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Abstract. We analyse the definition of quasi-local energy in GR based on a Hamiltonian analysis
of the Einstein-Hilbert action initiated by Brown-York. The role of the constraint equations, in
particular the Hamiltonian constraint on the timelike boundary, neglected in previous studies, is
emphasized here. We argue that a consistent definition of quasi-local energy in GR requires, at a
minimum, a framework based on the (currently unknown) geometric well-posedness of the initial
boundary value problem for the Einstein equations.

The analysis of the gravitational field by Arnowitt-Deser-Misner [1] has led to a clear and well-
defined construction of the Hamiltonian, and resulting definitions of energy, linear and angular
momentum in the context of asymptotically flat spacetimes. These concepts are obviously of basic
importance in understanding the physics of such (infinite) isolated gravitating systems. Neverthe-
less, infinite systems are idealizations of more realistic physical situations, and it is desirable to
have available a similar analysis in the case of physical systems of finite extent.

However the understanding of this issue for domains of finite extent is much less satisfactory.
Despite numerous proposals, from a number of different viewpoints, a consensus has not yet been
reached on a suitable definition of the Hamiltonian or energy of a finite system, i.e. a quasi-local
Hamiltonian; cf. [2] for an excellent detailed survey of the current state of the art.

In this paper, we first examine and comment on the approach to the definition of energy of a
finite region of spacetime based on the Hamiltonian formulation of GR. This is essentially based on
a localization of the approach taken by ADM [1] and Regge-Teitelboim [3], keeping careful track of
the boundary terms that arise in a Hamiltonian or Hamilton-Jacobi analysis. This approach was
initiated and pioneered by Brown-York (BY) [4]. To keep the discussion focused on the central
issue, we only consider the gravitational field, (so other matter fields are set to zero); in addition, we
consider only the energy and not related concepts such as linear and angular momentum, although
this could be done without undue difficulty. Finally most all of the discussion below applies also
to more recent modifications of the BY approach by several authors, cf. [5]-[8]; however again for
clarity and simplicity we focus on the Brown-York Hamiltonian and leave it to the reader to extend
the analysis to the more recent alternatives.

We first recall the set-up. Let M be a spacetime region, topologically of the form I × Σ, with
I = [0, 1] parametrizing time and Σ a compact 3-manifold with boundary S; typically S = ∂Σ is a
2-sphere and Σ a 3-ball. The boundary ∂M of M is a union of two spatial hypersurfaces Σ0 ∪ Σ1

and the timelike boundary T = I × ∂S = ∪St. These boundaries meet at the seams or corners S0

and S1. The Einstein-Hilbert action is then given by (setting 8πG = 1),

(1) IEH(g) =

∫
M

RgdVg,

where g is a smooth Lorentz metric on M .
The Hamiltonian in GR plays two important but a priori distinct roles. In classical field theories

without dynamical gravity and based on a fixed background (Minkowski) spacetime, these two roles
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coincide. It is not at all clear, at least in the case of finite domains, whether they can be made to
coincide in GR.

A Hamiltonian H for the action (1) depends on a choice of time function t and associated vector
field ∂t, giving a foliation Σt of the spacetime, i.e. a 3 + 1 decomposition. Given the spacetime
metric g, this is equivalent to specifying a lapse u and shift X, so that ∂t = uT + X, where T is
the unit timelike normal to the foliation. Thus H = H(u,X).

A full-fledged Hamiltonian analysis requires a well-defined phase space T ∗Q, the cotangent bundle
of the configuration space Q, with variables (g, π) where π is the momentum conjugate to g;
g is a Riemannian metric on Σ. In the case of finite boundaries, boundary conditions for the
variables (g, π) must be specified in such a way that the Hamiltonian H(u,X) : T ∗Q → R is first
a smooth function on T ∗Q, and second the Hamiltonian vector field on T ∗Q (generated from H
by the symplectic structure on T ∗Q) generates exactly the equations of motion; integral curves
of the Hamiltonian vector field give vacuum solutions of the Einstein equations satisfying the
boundary conditions. For this to be consistent, boundary conditions for the lapse-shift (u, X) must
be determined, and these must also be preserved under the equations of motion. If the above can
be accomplished, one obtains a Hamiltonian depending on the gauge choice (u, X).

