
ON THE STRUCTURE OF CONFORMALLY COMPACT EINSTEIN METRICS

MICHAEL T. ANDERSON

Abstract. Let M be an (n+1)-dimensional manifold with non-empty boundary, satisfying π1(M, ∂M) =
0. The main result of this paper is that the space of conformally compact Einstein metrics on M

is a smooth, infinite dimensional Banach manifold, provided it is non-empty. We also prove full
boundary regularity for such metrics in dimension 4 and a local existence and uniqueness theorem
for such metrics with prescribed metric and stress-energy tensor at conformal infinity, again in
dimension 4. This result also holds for Lorentzian-Einstein metrics with a positive cosmological
constant.

1. Introduction.

Let M be the interior of a compact (n+ 1)-dimensional manifold M̄ with non-empty boundary
∂M . A complete metric g on M is Cm,α conformally compact if there is a defining function ρ on
M̄ such that the conformally equivalent metric

(1.1) g̃ = ρ2g

extends to a Cm,α Riemannian metric on the compactification M̄ . A defining function ρ is a smooth,
non-negative function on M̄ with ρ−1(0) = ∂M and dρ 6= 0 on ∂M .

The induced Riemannian metric γ = g̃|∂M is called the boundary metric associated to the
compactification g̃. Since there are many possible defining functions, and hence many conformal
compactifications of a given metric g, only the conformal class [γ] of γ on ∂M is uniquely deter-
mined by (M, g); the class [γ] is called the conformal infinity of g. Any manifold M carries many
conformally compact metrics and in this paper we are interested in Einstein metrics g, for which

(1.2) Ricg = −ng.

Conformally compact Einstein metrics are also called asymptotically hyperbolic (AH), in that
|Kg + 1| = O(ρ2), where Kg denotes any sectional curvature of (M, g), at least when g has a C2

conformal compactification.
In this paper, we prove several distinct results on conformally compact Einstein metrics. First,

we prove boundary regularity for such metrics in dimension n + 1 = 4. Thus, suppose g is an
Einstein metric on a 4-manifold M , which admits an L2,p conformal compactification, for some
p > 4. If the resulting boundary metric is Cm,α, or C∞, or Cω (real-analytic), then g is Cm,α, or
C∞, or Cω conformally compact respectively; see Theorem 2.3.

The proof of boundary regularity uses the fact that Einstein metrics on 4-manifolds satisfy a
conformally invariant 4th order equation, the Bach equation, given by

(1.3) δd(Ric− s
6g) +W (Ric) = 0.

Here Ric and g are viewed as 1-forms with values in TM , s = trRic is the scalar curvature, W
is the Weyl curvature and d = d∇ is the exterior derivative with δ = δ∇ its L2 adjoint. The
equations (1.3) are the Euler-Lagrange equations for the L2 norm of the Weyl curvature W , as a
functional on the space of metrics on M . Since (1.3) is conformally invariant in dimension 4, any
conformal compactification g̃ of g satisfies (1.3) and boundary regularity is established by studying
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the boundary regularity of solutions of the non-degenerate equation (1.3) on M̄ . Theorem 2.3
corrects a small gap in the proof of boundary regularity in [2, Thm.2.4], cf. Remark 2.4.

As an application of these techniques, we also prove a local existence and uniqueness result.
Thus, recall the Fefferman-Graham expansion of an AH Einstein metric [12]; in dimension 4, this
is given by

(1.4) ḡ = t2g ∼ dt2 + g(0) + t2g(2) + t3g(3) + · · · + tkg(k) + ...,

where t is a geodesic defining function, i.e. t(x) = distḡ(x, ∂M). The boundary metric γ is given
by γ = g(0) and the term g(2) is intrinsically determined by γ. The Einstein constraint equations at
conformal infinity ∂M are equivalent to the statement that the term g(3) is transverse-traceless on
(∂M, γ), i.e. δγg(3) = trγg(3) = 0, see for instance [11]. However, beyond this, the g(3) term is not
determined by the boundary metric γ. All higher order terms in the expansion (1.4) are determined
by g(0) and g(3) via the Einstein equations. It is also worth noting that from a physics perspective,
the term g(3) is identified with the stress-energy tensor of the conformal infinity, cf. again [11] for
instance.

