not necessarily invariant under the S' or T2 actions associated with the graph manifold structure;
these local group actions are smooth actions, but need not be isometric w.r.t. a highly collapsed
metric.

In a certain sense, the vast majority of 3-manifolds are not graph manifolds, and so Theorem 3.2
gives strong topological restrictions on the existence of sufficiently collapsed metrics.
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Idea of proof: First, it is easy to see from elementary comparison geometry, cf. [43], that
v0lg; Bz (1) — 0 = injg, (z) — 0.
At any z, rescale the metrics g; to make inj(z) = 1, i.e. set

gi = linjg, ()] - gi.
Now the bound (3.3) gives |Rics| ~ 0. Thus, the metrics g; are close to flat metrics on R3/T,
where T' is a non-trivial discrete group of Euclidean isometries, (by Theorem 2.2 for instance).
Thus, essentially, R3 /T = R? x S!, or R x §! x §1. Tt follows that the local geometry, i.e. the
geometry on the scale of the injectivity radius, is modeled by non-trivial, flat 3-manifolds. One then
shows that these local structures for the geometry and topology can be glued together consistently
to give a global graph manifold structure.

If S is a closed Seifert fibered space, the orbits of the S! action always inject in 71 (5), i.e.
m1(81) < mi(S),

unless § = $3/T. In case S has non-empty toral boundary components, the tori in S always inject
in 71 (S) except in the single case of S = D? x S, cf. [41]. Thus, if a graph manifold G is not a
spherical space form, or does not have a solid torus component in its Seifert fibered decomposition
(3.2), then the fibers of the decomposition, namely circles and tori, always inject in 71:

(3.6) m1(fiber) = w1 (G).

Hence, in this situation, one can pass to covering spaces to unwrap any collapse. If g; is a collapsing
sequence of metrics, by passing to larger and larger covering spaces, based sequences will always
have convergent subsequences (in domains of arbitrary but bounded diameter). In addition, the
isometric covering transformations on the covers have displacement functions converging uniformly
to 0 on compact subsets. Hence, all such limits have a free isometric S' or T? action, depending
on whether the collapse is rank 1 or 2 on the domains. This means that the limits have an extra
symmetry not necessarily present on the initial collapsing sequence. Again, this feature of being
able to unwrap collapse by passing to covering spaces is special to dimension 3, cf. [5] for further
discussion and applications.

Finally, we discuss the third possibility, the formation of cusps. This case, although the most
general, corresponds to a mixture of the two previous cases convergence/collapse, and so no essen-
tially new phenomenon occurs. To start, given a complete Riemannian manifold (M, g), choose ¢ >
0 small, and let

(3.7) M® ={x € M :volBy(1) > e}, M. ={xz € M :volBz(1) < €}.

M?* is called the e-thick part of (M, g), while M, is the e-thin part.

Now suppose g; is a sequence of complete Riemannian metrics on the manifold M.
o If x; € M°®, for some fixed ¢ > 0, then one has convergence, (in subsequences), in domains of
arbitrary but bounded diameter about {z;}, see the discussion concerning (2.13). Essentially, the
bounds (2.11) hold on such domains in this case.
o If y; € M, _, for ¢, sufficiently small, then domains of bounded, depending on ¢,, diameter about
{yi} are graph manifolds, in fact Seifert fibered spaces.
o If z; € M,,, &, — 0, then domains of arbitrary but bounded diameter about {z;} are collapsing.

If (M., g;) = 0, for some fixed ¢ > 0, then one is in the convergence situation. If (M¢,g;) = 0,
for all ¢ > 0 sufficiently small, depending on %, then one is in the collapsing situation. The only
remaining possibility is that, for any fixed small € > 0,

(38) (Msagl) 7& wa and (Msagz) 7é 0.



12

This is equivalent to the existence of base points x;, y;, such that,
(3.9) v0l By, (1) > €1, wolBy, (1) — 0,

for some 1 > 0. Observe that the volume comparison theorem (2.13) implies that distg, (z;,y;) — oo
as 1 — 00, so that these different behaviors become further and further distant as i — oc.
This leads to the following result, cf. [5], [18] for further details.

Theorem 3.3. (Cusp Formation). Let M be a 8-manifold and g; a sequence of unit volume
metrics on M with uniformly bounded curvature, and satisfying (3.8). Then pointed subsequences
(M, gi,p;) converge to one of the following:

e complete cusps (N, goo,Poo)- These are complete, open Riemannian 3-manifolds, of finite volume
and with graph manifold ends, which collapse at infinity. The convergence is in the CY® and weak
L?P topologies, uniform on compact subsets.

e Graph manifolds collapsed along local S* or T? actions to lower dimensional metric spaces of
infinite diameter. The convergence is in the Gromov-Hausdorff topology.