On the other hand, in other classical field theories, the energy is understood as the Noether
charge associated to time-translation symmetries; for Minkowski backgrounds, the energy is thus
the time component of an invariantly defined energy-momentum 4-vector. In GR, one has typically
no symmetries, i.e. Killing fields, and so no conserved charges. Nevertheless, one can attempt to
define preferred or distinguished “quasi-symmetries” or “quasi-Killing fields”. This gives a preferred
choice of the lapse-shift (u, X), and the Hamiltonian is then taken with respect to such a choice,
cf. [2], [9] for further discussion.

The approach of Brown-York is to choose Dirichlet boundary conditions for the metric γ = γT
induced on T . This choice naturally conforms to the modification of the EH action by the addition
of a boundary term - the well-known Gibbons-Hawking-York or trK boundary term [10], [11]. Thus
consider the modified Lagrangian

(2) I(g) =

∫
M

RgdVg + 2

∫
T

kdVγ ,

where k = trK is the mean curvature of the boundary T in (M, g) with respect to the outward
unit normal and γ is the metric on T induced by g. A straightforward calculation shows that the
variation of I at g in the direction h is given by

(3) δgI(h) = −

∫
M
〈E, h〉dVg −

∫
T

〈πT , hT 〉dVγ ,

where E(g) = Ricg − R
2 g is the Einstein tensor, πT = K − kγ is momentum conjugate to γ on

T and hT is the induced variation of γ on T ; 〈·, 〉 is the pairing induced by the metric g. Thus,
the variation vanishes on-shell, when the metric γ is held fixed at T , (hT = 0). The action is
functionally differentiable (in fact C∞ smooth) with respect to variations of the metric fixed on
the boundary. In other words, one has a well-defined variational principle for Dirichlet boundary
data. (The variational formula (3) should also include other terms at Σ0 and Σ1 and the corners,
but these will be ignored here since they play no role in the analysis).

On-shell, i.e. on the space of solutions of the vacuum Einstein equations, the BY quasi-local
Hamiltonian (or quasi-local energy) is formed by taking the on-shell variation of the action (2) in
the direction of a time-like unit normal vector field T on the boundary S = ∂Σ; one assumes here
that T is tangent to T . Since π(T, T ) = H, where H is the mean curvature of S ⊂ Σ, the on-shell

2



variation in the (T, T ) direction is given by

(4) −

∫
S

HdVγS
,

where γS is the metric induced on S. More generally, let (u, X) be the lapse-shift of the foliation
Σt. A standard Hamiltonian analysis gives

(5) H(u,X) = −

∫
S
[uH − π(X, ν)]dVγS

,

on-shell, where ν is the outward unit normal of S ⊂ Σ. The case (4) is recovered by setting
(u, X) = (1, 0). There remains a freedom in specifying the zero-point energy; the prescription of
Brown-York is to define

(6) HBY (S) =

∫
S
(H0 − H)dVγS

,

where H0 is the mean curvature of an isometric embedding of (S, γS) into Euclidean 3-space R
3.

Hence HBY (S) is well-defined only if there exists a unique isometric embedding into R
3; this is the

case if for instance the Gauss curvature KγS
is positive, by the Weyl embedding theorem.

The BY quasi-local Hamiltonian has a number of important and interesting properties, both
physically and mathematically. The expression (4) is local on S and easily computable, although
the subtraction term in (6) is more complicated since it depends on the global structure of (S, γS).
Particularly noteworthy is the result of Shi-Tam [12] that for time-symmetric data (πΣ = 0), if the
Gauss curvature KγS

> 0 then HBY (S) ≥ 0 with equality if and only if Σ is flat. However, for
general surfaces S, HBY (S) may be negative.

Observe that HBY (S) depends only on the Cauchy data on the initial surface Σ; in fact it
depends only on the metric g on Σ near S. It depends on the choice of Σ, (within the domain of
dependence) and one obtains different energies for different Cauchy surfaces, i.e. the Brown-York
energy is gauge dependent. However, it does not in fact depend on the actual unit normal T at
S; this is due to a cancelation of boundary terms. Note that the Cauchy data (g, π) of Σ do not
determine the unit normal T at S; equivalently the lapse-shift (u, X) at S are undetermined by
Cauchy data.

It follows that given an initial data surface Σ, the BY Hamiltonian is independent of the structure
of the spacetime outside the domain of dependence D(Σ) of Σ; it is the same no matter what the
metric is outside D(Σ). It is not a priori clear why the energy of the gravitational field should be
independent of its structure at T .