In [12], Fefferman-Graham proved that if γ = g(0) is any real-analytic metric on an arbitrary 3-
manifold ∂M , and one sets g(3) = 0, so that the formal expansion (1.4) is even in t, then there exists
a real-analytic AH Einstein metric defined in a thickening M = [0, ε)× ∂M , with boundary metric
γ. Thus, the series (1.4) converges to ḡ. This was proved by using results of Baouendi-Goulaouic
on the convergence of formal series solutions to nonlinear Fuchsian systems of PDE’s. A result
analogous to this was proved earlier by LeBrun [19] for self-dual Einstein metrics on thickenings of
3-manifold boundaries, using twistor methods.

The following result generalizes these results to allow for an arbitrary g(3) term.

Theorem 1.1. Let N be a closed 3-manifold, and let (γ, σ) be a pair consisting of a real-analytic
Riemannian metric γ on N , and a real-analytic symmetric bilinear form σ on N satisfying δγσ =
trγσ = 0. Then there exists a unique (up to isometry), Cω conformally compact Einstein metric g,
defined on a thickening N × I of N , for which the expansion (1.4) converges to ḡ and is given by

(1.5) ḡ = dt2 + γ + t2g(2) + t3σ + ...+ tkg(k) + ...

The proof is based again on the Bach equation, together with the Cauchy-Kovalewsky theorem.
An analogous result also holds for Lorentzian-Einstein metrics, i.e. solutions to the vacuum Einstein
equations in general relativity with a positive cosmological constant Λ, cf. Theorem 2.6. The result
in this case is related to work of H. Friedrich [13].

Next, we turn to the structure of the moduli space of AH Einstein metrics on a given (n + 1)-
manifold M . Let EAH = Em,α

AH be the space of AH Einstein metrics g on M which admit a
Cm,α compactification g̃ as in (1.1). We require that m ≥ 2, α ∈ (0, 1) but otherwise allow any
value of m, including m = ∞ or m = ω. The space Em,α

AH is given the Cm,µ topology on M̄ ,
for any fixed µ < α, via a fixed compactification as in (1.1). Let EAH = EAH/Diff1(M̄), where

Diff1(M̄) = Diffm+1,α
1 (M̄) is the group of Cm+1,α diffeomorphisms of M̄ inducing the identity on

∂M , acting on EAH in the usual way by pullback.
Regarding the boundary data, let Met(∂M) = Metm,α(∂M) be the space of Cm,α metrics on

∂M and C = C(∂M) the corresponding space of pointwise conformal classes, endowed with the
Cm,µ topology as above. There is a natural boundary map, (for any fixed (m,α)),

(1.6) Π : EAH → C, Π[g] = [γ],

which takes an AH Einstein metric g on M to its conformal infinity on ∂M .
We then have the following result on the structure of EAH and the map Π.
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Theorem 1.2. Let M be a compact, oriented 4-manifold with boundary ∂M satisfying π1(M,∂M) =
0. If, for a given (m,α), m ≥ 3, EAH is non-empty, then EAH is a C∞ smooth infinite dimensional
separable Banach manifold. Further, the boundary map

(1.7) Π : EAH → C

is a C∞ smooth Fredholm map of Fredholm index 0.

Implicit in Theorem 1.2 is the boundary regularity statement that an AH Einstein metric with
Cm,α conformal infinity has a Cm,α compactification. Versions of Theorem 1.2 also hold in arbitrary
dimensions n > 4; see Theorems 5.5 and 5.6 for the precise statements.

The condition π1(M,∂M) = 0 is equivalent to the statements that ∂M is connected and the
inclusion map ι : ∂M → M induces a surjection π1(∂M) → π1(M) → 0. It is not clear whether
Theorem 1.2 holds globally without this assumption, although generic metrics in EAH always have
smooth manifold neighborhoods, cf. Remark 3.2 and the discussion following Theorem 4.1.

Theorem 1.2 is a generalization of previous results of Graham-Lee [15] and Biquard [8], who
proved a local analogue of this result, (without full boundary regularity), in neighborhoods of
metrics g ∈ EAH which are regular points of the map Π. The proof of Theorem 1.2 uses methods
introduced in [15] and [8]. Further, Theorem 1.2 is formally analogous to results on the space of
minimal surfaces, cf. [9] and especially [26], [27] and we have also been influenced by this work.