In contrast to the topological implications of collapse in Theorem 3.2, (i.e collapse implies M is a
graph manifold), in general there are no apriori topological restrictions on M imposed by Theorem
3.3. To illustrate, let M be an arbitrary closed 3-manifold and let {C} be a collection of disjoint
solid tori D? x S* embedded in M; for example {C}} may be a tubular neighborhood of a (possibly
trivial) link in M. Then it is not difficult to construct a sequence of metrics of bounded curvature
which converge to a collection of complete cusps on M \ UCy, and collapse along the standard graph
manifold structure on each Cj.

The ends of the cusp manifolds N in Theorem 3.3, i.e. the graph manifolds, necessarily have
embedded tori. If such tori are essential in M, i.e. inject on the 7 level, then Theorem 3.3. does
imply strong topological constraints on the topology of M; cf. §6 for some further discussion.

Remark 3.4. We point out that there are versions of Theorems 3.2 and 3.3 also in dimension 4,
as well as in higher dimensions. The concept of graph manifold is generalized to manifolds having
an “F-structure”, or an “N-structure” (F is for flat, N is for nilpotent), cf. [18], provided bounds
are assumed on the full curvature, as in (1.4). In dimension 4, this can be relaxed to bounds on the
Ricci curvature, as in (1.5), provided one allows for a finite number of singularities in F-structure,
as in Theorem 2.6.

4. APPLICATIONS TO STATIC AND STATIONARY SPACE-TIMES.

In this section, we discuss applications of the results of §2-3 to static and stationary space-times,
i.e. space-times (M, g) which admit a time-like Killing field K. These space-times are viewed as
being the end or final state of evolution of a (time dependent) gravitational field. Since they are
time-independent in a natural sense, they may be analysed by methods of Riemannian geometry,
which are not available in general for Lorentzian manifolds.

Throughout this section, we assume that (M, g) is chronological, i.e. (M, g) has no closed
time-like curves, and that K is a complete vector field.

Let 3 be the orbit space of the isometric R-action generated by the Killing field K, and let
7 : M — 3 be the projection to the orbit space. The 4-metric g has the form

(4.1) g = —u?(dt + 0)* + 7*(g),

where K = 0/0t,0 is a connection 1-form for the bundle 7, u?> = —g(K, K) > 0 and g = gy is the
metric induced on the orbit space.

The vacuum Einstein equations are equivalent to an elliptic system of P.D.E’s in the data
(2,9,u,0). Let w be the twist 1-form on ¥, given by 2w = *(k A ds) = —u* * df, where
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k = —u?(dt + 0) is the 1-form dual to K. (The first * operator is on M while the second is
on X). Then the equations on ¥ are:

(4.2) Ricy = u ' D*u+ 2u™(w @ w — |w|?g),

(4.3) Au = —2u3|w|?,

(4.4) dw = 0.

The maximum principle applied to (4.3) immediately implies that if ¥ is a closed 3-manifold,
then (3,g) is flat and u = const, and so (M, g) is a (space-like) isometric quotient of empty
Minkowski space (R*,7). Thus, we assume ¥ is open, possibly with boundary.

Locally of course there are many solutions to the system (4.2)-(4.4); to obtain uniqueness, one
needs to impose boundary conditions.

We consider first the global situation, and so assume that (3,g) is a complete, non-compact
Riemannian 3-manifold. Boundary conditions are then at infinity, i.e. conditions on the asymptotic
behavior of the metric. In this respect, one has the following classical result, cf. [37], [24].

Theorem 4.1. (Lichnerowicz). The only complete, stationary vacuum space-time (M, g) which
is asymptotically flat (AF) is empty Minkowski space-time (R* 7).

It is most always taken for granted that 3 should be AF. Stationary space-times are meant to
model isolated physical systems, and the only physically reasonable models are AF, since in the far-
field regime, general relativity should approximate Newtonian gravity. In fact, from this physical
perspective, the Lichnerowicz theorem may be viewed as a triviality. Since there is no source for
the gravitational field, it must be the empty Minkowski space-time.

However, mathematically, the Lichnerowicz theorem is not (so) trivial. Moreover, the assumption
that (M, g) is AF is contrary to the spirit of general relativity. Such a boundary condition is
adhoc, and its imposition is mathematically circular in a certain sense. Apriori, there might well
be complete stationary solutions for which the curvature does not decay anywhere to 0 at infinity.
From this more general perspective, one should be able to deduce that the far-field regime of
stationary space-times is necessarily AF and not have to assume this to begin with.

The following result from [6] clarifies this issue.

Theorem 4.2. (Generalized Lichnerowicz). The only complete stationary vacuum space-time
(M, g) is empty Minkowski space-time (R*,n), or a discrete isometric quotient of it.

The starting point of the proof of this result is to study first the moduli space of all complete
stationary vacuum solutions. As noted above, any given solution may, apriori, have unbounded
curvature, i.e. |Ricy| may diverge to infinity on divergent sequences in . Under such a condition,
the first step is then to show, by taking suitable base points and rescalings, that one may obtain a
new stationary vacuum solution, (i.e. a new point in the moduli space), with uniformly bounded
curvature, and non-zero curvature at a base point. This step uses the Cheeger-Gromov theory, as
described in §2-§3, and requires the special features of collapse in 3-dimensions.