Although certainly natural, there is a basic problem with a definition of the Hamiltonian de-
pending on the choice of Dirichlet boundary data as in and following (2). As stated explicitly in
[4], the action evaluated on a classical solution (i.e. the on-shell action) is understood to be a
function of the boundary metric γ on T . The space E of solutions of the Einstein equations is thus
to be smoothly parametrized by the space of metrics Met(T ) on the boundary T , together with
the space C of Cauchy data on Σ (satisfying the constraint equations):

E ≃ C × Met(T ).

However, this is not the case. In fact for generic choices of boundary metric γ, there will be no

solution of the equations of motion inducing γ on T . This is due the constraint equations, and in
particular to the Hamiltonian or scalar constraint, on T . This issue, that there may be no solutions
to the equations of motion on the phase space without the correct boundary conditions, is exactly
the underlying issue and theme in the Regge-Teitelboim analysis of the ADM Hamiltonian.

To illustrate this point clearly, we discuss it in three different but related situations.
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(I). Consider first the simpler case of the pure Cauchy problem for the Einstein equations. Here
the Cauchy data (g, π) on Σ parametrize the space of solutions, and one may ask if one may specify
the metric g (Dirichlet data) arbitrarily on Σ to generate a solution. However, this is not the
case since the data must satisfy the momentum constraint δπ = 0 and, more importantly here,
the Hamiltonian or Gauss constraint |π|2 − 1

2(trπ)2 − Rg = 0. The initial data (g, π) are usually

assumed to lie in Sobolev spaces Hs ×Hs−1, (or some analogue). The Hamiltonian constraint then
implies Rg ∈ Hs−1. For generic g ∈ Hs, Rg ∈ Hs−2, not in Hs−1. Hence g ∈ Hs cannot be freely
prescribed. Thus, as in the Lichnerowicz approach to solving the constraint equations, only for
example the conformal class [g] can be prescribed.

(II). Consider next the Euclidean situation, i.e. the Euclidean Einstein equations on a compact
domain M with boundary ∂M . Here the Einstein equations E(g) = 0 with Dirichlet boundary
conditions γ = g|∂M given, do not form a well-posed elliptic boundary value problem (for any
choice of gauge) essentially for the same reasons described in (I), namely the Gauss or Hamiltonian
constraint. This is in spite of the fact that the variational problem for the action (2) is well-defined
for DIrichlet boundary data, exactly as in the Lorentzian case.

There are many choices of boundary data which can be used to obtain a well-posed elliptic
boundary value problem; geometrically perhaps the most natural is that given by

(7) ([γ], k),

i.e. prescribing the conformal class [γ] of the metric on ∂M and the mean curvature k of ∂M in
M ; cf. [13] for proof of these results and further discussion.

(III). The same argument applies for a time-like boundary T . The “Hamiltonian constraint”
|K|2 − k2 +Rγ = 0 along T again constrains the freedom of the metric γ on T . For example, given
a 3+1 decomposition of the spacetime, let (gt, πt) be the curve of Cauchy data on the surfaces Σt.
Working again in Sobolev spaces Hs, the trace of the metric (or any function) on the boundary,

loses half a derivative, so on T , γS ∈ Hs−1/2. The second fundamental form K of T involves a
(spatial) derivative of g, so K ∈ Hs−3/2. The constraint equation then gives Rγ ∈ Hs−3/2. But for

generic γ ∈ Hs−1/2, one will not have Rγ ∈ Hs−3/2 but instead Rγ ∈ Hs−5/2 - the same behavior
as in (I) or (II).

As noted above, the quasi-local energy HBY (S) is the value of the on-shell Hamiltonian that
generates unit time translation orthogonal to S at the boundary Σ and is given by the variation
of the TrK action in a unit timelike normal direction along the boundary. From the point of view
of the initial boundary value problem (IBVP) for the vacuum Einstein equations, this presupposes
that there exists a solution of the Einstein equations in the bulk M , whose boundary metric is of
the form

(8) γT = −dt2 + γt,

on T , at least to 1st order in t, so that one is prescribing the form of the metric, i.e. Dirichlet
boundary data, on T . The Cauchy data (g, π) at t = 0 determine the derivative ∂tγT |t=0. However,
the boundary value problem (8) cannot be solved in general; the IBVP is not well-posed (even at the
linearised level) for Dirichlet boundary data. The Hamiltonian constraint serves as an obstruction
to solvability in general.