The proof of Theorem 1.2 requires a rather subtle understanding of the behavior of infinitesimal
AH Einstein deformations which are in L2(M, g); one needs to know that such deformations satisfy
a suitable unique continuation property at infinity. This was proved in [6] and is presented here in
§3, cf. Proposition 3.1, after some preliminary introductory material. The main work in the proof
of Theorem 1.2 is then given in §4, with the final proof given in §5. We also point out that it is
proved in Theorem 5.7 that the spaces Em,α

AH are stable in (m,α); they are all diffeomorphic and the

inclusion of Em′,α′

AH into Em,α
AH for m′ + α′ > m+ α is dense, including the case m′ = ∞ or m′ = ω.

Thus, the structure of the spaces Em,α
AH is essentially independent of (m,α).

The results in this paper are also used in [5], which studies the existence problem for conformally
compact Einstein metrics with prescribed conformal infinity on 4-manifolds.

2. The Bach equation and AH Einstein metrics.

In this section, we prove boundary regularity for AH Einstein metrics in dimension 4, together
with Theorem 1.1 and various applications.

We begin with the study of boundary regularity. Let g be an AH Einstein metric on a 4-
manifold M . Then g satisfies the conformally invariant Bach equation (1.3). Hence, any conformal
compactification g̃ of g also satisfies (1.3). In the following, to simplify notation, we work with a
given conformal compactification g̃ of an AH Einstein metric g and drop the tilde from the notation;
thus, from now on until Corollary 2.2, g denotes g̃.

By a standard Weitzenbock formula, (1.3) may be rewritten in the form

(2.1) D∗DRic = −1
3D

2s− 1
6∆s+ R,

where R is a term quadratic in the curvature of g.
As it stands, the equation (2.1) (or (1.3)) does not form an elliptic system, due to its invariance

under diffeomorphisms and conformal deformations. Since we wish to cast (2.1) in the form of an
elliptic boundary value problem, two choices of gauge are needed to break these symmetries.

First, with regard to the diffeomorphism invariance, we use, as is now common, harmonic co-
ordinates. Thus let xi, i = 1, 2, 3 be local harmonic coordinates on (∂M, γ) and extend xi locally
into M by requiring that xi is harmonic with respect to g (i.e. g̃):

(2.2) ∆xi = 0,
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where the Laplacian is with respect to (M, g). Also, let x0 be a local “harmonic defining function”,
satisfying

(2.3) ∆x0 = 0, x0|∂M = 0.

Thus, the functions xi, i = 0, 1, 2, 3, form a local coordinate system for M up to its boundary,
harmonic with respect to g.

Suppose in a given fixed (or background) C∞ atlas for M near ∂M , the compactified metric g is
in Lk,p, for some k ≥ 2, p > 4, or in Cm,α, m ≥ 2. Then it is well-known, and will be frequently be
used below, that g is Lk,p or Cm,α respectively in local boundary g-harmonic coordinates. Further,
these harmonic coordinates are Lk+1,p or Cm+1,α functions of the background local coordinates
respectively. The same remarks pertain in the real-analytic case. Thus, harmonic coordinates give
optimal regularity properties.

With regard to the conformal invariance, it is natural to specify the scalar curvature s to de-
termine the conformal gauge. At a later point, we will choose a Yamabe gauge, where s = const.
However, for the moment, we assume that s, the scalar curvature of g, is a given function with a
given degree of smoothness. In particular, the two scalar curvature terms on the right in (2.1) are
thus “determined”. In the following, Greek indices α,β run over 0, 1, 2, 3 while Latin indices i, j
run over 1, 2, 3.

In local harmonic coordinates, −2D∗DRic = ∆∆gαβ + (3rd order terms). Thus, the system
(2.1) may be rewritten in local harmonic coordinates as

(2.4) ∆∆gαβ = Fαβ(g, s),

where F is of order 3 in g, order 2 in s, with real-analytic coefficients; here ∆ = gαβ∂α∂β and s is
treated as given.