The next step in the proof is to recast the problem in the Ernst formulation. Define the confor-
mally related metric g by

(4.5) g = u’g.
A simple calculation shows that (4.2) becomes

(4.6) Ricg = 2(dInu)* + 2u 4w? > 0.
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Further, the system (4.2)-(4.4) becomes the Euler-Lagrange equations for an effective 3-dimensional

action given by
1,|d¢|? + |du?|?
S = [1r- P Dy
Here ¢ is the twist potential, given by d¢ = 2w. (In general one must pass to the universal cover
to obtain the existence of ¢).
This action is exactly 3-dimensional (Riemannian) gravity on (X,q) coupled to a o-model with
target the hyperbolic plane (H?(—1),g_1). Thus, the Ernst map E = (¢,4?) is a harmonic map

(4.7) B: (S, » (H2(-1),g-1).

Now it is well-known that harmonic maps E : (M,g) — (N,h) from Riemannian manifolds of
non-negative Ricci curvature to manifolds of non-positive sectional curvature have strong rigidity
properties, via the Bochner-Lichnerowicz formula,

1 . * %
(4.8) SAIDE = |D*E[* + (Ricg, B*(h)) — Y J(E"Ry)(ei, €, 5, €:).

By analysing (4.8) carefully, one shows that E is a constant map, from which it follows easily that
(M, g) is flat.

Remark 4.3. (i). The same result and proof holds for stationary gravitational fields coupled to
o-models, whose target spaces are Riemannian manifolds of non-positive sectional curvature, i.e.
E:(%,9) = (N,gn) with Riemg, <O0.

(ii). Curiously, the Riemannian analogue of Theorem 4.2 remains an open problem. Thus, does
there exist a complete non-flat Ricci-flat Riemannian 4-manifold which admits a free isometric S*
action?

(iii). It is interesting to note that the analogue of Theorem 4.2 is false for stationary Einstein-
Maxwell solutions. A counterexample is provided by the (static) Melvin magnetic universe [39],
cf. also [28]. I am grateful to David Garfinkle for pointing this out to me. For the station-
ary Einstein-Maxwell system, the target space of the Ernst map is SU(2,1)/S(U(1,1) x U(1)),
(SO(2,1)/S0(1,1) for static Einstein-Maxwell). Both of these target spaces have indefinite, (i.e.
non-Riemannian), metrics.

The rigidity result Theorem 4.2 leads to apriori estimates on the geometry of general stationary
solutions of the Einstein equations. Thus, if ¥ is not complete, it follows that 9X # (). Note that
part of 9% may correspond to the horizon H = {u = 0} where the Killing field vanishes. The
following result is also from [6].

Theorem 4.4. (Curvature Estimate). Let (M, g) be a stationary vacuum space-time. Then
there is a constant C < oo, independent of (M, g), such that

(4.9) IR|(z) < C/r[z],
where r[z] = disty (7 (x), 0%).
Here, the curvature norm |R| may be given by
IR|?> = |Rs|? + |[dInu|? + [u—2w|?

Note that Theorem 4.2 follows from Theorem 4.4 by letting r — oo. Conversely, it is a general
principle for elliptic geometric variational problems that a global rigidity result as in Theorem 4.2
leads to apriori local estimates as in Theorem 4.4.

Remark 4.5. (i). Using elliptic regularity, one also has higher order bounds:
(4.10) |VFR|(z) < Cp/r*F[z].
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(ii). A version of this result also holds for stationary space-times with energy-momentum tensor
T. Thus, for example one has

(4.11) IR|(z) < Co - |Tlce (5,1

for any o > 0, where B, (1) is the unit ball in (3, g) about [z]. The proof is the same as that of
(4.9) given in [6].

Thus, one can use the Cheeger-Gromov theory to control the local behavior of stationary space-
times, possibly with matter terms, away from any boundary.

The results above can in turn be applied to study the possible asymptotic behavior of general
stationary or static vacuum space-times, without any apriori AF assumption. For example, (4.9)
implies that the curvature decays at least quadratically in any end (F, g) of (%, g). For simplicity,
we restrict here to static space-times.

Thus, let (M, g) be a static space-time with orbit space (%, g), with 93 # (). Define 9% to be
pseudo-compact if there exists r, > 0 such that the level set {r = r,} in ¥ is compact; recall that r
is the distance function to the boundary 9%. (There are numerous examples of static space-times
for which 0% is non-compact, with 9% pseudo-compact). Let S(s) = !(s) C 3. If E is an end of
(%, g), define its mass mg by

1
(4.12) mg = lim — (Vinu, Vr)dA.
s—o0 47 5(3)
It is easily seen from the static vacuum equations that the integral is monotone non-increasing in
s, and so the limit exists. The mass mpg coincides with the Komar mass in case F is AF. The
following result is from [7].