In sum, the constraint equations on the Cauchy surface Σ and boundary T ”generate” the dif-
feomorphisms and impose constraints on the allowed Cauchy and boundary data. The Hamiltonian
constraint on T generates diffeomorphisms normal to T and so is related to the location of T in
the spacetime which thus cannot be fully prescribed a priori. The presence of the constraints on T
and the difficulties they present in obtaining a well-behaved quasi-local Hamiltonian has not been
addressed previously in the literature.
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For the flow of the Hamiltonian vector field to be well-defined, it is necessary that the IBVP for
the Einstein equations is well-posed. It is this criterion one should choose to seek suitable boundary
conditions on T .

Before discussing the problem in general, we consider some constructions of possible alternatives
to the BY Hamiltonian. First, the linearisation of the scalar curvature Rg in the direction of a
variation h of g is given by L(h) = R′

h = −�trh + δδh − 〈Ric, h〉, where δh is the divergence of h.
Hence

(9) δIEH(h) =

∫
M

−�trh + δδh − 〈Ric, h〉 + 1
2Rtrh = −

∫
M
〈E, h〉 +

∫
∂M

−ν(trh) − (δh)(ν),

where ν is the unit outward normal to ∂M in M . One has −ν(trh) − (δh)(ν) = −2k′

h − 〈K, h〉 +

δ(h(ν))T ). The last term is a divergence term, which integrates to 0 on the boundary, so

δIEH(h) = −

∫
M
〈E, h〉 −

∫
∂M

2k′

h + 〈K, h〉.

Since (kdVg)
′

h = k′

hdVg + 1
2k trhdVg, this gives the variational formula for I in (3).

Consider next for instance the variational problem for fixed conformal class and mean curvature,
as in (7) above. One has 〈K, h〉 = 〈K0, h0〉 + 1

3k trh where K0 and h0 denote the trace-free parts.

On other hand, 2
3(kdV )′h = 2

3k′

h + 1
3k trh, and so for the action

ICk(g) =

∫
M

R + 2
3

∫
T

k,

one has

(10) δICk(h) = −

∫
M
〈E, h〉 −

∫
T

[〈π0, h0〉 + 4
3k′

h].

This gives a well-defined variational problem with prescribed conformal class [γ] and mean curvature
k on T , i.e. this action is a smooth function on the configuration space of 4-d metrics with boundary
data (7) fixed.

In the case of Euclidean signature, the boundary data ([γ], k) form a well-posed elliptic boundary
value problem, so that one may expect to find a unique solution, (at least under mild conditions).
Whether this holds for Lorentzian signature is unknown, (but unlikely). Suppose nevertheless for
the sake of argument that the Lorentzian problem is well-posed. If one takes a timelike vector
field ∂t to form a Hamiltonian then linearised boundary data (h0, k

′

h) on T determine a unique

bulk h solution along Σ (or Σt); from this one may then read off Dirichlet boundary data hT on
T . To evaluate the Hamiltonian, one then chooses h (if possible) so that hT = T · T at S. The
corresponding data (h0, k

′

h) are then paired with the coefficients (π0,
4
3) above, allowing one to

determine the corresponding quasi-local Hamiltonian. The determination of the Hamiltonian is
thus ”global” on the solution and is rather complicated.

The simplest solutions of the Einstein equations are the time-independent static solutions, of the
form

g = −u2dt2 + g,

where ∂t is a (hypersurface orthogonal) Killing field. Consider then a Hamiltonian analysis for
static metrics. In place of the EH action (1) or the BY action (2), consider here

ISt(g) =

∫
M

RgdVg + 2

∫
∂M

ν(u)dVγ ,
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where ν is the outward unit normal. The term Rg may be computed in terms of Rg and u, and via
an integration by parts it is easily verified that

(11) ISt(g) =

∫
Σ

uRgdVg,

so that the boundary term disappears on passage to the Cauchy surface. A straightforward com-
putation along the lines of (9)-(10) above gives

(12) δgISt(h, u′) =

∫
Σ
[〈L∗u + 1

2uRγ, h〉 + Ru′] +

∫
S
〈uK − ν(u)γS, hT 〉 + 2uk′

h,

cf. [14] for a proof. Here L∗u = D2u − ∆u · γ − uRic is the adjoint of the linearisation L of the
scalar curvature. The vanishing of the bulk term in (12) gives exactly the static vacuum Einstein
equations, as expected. The boundary term vanishes when hT = 0 and k′

h = 0. The mean curvature
k of T in M is the same as the mean curvature H of S in Σ.