This is a 4th order elliptic system, with leading order term in diagonal form.
We now set up the boundary conditions for this system. On the surface, it would be simplest

to just choose Dirichlet and Neumann boundary conditions on the set of all gαβ. However, via the
map Π in (1.6), at the boundary we only have information on the intrinsic metric γij = gij ; the
g0α terms are gauge dependent, and have no apriori prescribed form at ∂M . Thus, it is not clear
if {g0α} satisfy any particular boundary conditions apriori. Moreover, in general Bach-flat metrics
are not conformally Einstein; conformally Einstein metrics thus necessarily induce certain special
boundary conditions. In the case of geodesic gauge, this is discussed in the proof of Theorem
1.1 below, and is closely related to the Fefferman-Graham expansion. However, such a gauge is
badly behaved for elliptic boundary value problems. While it is an interesting open question to
characterize the boundary conditions for Bach-flat metrics to be conformally Einstein (in arbitrary
gauges), this issue will not be addressed here; instead we will derive certain boundary conditions
for the Bach-flat equations as a consequence of the metric being conformally Einstein.

To begin, we divide the collection {gαβ} into two parts. First gij are the tangential components
of g, with 1 ≤ i, j ≤ 3. The remaining terms g0α are the mixed and normal terms. The basic
idea is then to impose Dirichlet boundary conditions on gij, of 0th and 2nd order, while imposing
Neumann-type boundary conditions on g0α, of 1st and 3rd order. These latter two conditions come
from the gauge choice of harmonic coordinates.

In more detail:
{1}. Dirichlet boundary conditions on gij :

(2.5) gij = γij on ∂M (locally),

where γ is the given boundary metric on ∂M .
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{2}. Neumann-type boundary conditions on g0α. It is convenient to set these up for the inverse
variables g0α. These are of the form

(2.6) N(g00) = −2Hg00,

(2.7) N(g0i) = 1
2q

iβ∂βg
00 −Hg0i.

Here N = (g00)−1/2g0β∂β = q0β∂β is the unit normal, and qαβ = (g00)−1/2gαβ. The term H is the

mean curvature, H = gijAij , with Aij = 1
2q

0α[∂αgij − (∂igαj + ∂jgαi)] the 2nd fundamental form

of the boundary. The fact that the components {g0α} satisfy (2.6)-(2.7) in boundary harmonic
coordinates {xα} was derived in [2], cf. also [3]. This does not require the metric to be conformally
Einstein or Bach-flat; it holds in general.

The equations (2.6)-(2.7) can be reexpressed as Neumann-type conditions on the coefficients g0α,
since gij is given on ∂M by (2.5). However, these expressions will not be given explicitly, since only
the linearized versions of (2.6)-(2.7) need to be actually computed.

{3}. Dirichlet boundary conditions on Ricij . One has, in harmonic coordinates in general,
−2Ricij = ∆Mgij + Q(g, ∂g), where the Laplacian is with respect to (M, g) and Q is a 1st order
term in g. A simple and standard calculation shows that for conformally Einstein metrics g, Ricij
is determined by (Ricγ)ij at ∂M , modulo lower order terms. In fact, cf. [2,Lemma 1.3] for instance,
the extrinsic and intrinsic Ricci curvatures are related by

(2.8) Ricij = 2(Ricγ)ij + 1
6(s− 3

2sγ)γij − (H
3 )2γij .

Since also −2(Ricγ)ij = ∆∂Mγij +Q(γ, ∂γ), this gives

(2.9) ∆Mgij = F (γ, ∂γ, ∂2γ,H, s) on ∂M,

where F is real-analytic in its arguments; observe that H is real-analytic in g and its 1st derivatives.
{4}. Neumann-type boundary conditions on Ric0α. These turn out to be

(2.10) q0βN(∆Mg0β) + 1
3∆∂MH = −∂0s+Q0,

(2.11) q0βN(∆Mgiβ) = −2
3∂is+Qi,

where Q = (Q0, Qi) is an operator of order less than 3. Recall that the scalar curvature s is treated
as given.