Theorem 4.6. (Static Asymptotics). Let (M, g, u) be a static vacuum space-time with pseudo-
compact boundary. Then (M, g) has a finite number of ends. Any end E on which

(4.13) lirr%infu > 0,
15 either:
AF
or
[e.e]
(4.14) small =g, / [areaS(r)] " dr < co.
1

Further, if mg # 0 and supgpu < oo, then E is AF.

This result is sharp in the sense that if any of the hypotheses are dropped, then the conclusion
is false. For instance, if (4.13) fails, then there are examples of static vacuum solutions with ends
neither small nor AF.

We note that when F is AF, the result implies it is AF in the strong sense that

(415) 9- 90l = 2 +0G™), [R|=0(™), and Ju—1] = ™ +0(™2).

More precise asymptotics can then be obtained by using standard elliptic estimates on the equations
(4.2)-(4.4), or from [14]. Again, a version of Theorem 4.6 holds for static space-times with matter,
cf. again [7] for further information.

The idea of the proof is to study the asymptotic behavior of an end E by blowing it down, as
described in §1. Thus, for R large and any fixed k, consider the metric annuli A(R,kR) about
some base point z, € (X, g) and consider the rescalings gz = R~2g. The annulus A(R, kR) then
becomes an annulus of the metric form A(1,%k) w.r.t. gg. Further, the estimate (4.9) implies that
the curvature of gr in A(1,k) is uniformly bounded. Thus, one may apply the Cheeger-Gromov
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theory as described in §2,83, to a sequence (A(1,k),gr;), with R; — oco. One proves that the
convergence case gives rise to AF ends, while the collapse case gives rise to small ends.

Note that in the collapsing situation, one obtains an extra S or 72 symmetry when the collapse
is unwrapped in covering spaces. Thus, the behavior in this case is described by axisymmetric static
solutions, i.e. the Weyl metrics. Small ends typically have the same end structure as R? x S', where
the S' factor has bounded length and so typically have at most quadratic growth for the area of
geodesic spheres.

It is worth pointing out that there are static vacuum solutions, smooth up to a compact horizon,
which have a single small end. This is the family of Myers metrics [40], or periodic Schwarzschild
metrics, (discovered later and independently by Korotkin and Nicolai). The manifold ¥ is topolog-
ically (D? x S1)\ B3, so that 0% = S? with a single end of the form 72 x Rt. Metrically, the end
is asymptotic to one of the (static) Kasner metrics. This is of course not a counterexample to the
static black hole uniqueness theorem, since the end is not AF.

Note that since 71(X) = Z here, one may take non-trivial covering spaces of the Myers metrics.
This leads to static vacuum solutions with an arbitrary finite number, or even an infinite number,
of black holes in static equilibrium. This situation is of course not possible in Newtonian gravity,
and so is a highly non-linear effect of general relativity.

5. LORENTZIAN ANALOGUES AND OPEN PROBLEMS.

In this section, we discuss potential analogues of the results of §2 and §3 for Lorentzian metrics
on 4-manifolds. The main interest is in space-times (M, g) for which one has control on the
Ricci curvature of g, or via the Einstein equations, control on the energy-momentum tensor 7. In
particular, the main focus will be on vacuum space-times, Ricg = 0.

One would like to find conditions under which one can take limits of vacuum space-times. One
natural reason for trying to do this is the following. There are now a number of situations where
global stability results have been proved, namely: the global stability of Minkowski space-time
[21], and of deSitter space-time [26], the global future stability of the Milne space-time [10], and
the future U(1) stability of certain Bianchi models [20]. These results are openness results, which
state that the basic features of a given model, e.g. Minkowski, are preserved under suitably small
perturbations of the initial data. It is then natural to consider what occurs when one tries to pass
to limits of such perturbations.

The issue of being able to take limits is also closely related with the existence problem and
singularity formation for the vacuum Einstein evolution equations. From this perspective, suppose
one has an increasing sequence of domains (£2;,8;), € C Q41 with gii1|o, = gi, which are
evolutions of smooth Cauchy data on some fixed initial data set. If M = U{); is the maximal
Cauchy development, then understanding (M, g) amounts to understanding the limiting behavior
of (€, 8i)-

There are two obvious but essential reasons why it is much more difficult to develop a Lorentzian
analogue of the Cheeger-Gromov theory, in particular with bounds only on the Ricci curvature.
The first is that the elliptic nature of the P.D.E. for Ricci curvature becomes hyperbolic for Lorentz
metrics, and hyperbolic P.D.E. are much more difficult than elliptic P.D.E. The second is that the
group of Euclidean rotations O(4) is compact, while the group of proper Lorentz transformations
0(3,1) is non-compact.

A: 15 Level Problem.
Consider first the problem of controlling the space-time metric g in terms of bounds, say L,
on the space-time curvature R,

(5.1) IR|p= < K < o0,
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since already here there are significant issues.