This gives a well-defined variational problem for the boundary data

(13) (γS , H) at S = ∂Σ,

so that the Lagrangian is a smooth function on the configuration space with these boundary data.
Note that one may (trivially) Wick rotate static spacetimes to Euclidean signature. In contrast to
Dirichlet boundary data (γS , u), the boundary data (13) are well-posed, i.e. elliptic, for the static
Einstein equations, (cf. [15]).

The time function t and vector field ∂t give the natural lapse-shift (u, 0) for static metrics. With
respect to this, the static Hamiltonian HSt, given by the variation of the action in the direction of
the unit normal, is just given by (11). In more detail, for h = T · T on T , one has hT = 0 and
k′

h = 0, and so, on-shell, one has

HSt = 0.

Thus, in this situation, the quasi-local energy is zero. Physically, the simplest and most natural
energy of a static vacuum system where one has a preferred timelike Killing field is given by the
Komar energy or mass; it is clear that the Komar mass vanishes for compact bodies S = ∂Σ as
above. Thus, the energy HSt agrees with the Komar energy. However, by the result of Shi-Tam
[12], the BY energy of a static vacuum solution is strictly positive (when KγS

> 0) unless the
solution is flat.

Turning now to the general problem one would like to find a boundary term B(g, K) such that
the action

(14)

∫
M

R +

∫
T

B(γ, K)

gives a well-defined variational problem, for a choice of boundary data on T . Next, one would like
to find an associated Hamiltonian

(15) H(u,X) =

∫
Σ

uC + XµCµ +

∫
S

B(u,X)(g, π),

where C and Cµ are the Hamiltonian and momentum constraints respectively. Then boundary
conditions are specified for the variables (g, π) on the phase space T ∗Q such that the Hamiltonian is
functionally differentiable (smooth as a function on T ∗Q) and the Hamiltonian vector field generates
the equations of motion E = 0, so that one has a well-posed IBVP (in some gauge). Finally, if
possible, one would like to select a preferred choice of time-like vector field ∂t (i.e. a preferred
lapse-shift) giving a choice of quasi-Killing field.
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Given a choice of lapse-shift (u, X) the EH action (1) decomposes into a time-space integral when
the scalar curvature R is expressed in terms of the data (g, π) on the phase space T ∗Q; the spatial
integral is then just the integrated constraint operator given by

C(u, X) =

∫
Σ

u(R − π2 + 1
2(trπ)2) − 〈δπ, X〉.

Integrating the last term by parts gives

C(u, X) =

∫
Σ
[u(R − π2 + 1

2(trπ)2) − 〈π, δ∗X〉] −

∫
S
〈π(X), ν〉.

Now consider the variation of C on the phase space, so with respect to (g, π). Calculating the
variation of R and performing an integration by parts gives rise to the usual Einstein evolution
equations in Hamiltonian form in the bulk, together with a boundary term equal to

(16)

∫
S

u〈∇νh, g〉 + u〈ν, δh〉 + 〈h, du · ν〉 + 〈h, 2X · π(ν)〉 − 〈h, π〉〈ν, X〉 + 2〈π′, X · ν〉,

cf. [9] for example. Observe that the first three terms involve only the lapse u while the last three
terms involve only the shift X. A well-defined variational problem then holds for (14) or (15) with
B = 0 provided the boundary term (16) vanishes. In general, sum of the variation of B in (15) and
(16) must vanish.

The first three terms in (16) can be expressed in terms of the induced metric γS on S and the
mean curvature H of S ⊂ Σ. In fact, (up to signs) the first three terms can be rewritten as∫

S
〈uK − ν(u)γS , hT 〉 + 2uk′

h,

exactly as the boundary term in (12). Consider then as configuration space the space of metrics
with shift X = 0, i.e. the space of metrics of the form

g = −u2dt2 + gt,

with u = u(t, x). Imposing the boundary conditions (13) then gives a well-defined variational
problem for (14) with B = 0, again with zero Hamiltonian on-shell.