The equations (2.10)-(2.11) are basically a consequence of the Bianchi identity. To derive them,
the contracted Bianchi identity gives δRic = −1

2ds, so that for any α, −δRic(∂α) = 1
2∂αs. By

definition, −δRic(∂α) = (∇NRic)(N, ∂α) + (∇ej
Ric)(ej, ∂α), where ej runs over an orthonormal

basis tangent to ∂M . Also (∇NRic)(N, ∂α) = N(Ric(N, ∂α)) − Ric(N,∇N∂α) − Ric(∇NN, ∂α),
and N(Ric(N, ∂α)) = q0βN(Ricαβ) + N(q0β)Ricαβ. Putting these together, the Bianchi identity
may be rewritten as

(2.12) q0βN(Ricαβ) + ej(Ric(ej, ∂α)) = 1
2∂αs+Qα,

where Qα involves the Ricci curvature of g and the 1st derivatives of g at ∂M ; thus Qα is of order
less than 3. Using again the fact that −2Ricαβ = ∆Mgαβ +Q(g, ∂g) in harmonic coordinates, the
equation above may be rewritten as

(2.13) q0βN(∆Mg0β) + div∂M (∆Mg0·) = −∂0s+Q0.

(2.14) q0βN(∆Mgiβ) + div∂M (∆Mgi·) = −2
3∂is+Qi,

where we have separated the cases α = 0 and α = i > 0.
These equations have to be modified somewhat, since, together with {1}−{3}, they do not lead

to elliptic boundary conditions; this is probably because both systems (2.6)-(2.7) and (2.13)-(2.14)
are identities in harmonic coordinates. In any case, we reexpress the divergence terms in (2.13)

5



and (2.14) as follows. Regarding (2.13), a standard formula for the change of Ricci curvature under
conformal changes gives, at ∂M ,

(2.15) Ric0i = −
2

3
∂iH,

cf. again [2, (1.18)] for instance. This equation uses the fact that g is conformally Einstein; note
this is 2nd order in gαβ, in contrast to (2.8), (cf. also Remark 2.4). Substituting (2.15) in (2.12)
and using (2.13) then gives (2.10). For (2.14), the ambient Ricci curvature term Ricij in (2.12),
(α = i > 0), is in fact intrinsic to the boundary, modulo lower order terms and the s term, by (2.8).
Since the derivatives are also being taken tangentially, the term ej(Ric(ej, ∂i)) is intrinsic to the
boundary metric γ, modulo lower order terms and the s term. At leading order, it does not depend
on g0α and thus it may be absorbed into the Qi term. Taking the s term in (2.8) into account, this
gives (2.11).

The boundary conditions {1} − {4} are the conditions that will be used below. Note that only
the conditions {3} − {4} use the fact that g is conformally Einstein. Given this groundwork, we
are now in position to prove the following result.

Proposition 2.1. Let g̃ be a conformal compactification of an AH Einstein metric g, defined on a
thickening M of N = ∂M , with scalar curvature s = seg given. In boundary harmonic coordinates,
the Bach equation (2.1), with the boundary conditions {1}−{4}, forms a non-linear elliptic boundary
value problem, with real-analytic coefficients.

Proof: It is clear that the operator (2.1) and boundary operators {1} − {4} are real-analytic
in the metric g and its derivatives. Thus, one needs to check that the conditions of Agmon-
Douglis-Nirenberg [1] or Morrey [23, §6] are satisfied; we will verify the conditions of Morrey. First,
ellipticity of the boundary value problem depends only on that of its linearization at any solution

g̃. Thus, in the work above, replace g̃ by g̃+λh̃ and take the derivative with respect to λ to obtain

a linear system in h̃; as above, henceforth we drop the tilde from the notation. We will also assume
that the coordinate system is small, so that gαβ is close to δαβ; in particular gαβ ∼ gαβ.

The interior system is then essentially the same as before:

(2.16) ∆∆h+ F3(g, h) = 0,

where the Laplacian is with respect to (M, g) and F is of order 3 in h.
In the notation of Morrey [23,§6.1], the interior system has the form

Ljku
k = 0 in M.

Here {uk} = {hαβ} so that j, k ∈ {1, ..., N}, with N = #(αβ) = 10. The leading order term L′
jk of

Ljk is given by L′
jk = (∆∆)δjk, the biLaplacian acting diagonally.

The order of each Ljk is 4, and we set tk = 4, for all k, sj = 0, for all j. This leading order
symbol of Ljk has 2m roots, each +i or −i (at a cotangent vector of the form ξ + n, where ξ is
tangent to ∂M , |ξ| = 1, and n is the unit conormal. Hence, the system (2.16) is properly elliptic,
(i.e. satisfies the root condition).