First, the norm of curvature tensor [R|? = RijklRijkl is no longer non-negative for Lorentz
metrics, and so a bound on |R|? does not imply a bound on all the components R;jk. In fact, for
a Ricci-flat 4-metric, there are exactly two scalar invariants of the curvature tensor:

(5.2) (R,R) = [R|” = RijuR"" and (R, *R) = Riju(+R’").

Both of these invariants can vanish identically on classes of Ricci-flat non-flat space-times; for
instance this is the case for the class of plane-fronted gravitational waves, given by

g = —dudv + (dz? + dy?) — 2h(u, z,y)du?,

Afpyyh =0,

cf. [15,88] and references therein. Here, h is only required to harmonic in the variables (z,y), and
is arbitrary in u. The class of such space-times is highly non-compact, and so one has no local
control of the metric in any coordinate system under bounds on the quantities in (5.2).

T,y

Thus, one must turn to bounds on the components of R in some fixed coordinate system or
framing. The most efficient way to do this is to choose a unit time-like vector T' = e, say future
directed, and extend it to an orthornormal frame e,, 0 < o < 3. Since the space T orthogonal to
T is space-like and O(3) is compact, the particular framing of 7+ is unimportant. One may then
define the norm w.r.t. T by

(5.3) RI7 =D (Rijw)’,

where the components are w.r.t. the frame e,. This is equivalent to taking the norm of R w.r.t.
the Riemannian metric

ge =g+2T'QT.

If, at a given point p, T lies within a compact subset W of the future interior null cone Tp+,
then the norms (5.3) are all equivalent, with constant depending only on W. Of course if D is a
compact set in the space-time (M, g) and the vector field T is continuous in D, then T lies within
a compact subset of T+ D, where T+ D is the bundle of future interior null cones in the tangent
bundle T'D.

It is quite straightforward to prove that if (M, g) is a smooth Riemannian manifold with an L>
bound on the full curvature, |R| < K then there are local coordinate systems in which the metric
is Cb* or L?P, with bounds depending only on K and a lower volume bound, cf. Remark 2.4(i).

However, this has been an open problem for Lorentzian metrics, apparently for some time, cf.
[22],[47] for instance. The following result gives a solution to this problem.

To state the result, we need the following definition. Let €2 be a domain in a smoooth Lorentz
manifold (M, g), of arbitrary dimension n + 1. Then (2 is said to satisfy the size conditions if the
following holds. There is a smooth time function ¢, with T = Vt/|Vt| the associated unit time-like
vector field on €, such that, for § = Sy = t~1(0), the 1-cylinder

(5.4) C1 = Bp(1) x [-1,1] cC 9,

i.e. C) has compact closure in Q. Here B,(1) is the geodesic ball of radius 1 about p, w.r.t. the
metric g induced on S and the product is identified with a subset of €2 by the flow of T'.

It is essentially obvious that any point ¢ in a Lorentz manifold has a neighborhood satisfying the
size conditions, when the metric g is scaled up suitably.

Let D = ImT|c, CCTTQ.
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Theorem 5.1. Let Q be a domain in a vacuum (n + 1)-dimensional space-time (M, g). Suppose
Q satisfies the size conditions, and that there exist constants K < oo and v, > 0 such that

(5.5) Rir < K, volgBy(3) > v,.
Then there exists r, > 0, depending only on K,v, and D, and coordinate charts on the r,-cylinder
C7"o = Bp(ro) X [_Toa’ro]a

such that the components of the metric gog are in CheNL?P, for any a < 1, p < 0.
Further, there exists R,, depending only on K, v,, D and p, such that, on C,_,

(5.6) I8asllr2e < Ro.

Here, the components g,z are the full space-time components of g, and the estimate (5.6) gives
bounds on both spatial and time derivatives of g, up to order 2, in LP, where LP is measured on
spatial slices of Cy,.

This result is formulated in such a way that it is easy to pass to limits. Thus, if one has a
sequence of smooth space-times (M;,g;) satisfying the hypotheses of the Theorem, (with fixed
constants K, v, and uniformly compact domains D), then it follows that, in a subsequence, there
is a limit C1® N L?P space-time (Moo, goo ), defined at least on the r,-cylinder C, . Further, the
convergence to the limit is C%* and weak L*P, and the estimate (5.6) holds on the limit.

We sketch some of the ideas of the proof; full details appear in [9]. First, one constructs a
new local time function 7 on small cylinders C,,, with |V7|? = —1, so the flow of V7 is by time-
like geodesics. On the level sets X, of 7, one constructs spatially harmonic coordinates {z;},
(w.r.t. the induced Riemannian metric). This gives a local coordinate system (7,z1,...,2,) on
small cylinders about p. One then uses the transport or Raychaudhuri equation, together with the
Bochner-Weitzenbock formula, (Simons’ equation), and elliptic estimates to control gqg.