This example, as well as the examples discussed previously, give quasi-local Hamiltonians coming
from a well-defined variational principle with corresponding boundary conditions. However, in each
case the Hamiltonian vector field is not integrable, i.e. the associated flow equation is not generally
solvable.

If the Hamiltonian vector field (∂H
∂π ,−∂H

∂γ ) is to have a well-defined flow on the phase space T ∗Q,

then there must exist a gauge choice (and in particular a choice of lapse-shift (u, X)) such that the
IBVP for the Hamiltonian evolution equations are well-posed, i.e. one has existence and uniqueness
of solutions with given Cauchy and boundary data, and smooth dependence of the solutions on
such data. Further, the IBVP must be geometric in the sense that solutions are isometric if and
only if the Cauchy and boundary data differ by the action of diffeomorphisms.

However, as clearly stressed by Friedrich [16], it is currently a basic open problem if in fact there
exists a choice of gauge and boundary data such that the IBVP is geometrically well-posed in this
sense. There is a well-posed formulation of the IBVP first discovered by Friedrich-Nagy [17] and a
more recent formulation due to Kreiss-Winicour [18], [19]. The results in [18], [19] in particular are
naturally formulated in harmonic gauge for the spacetime metric gαβ; however, in both [17] and
[18]-[19] the boundary data imposed are not geometric, but incorporate or assume an extraneous
choice of timelike unit vector T along the boundary T .

To obtain a well-posed geometric IBVP, one expects that it is necessary to choose maximally
dissipative boundary conditions on T , (cf. also [5] for discussion of various boundary conditions).
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The exact form of these will depend on the choice of gauge (and is currently unknown) but typically
such boundary conditions have the schematic form

(17) ∂tgij + ∂νgij = Fij ,

where ν is the outward unit normal to S ⊂ Σ and Fij is given. Such boundary conditions are not
close to Dirichlet (or Neumann) boundary conditions and so are far from the BY prescription. In
fact, no component of the metric γ itself appears in (17). As discussed following (12), the time-like
unit normal T to the Cauchy surface Σ is determined only globally, by solving the IBVP for given
data (17), and then reading off the value of T at S. Only at that point can the Hamiltonian be
actually computed as the unit-time variation of the action. (There is also the issue of finding a
boundary term B as in (15) so that boundary conditions analogous to (17) give a well-defined
variational problem).

The notion of quasi-local energy is difficult to make precise since energy is to be defined for an
“isolated system” and it not a priori clear how to isolate a given region from its surroundings. (This
issue bears some resemblance to certain versions of Mach’s principle). Typically one would impose
conditions such as no incoming radiation or absorbing boundary conditions, cf. [20] for example.
However, due partly to the general covariance of GR, such boundary conditions are notoriously
difficult to identify and implement in practice. Although simple and natural, it is unclear in what
manner Dirichlet boundary conditions effectively model isolated physical systems.

There are now several very interesting and useful geometric notions associated to local spacetimes,
such as the Hawking mass, the Brown-York energy, the Bel-Robinson energies and many others.
These concepts are clearly very useful tools in understanding the physics, geometry and analysis
of such spacetimes. However, as discussed above, they do not provide a fully satisfactory notion of
quasi-local energy or Hamiltonian.

In closing, two brief remarks. First, the definition of the BY Hamiltonian, as well as its more
recent modifications [5]-[8] require a choice of subtraction term to normalize the zero-point of the
energy. These subtraction terms are typically determined by choices of isometric embedding of
(S, γS) into either Euclidean space R

3 or Minkowski space R
1,3. On the other hand, one might

hope that a correct choice of gauge and boundary conditions would obviate the need for such
subtraction terms (which are somewhat artificial and adhoc given the intrinsic nature of GR).

Finally, the approach of Brown-York is used in the determination of the energy, mass and other
charges for asymptotically AdS spacetimes in the AdS/CFT correspondence, cf. [21], [22] for in-
stance. These concepts, which are of basic importance in the aspects of the correspondence related
to thermodynamics of black holes, are global, and the charges are given by suitably renormalized
integrals at conformal infinity. The difficulties discussed above in the quasi-local case do not apply
in this context where limits at infinity are taken (as in the AF case). For example, in contrast
to the finite case, the Dirichlet boundary value problem is well-posed at conformal infinity in the
AdS context (for Euclidean metrics); the constraint equations ”disappear” in the limit at infinity
as restrictions on the form of the conformal metric at infinity.
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