The boundary operator has the general form

(2.17) Brku
k = fr on ∂M,

where r ∈ {1, ...,m}, with m = 2N . Thus, one has 2 boundary operators for each hαβ. The
operator Brk is considered as a 2N ×N matrix, with each N ×N block consisting of 6 horizontal
rows (ij) ordered lexicographically and 4 mixed rows, ordered (00, 01, 02, 03).

The order of Brk = tk −hr = 4−hr. Thus, for uk = {hij}, i.e. the 6 tangential components of h,
one has hr = 4 for 1 ≤ r ≤ 6, (corresponding to the Dirichlet data {1}) and hr = 2 for 11 ≤ r ≤ 16,
(corresponding to the Dirichlet data {3}). Similarly, for the mixed terms h0α, one has hr = 3 for
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7 ≤ r ≤ 10 and hr = 1 for 17 ≤ r ≤ 20, corresponding to the Neumann data {2} and {4}. Thus,
h0 = 0 in the notation of [23,§6.1].

Since gαβ ∼ δαβ, the positive roots z+
s (x, ξ), s = 1, ...m = 20, of the symbol L(x, ξ + zn) are all

close to z = i|ξ|; when gαβ = δαβ, the positive roots are exactly z = i|ξ|. Hence

L+
0 (x, ξ, z) ≡

20∏

1

(z − z+
s (x, ξ)) ∼ (z − i|ξ|)20.

Let Ljk be the matrix adjoint of Ljk, (the matrix of minors of L). Then Ljk(x, ξ + zn) = (|ξ|2 +
|z|2)18δjk + lower order terms. One then forms

(2.18) Qrk(x, ξ, z) =
N∑

j=1

B′
rj(x, ξ + zn)Ljk(x, ξ + zn) ∼ B′

rk(x, ξ + zn)(|ξ|2 + |z|2)18,

where B′
rk is the leading order symbol of Brk.

Here Qrk is viewed as a polynomial in z, for any fixed x, ξ with x ∈ ∂M and ξ a cotangent
vector to ∂M ; n is the unit conormal. Then the complementary condition is that the rows of Qrk

are linearly independent mod L+
0 , i.e.

m∑

r=1

crQrk(x, ξ, z) = 0 mod L+
0 ⇒ {cr} = 0.

By (2.18), this is essentially equivalent to

(2.19)
m∑

j=1

crB
′
rk(x, ξ + zn) ≡ (z − i|ξ|)2 ⇒ {cr} = 0,

where the congruence is modulo polynomials in z. More precisely, this is the condition one obtains
when the lower order terms in Ljk are ignored. Including the lower order terms leads to the addition
of polynomials of higher degree on the right in (2.19), and it will be obvious from the computations
below that one may safely ignore such terms.

The 2N×N matrix B′
rk is the leading order symbol for the linearization of the boundary problems

{1}-{4} at g, with variable or unknown h. Consider this matrix M as a pair of N × N matrices,
an upper block M1 consisting of the boundary operators {1} and {2}, and a lower block M2,
consisting of the boundary operators {3} and {4}. The leading order symbol of the linearization
of B is obtained by replacing g by h in the highest derivatives of g that appear in {1}-{4}, and
ignoring all lower order terms. Further, since the ellipticity condition is open and we are working
locally, one may assume that gαβ = δαβ. A simple inspection of the form of {1}-{4} then leads to
the following description of M .

The matrix M1 consists of I6, the 6 × 6 identity matrix, with 0 elsewhere in the first 6 rows,
corresponding to the boundary operator {1}. For the next 4 rows, corresponding to the boundary
operator {2}, the 4× 4 block corresponding to the (0α) terms (the lower right block) has the form

(2.20)




z 2ξ1 2ξ2 2ξ3
1
2ξ1 z 0 0
1
2ξ2 0 z 0
1
2ξ3 0 0 z




To see this, the diagonal z terms come from the operator N in (2.6)-(2.7). Next, one has H =
gijAij = Aii = −∂ih0i + 1

2∂0hii. Via (2.6), the first term here gives rise to the first row in (2.20);

the term 1
2∂0hii, giving rise to −zhii goes into the (ii) columns of the (00) row, (in the lower left
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block), and may ignored. The first (00) column in (2.20) comes from the first term on the right in
(2.7); note that the term Hg0i linearizes to 0.