The vacuum Einstein equations are needed in Theorem 5.1 only to prove the 2" time derivatives
of the shift 9,0,g0, are in LP, via use of the Bianchi identity. In place of vacuum space-times,
it suffices to have a rather weak bound on the stress-energy tensor in the Einstein equations. All
other bounds on g,s do not require the Einstein equations.

It would be interesting to apply this result, or variants of it, to obtain further information on
the structure of the boundary of space-times.

If the volume bound on space-like hypersurfaces in (5.5) is dropped, then it is possible that
space-like hypersurfaces may collapse with bounded curvature, as described in §3. Examples of
this behavior occur on approach to Cauchy horizons, (as noted in §3 in connection with the Berger
collapse and the Taub-NUT metric). More generally, Rendall [45] has proved the following inter-
esting general result: if 3 is a compact Cauchy horizon in a smooth vacuum space-time in 3+1
dimensions, then nearby space-like hypersurfaces collapse with bounded curvature on approach to
3.

B: 2"¢ Level Problem.

While Theorem 5.1 represents a first step, one would like to do much better by replacing the
bound on |R|r by a bound on the Ricci curvature of (M, g), or assuming for instance the vacuum
Einstein equations. Thus, one may ask if analogues of Theorems 2.2 or 2.3 hold in the Lorentzian
setting.

The main ingredients in the proofs of these results are the splitting theorem - a geometric part -
and the strong convergence to limits - an analytic part obtained from elliptic estimates for the Ricci
curvature. Now one does have a direct analogue of the splitting theorem for vacuum space-times,
(or more generally space-times satisfying the time-like convergence condition). Thus, by work of
Eschenburg, Galloway and Newman, if (M, g) is a time-like geodesically complete, (or a globally
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hyperbolic), vacuum space-time which contains a time-like line, i.e. a complete time-like maximal
geodesic, then (M, g) is flat, cf. [13] and references therein.

In analogy to the Riemannian case, define then the 1-cross Cro;(z,T) of a Lorentzian 4-manifold
(M, g) at z, in the direction of a unit time-like vector 7', to be the length of the longest maximizing
geodesic in the direction T', with center point z. For € a domain with compact closure in M and
T a smooth unit time-like vector field, define

Croi1(,T) = inf Croy(z,T).
T€EQN

What is lacking is the regularity boost obtained from elliptic estimates. For space-times, the
vacuum equations give a hyperbolic evolution equation, (in harmonic coordinates), for which one
does not have a gain in derivatives. However, the smoothness of initial data is preserved under the
evolution, until one hits the boundary of the maximal development.

Let H® = H*(U) denote the Sobolev space of functions with s weak derivatives in L?(U), U a
bounded domain in R?. For s > 2.5, (so that H® embeds in C'), and a space-like hypersurface S C
(M, g), define the harmonic radius ps(z) of z € S in the same way as in Definition 2.1, where the
components g,s and derivatives are in both space and time directions. For the following, we need
only consider s € N*, with s large, for instance, s = 3.

Now a well-known result of Choquet-Bruhat [19] states that the maximal vacuum H?® development
of smooth (C*°) initial data on S is the same for all s, provided s > 2.5. Thus, one does not have
different developments of smooth initial data, depending on the degree of desired H?® regularity.
Here, one may assume that S is compact, or work locally, within the domain of dependence of S.
This qualitative result can be expressed as follows. Let S; be space-like hypersurfaces obtained by
evolution from initial data on S = Sy. If z; € S;, then

(5.7) ps(xt) > c1 = psr1(zt) > ca,

where ¢, depends on ¢; and the (C*°) initial data on Sy.

We raise the following problem of whether the qualitative statement (5.7) can be improved to a
quantitative statement.

Regularity Problem. Can the estimate (5.7) be improved to an estimate
(5.8) wiIEIgt ps+1(zt) > co wilelgt ps(zt),
where ¢y depends only on the initial data on S? One may assume, w.l.o.g, that ¢t < 1.

The important point of (5.8) over (5.7) is that the estimate (5.8) is scale-invariant. Here, we
recall that ps(z) measures the degree of concentration of derivatives of the metric in H®, so that
ps — 0 corresponds to blow-up of the metric in H? locally.

If (5.8) holds, it serves as an analogue of the regularity boost. In such circumstances, one can
imitate the proof of Theorems 2.2 or 2.3 to obtain similar results for sequences of space-times
(Ma gz) .

In fact, the validity of (5.8) would have numerous interesting applications, even if it could be
established under some further restrictions or assumptions.

Suppose next one drops any assumption on the 1-cross of (M, g) and maintains only a lower
bound on the volumes of geodesic balls, as in (5.5), on space-like hypersurfaces. This leads directly
to issues of singularity formation and the structure of the boundary of the vacuum space-time,
where comparatively little is known mathematically.

A useful problem, certainly simple to state, is the following: for simplicity, we work in the context
of compact, (i.e. closed, without boundary), Cauchy surfaces.