The matrix M2 has a similar description. The first 6 rows of M2 consist of (|z|2 + |ξ|2)I6 and 0
elsewhere, corresponding to the boundary operator {3}. The last 4 × 4 block (on the lower right)
of the boundary operator {4} gives a matrix of the form

(2.21)




z(z2 + |ξ|2) −1
3 |ξ|

2ξ1 −1
3 |ξ|

2ξ2 −1
3 |ξ|

2ξ3
0 z(z2 + |ξ|2) 0 0
0 0 z(z2 + |ξ|2) 0
0 0 0 z(z2 + |ξ|2)




There are again terms of the form |ξ|2z in the tangential (ii) columns of the (00) row, (in the lower
left block) but again these can be ignored.

Using these forms of the matrices, together with the fact that the terms ignored above are at
most first order in z, it is easy to see that there are no non-trivial solutions of (2.19). Namely,
the polynomials in z on the left side of (2.19) are all of order at most 3, with no z2 terms. Such
polynomials cannot have i|ξ| as a double root. This shows that all the hypotheses of [23, §6.1,6.3]
are satisfied, which proves the result.

Having verified that the Bach equation with the boundary conditions {1}-{4} forms an elliptic
boundary value problem in local harmonic coordinates, one then has the following:

Corollary 2.2. Let g be an AH Einstein metric on a 4-manifold M , which admits an L2,p conformal
compactification g̃ in local boundary harmonic coordinates, for some p > 4, with boundary metric
γ.

Let k ≥ 1 and q ≥ 2. If γ ∈ Lk+2,q(∂M) and the scalar curvature s̃ ∈ Lk,q(M), with s̃|∂M ∈
Lk,q(∂M), then the metric g̃ ∈ Lk+2,q(M).

Similarly, for m ≥ 0 and α ∈ (0, 1), if γ ∈ Cm+2,α(∂M) and s̃ ∈ Cm,α(M), then g̃ ∈ Cm+2,α(M).
If γ and s̃ are real-analytic, then so is g̃.

Proof: The regularity hypotheses and conclusions are understood to be with respect to local
boundary harmonic coordinates.

This result follows from Proposition 2.1 and the regularity theory for elliptic systems, cf. [23,
§6]. Suppose first that the compactification g̃ is L4,p or C4,α, so that g̃ is a classical solution of
the Bach equation (2.1) and satisfies the boundary conditions {1}-{4}, with the given control on
s̃. Then the result follows from boundary regularity for such elliptic systems, see [23, Thm. 6.3.7].
Here, the coefficients of the interior operator L and boundary operator B are frozen to obtain a
linear elliptic system, and the usual boostrap argument is used to obtain regularity. In the notation
of [23], one sets h0 = 0, h = 1, and proceeds iteratively. The real-analytic case follows from [23,
Thm. 6.7.6′].

In the case g̃ ∈ L2,p, the metric g̃ satisfies the Bach equation and boundary conditions weakly.
Using the fact that these equations are of divergence-form at leading order, (since they come from a
natural variational problem), one then applies [23, Thm. 6.4.8] to prove that g̃ has higher regularity,
according to the regularity of s̃ and the boundary data. This process is then iterated until g̃ is a
classical solution, as above.

To verify this in more detail, in the Bach equation (2.1), the assumptions s ∈ L2,q and g ∈ L2,p

imply that the right side of (2.1) is in Lq̂, where q̂ = q/2 > 1. Hence,

D∗DRic = f ∈ Lq̂.
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(In Morrey’s notation, q̂ equals q and f is a term f0
j in [23, (6.4.1)]). Next, the leading term of

D∗DRic is the biLaplacian ∆∆. In local harmonic coordinates, the expression (∆∆u)dV schemat-
ically has the form ∂(g∂(g∂2u)) = ∂2(g2∂2u) − ∂(g∂g∂2u); here g or g2 denotes some algebraic
expression in the metric g. The interior operator L(u) is now chosen to be the first term, (the
leading order term of the biLaplacian),

L(u) = ∂2(g2∂2u),

while the second term ∂(g∂g∂2u) is treated as a term f1
j in [23, (6.4.1)]. Note that g∂g∂2u ∈ Lq̂

again, when one sets u = g. The remaining lower order terms in D∗DRic are then treated in
exactly the same way; it should be noted here that all 3rd order terms in the metric in D∗DRic are
total derivatives, i.e. of divergence form, as above.