Sandwich Problem.
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Let (M, g;) be a sequence of vacuum space-times, and let 3}, 222 be two compact Cauchy surfaces

7
in M, with E? to the future of Ezl and with
1 < distg(z,%}) < 10,

for all z € Zf. Suppose the Cauchy data (g7, K}), j = 1,2 on each Cauchy surface are uniformly
bounded in H* for some fixed s > 2.5, possibly large. Hence the data (g7, K]) converge, in a
subsequence and weakly in H?, to limit H® Cauchy data g, K2, on 3.

Do the vacuum space-times 4;(1,2) C (M, g;) between X! and %2 converge, weakly in H*, to a
limit space time,

This question basically asks if a singularity can form between X! and ¥? in the limit. It is unknown
even if there could be only a single singularity at an isolated point (event) xg € (Aso, goo)-

The existence of such a singularity may be related to the Choptuik solution. However, both the
existence and the smoothness properties of the Choptuik solution have not been established well
mathematically; cf. [34] for an interesting discussion.

Such a limit singularity would be naked in a strange way. It could be detected on %2, since light
rays from it propagate to 2, but on %2, no remnant of the singularity is detectable, since the data
is smooth on 2. Thus, the singularity is invisible to the future (or past) in a natural sense.

A resolution of this problem would be useful in understanding, for instance, limits of the asymp-
totically simple vacuum perturbations of deSitter space, given by Friedrich’s theorem [26]. The
sandwich problem above asks: suppose one has control on the space-time near past and future
space-like infinity Z%, does it follow that one has control in between?

Similar questions can be posed for non-compact Cauchy surfaces, and relate for instance to limits
of the AF perturbations of Minkowski space given by Christodoulou-Klainerman, [21].

6. FUTURE ASYMPTOTICS AND GEOMETRIZATION OF 3-MANIFOLDS.

In this section, we give some applications to the future asymptotic behavior of cosmological
spaces times.

Let (M, g) be a vacuum cosmological space-time, i.e. (M, g) contains a compact Cauchy surface
¥ of constant mean curvature (CMC). It is well-known that ¥ then embeds in a (local) foliation
F by CMC Cauchy surfaces X, all diffeomorphic to ¥ = 3;, and parametrized by their mean
curvature 7. The parameter 7 thus serves as a time function, with respect to which one may
describe the evolution of the space-time. We refer to the work of Bartnik [11], [12] and Gerhardt
[29] for results on the existence of such foliations, and to the surveys by Marsden-Tipler [38] and
Rendall [44] for an overview of this topic.

We assume throughout this section that ¥ is of non-positive Yamabe type, i.e. ¥ admits no
metric of positive scalar curvature. It then follows from the Hamiltonian constraint equation that
the mean curvature 7 never achieves the value 0. Thus

(6.1) T € (—00,0),

with 7 increasing towards the future in (M, g). The sign of the mean curvature is chosen so that
volg Y, is increasing with increasing 7, i.e. expanding towards the future. The foliated region M r
is thus a subset of M, although in general one cannot expect that M = M £ due to the formation
of singularities.

Suppose that (M, g) is geodesically complete to the future of X, and that the future is foliated
by CMC Cauchy surfaces, i.e. M = M £ to the future of 3. These are of course strong assumptions,
but are necessary if one wants to understand the future asymptotic behavior of (M, g) without
the complicating issue of singularities.
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The topology of ¥ is fixed, and so the metrics g, induced on ¥, by the ambient metric g give
rise to a curve of Riemannian metrics on the fixed manifold . In all known situations, one has
voly, ¥ — oo as 7 — 0, and the metrics g, become locally flat, due to the expansion, compare with
the discussion in §1. It would be of interest to prove these statements in general, although it is
hard to imagine situations where either one of them fails.

The local geometry of g, thus becomes trivial locally. This is of course not very interesting. As
in §1 and §4, to study the asymptotic behavior, one should rescale by the distance to a fixed base
point or space-like hypersurface. In this case, the distance is the time-like Lorentzian distance.
Thus, for z to the future of ¥ = X_;, let t(z) = distg(x, X) and let

(6.2) tr = tmas(T) = maz{t(z) : x € X;} = distg(E,,5).
It is natural to study the asymptotic behavior of the metrics
(6'3) gr = t;2g7—,

on .. Observe that in the rescaled space-time (M, g.), the distance of (2;,g,) to the “initial”
singularity, (big bang), tends towards 1, as 7 — 0. Any other essentially distinct scaling would
have the property that the distance to the initial singularity tends towards 0 or oo, and so is not
particularly natural.

We need the following definition, closely related to Thurston’s Geometrization Conjecture [46]
on the structure of 3-manifolds.

Definition 6.1. Let X be a closed, oriented, connected 3-manifold, of non-positive Yamabe type.
A weak geometrization of ¥ is a decomposition

(6.4) S =HUG,

where H is a finite collection of complete, connected hyperbolic manifolds, of finite volume, em-
bedded in 3, and G is a finite collection of connected graph manifolds, embedded in 3. The union
is along a finite collection of embedded tori T = UT; = 0H = 0G.

A strong geometrization of ¥ is a weak geometrization as above, for which each torus T; € T is
incompressible in 3, i.e. the inclusion of T; into ¥ induces an injection of fundamental groups.

Of course it is possible that the collection 7 of tori dividing H and G is empty, in which case
weak and strong geometrizations coincide. In such a situation, 3 is then either a closed hyperbolic
manifold or a closed graph manifold. For a strong geometrization, the decomposition (6.4) is unique
up to isotopy, but this is certainly not the case for a weak geometrization, c.f. the end of §3.

In general, no fixed metric g on ¥ will realize the decomposition (6.4), unless 7 = (). This is
because the complete hyperbolic metric on H does not extend to a metric on X. However, one can
find sequences of metrics g; on ¥ which limit on a geometrization of ¥ in the sense of (6.4). Thus,
metrics g; may be chosen to converge to the hyperbolic metric on larger and larger compact subsets
of H, to be more and more collapsed with bounded curvature on G, and such that their behavior
matches far down the collapsing hyperbolic cusps.

Next, to proceed further, we need to impose a rather strong curvature assumption on the ambient
space-time curvature. Thus, suppose there is a constant C < oo such that, for z to the future of X,

(6.5) R|(z) + t(z)|VR|(z) < C -t 2(z).

Here, the curvature norm |R| may be given by |R|r as in (5.3), where T is the unit normal to the
foliation ;. Since (M, g) is vacuum, this is equivalent to |R|?> = |E|? + |B|%, where E, B is the
electric/magnetic decomposition of R, E(X,Y) = (R(X,T)T,Y), B(X,Y) = (xR)(X,T)T.,Y)
with X, Y tangent to the leaves. Similarly, [VR|? = |VE|? + |VB/2.
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The bound (6.5) is scale invariant, and analogous to the bound (4.9) or (4.10) for stationary
space-times, (where it of course holds in general). The bound on |[VR| in (6.5) is needed only for
technical reasons, (related to Cauchy stability), and may be removed in certain natural situations.

The discussion above leads to the following result from [8], to which we refer for further discussion
and details.

Theorem 6.2. Let (M, g) be a cosmological space-time of non-positive Yamabe type. Suppose that
the curvature assumption (6.5) holds, and that My = M to the future of X.

Then (M, g) is future geodesically complete and, for any sequence T; — 0, the slices (£,,9r,),
cf. (6.3), have a subsequence converging to a weak geometrization of X, in the sense following
Definition 6.1.

We indicate some of the basic ideas in the proof. The first step is to show that the bound (6.5)
on the ambient curvature R, in this rescaling, gives uniform bounds on the intrinsic and extrinsic
curvature of the leaves 3;. The proof of this is similar to the proof of Theorem 5.1.

Given this, one can then apply the Cheeger-Gromov theory, as described in §2- §3. Given any
sequence 7; — 0, there exist subsequences which either converge, collapse or form cusps. From the
work in §3, one knows that the regions of (£,,3,,) which (fully) collapse, or which are sufficiently
collapsed, are graph manifolds. This gives rise to the region G in (6.4). It remains to show that,
for any fixed € > 0, the e-thick region 3¢ of (X, g;,) converges to a hyperbolic metric.

The main ingredient in this is the following volume monotonicity result:

volg, ¥ir

(6.6) %

b

i.e. the ratio is monotone non-increasing in the distance ¢,. This result is analogous to the Fischer-
Moncrief monotonicity of the reduced Hamiltonian along the CMC Einstein flow, cf. [25]. The
monotonicity (6.6) is easy to prove, and is an analogue of the Bishop-Gromov volume monotonicity
(2.12). It follows from an analysis of the Raychaudhuri equation, much as in the Penrose-Hawking
singularity theorems, together with a standard maximum principle.

Moreover, the ratio in (6.6) is constant on some interval [71, 79| if and only if the annular region
77Y(71,72) is a time annulus in a flat Lorentzian cone

(6.7) 8o = —dt* +t%g_1,
where g_; is a hyperbolic metric. Again, the ratio in (6.6) is scale invariant, and so

g2
9%r 1 gg T = volg, Y.
t’r

(6.8)
In the non-collapse situation, volz ¥, is uniformly bounded away from 0 as 7 — 0, (i.e. t; — 00),
and hence converges to a non-zero limit. On approach to the 7 = 0 limit, the ratio (6.6) tends to
a constant, and hence the corresponding limit manifolds are of the form (6.7). This implies that
e-thick regions converge to hyperbolic metrics, giving rise to the H factor in (6.4).

It would be of interest to construct large families of examples of vacuum space-times exhibiting
the conclusions (and hypotheses) of Theorem 6.2.

Recent Note: (January, 04). The recent work of Grisha Perelman [49]-[51], currently under eval-
uation in the mathematics community, implies a solution of Thurston’s Geometrization Conjecture,
and hence in particular the Poincaré Conjecture.
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