In Morrey’s notation, one now chooses, h = h0 = −2, and h′ = −1 and for the interior operator
sets, mj = 2 and sj = 0 for all j, while tk = 4 for all k. The h-µ conditions of [23, Def. 6.4.1],
or more precisely the h′-µ conditions with h′ = −1, require only g ∈ C1,µ which is satisfied by
hypothesis. The hypotheses [23, (6.4.2)-(6.4.3)] are also satisfied.

Essentially the same manipulations are performed on the boundary system. Consider for instance
the (most complicated) 3rd order boundary operator {4}. One commutes q0βN with the Laplacian
to obtain schematically an operator of the form ∂(g∂(g∂u)) = ∂2(g2∂u) − ∂(g∂g∂u). The first,
leading order, term g2∂u forms one of the boundary operators Brkγ in [23,(6.4.15)] with |γ| = 2.
The h′-µ conditions on this boundary operator again require only g ∈ C1,µ, which is satisfied. The
second term g∂g∂u forms one of the grγ terms in [23,(6.4.15)] with |γ| = 1. Setting u = g, this

term is in L1,q̂, for some q̂ > 0, as required by [23, Thm. 6.4.8]. For this part of Brkγ , one has
hr = 1 and pr = 2, so that hr + pr ≥ 3, as required by [23, (6.4.17)].

Carrying out the same procedure as needed for the remaining boundary operators gives a system
of boundary operators with pr = 0 for the operators {0} and {1}, while pr = 1, 2 for the operators
{3} and {4} respectively. The terms hr are already defined as following (2.17), and one thus has
hr + pr ≥ 3 for all boundary operators, as required by [23, (6.4.17)]. As above, it is easily seen
that the boundary coefficients satisfy the h′-µ conditions. This shows that the hypotheses of [23,
Thm. 6.4.8] are satisfied, and one concludes that g ∈ L3,p, (assuming corresponding regularity in s̃
and the boundary data). Given this regularity boost, one then iterates this process as needed to
obtain g ∈ L4,p or g ∈ C4,α.

Corollary 2.2 leads to the following boundary regularity result.

Theorem 2.3. Let g be an AH Einstein metric on a 4-manifold M , which admits an L2,p conformal
compactification g̃ = ρ2g, p > 4, with respect to a given background C∞ atlas {yµ} for M near ∂M ,
where ρ = ρ(yµ) is an L3,p(yµ) defining function.

If, for a given m ≥ 2 and α ∈ (0, 1), or m = ∞, the boundary metric γ = g̃|∂M is in Cm,α(yµ),
then g admits a Cm,α conformal compactification ĝ = ρ̂2g, with respect to a Cm+1,α atlas {xµ}
consisting of local boundary ĝ-harmonic coordinates, with the same boundary metric. Further,
ρ̂ = ρ̂(xµ) ∈ Cm+1,α(xµ). If γ ∈ Cω(yµ), then ĝ ∈ Cω(xµ).

Moreover, the x-coordinates are at least L3,p(y) functions of the y-coordinates.

Proof: Let ĝ be a constant scalar curvature metric conformal to g̃ on M with ĝ|∂M = γ. Thus,
for ĝ = u2g̃, the function u > 0 is a solution of the Dirichlet problem for the Yamabe equation

(2.22) u3µ = −6∆̃u+ s̃u

on M , with u = 1 on ∂M and ŝ = µ = const. It is simplest to choose µ = −1. Standard methods
in elliptic PDE then give an L2,p(y) solution to this Dirichlet problem, cf. [21]. Thus, the metric
ĝ is L2,p(y) conformally compact, with constant scalar curvature. Let {x} = {xµ} be a system of
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local boundary ĝ-harmonic coordinates near ∂M . Then ĝ ∈ L2,p(x), (since harmonic coordinates
have optimal regularity), and

(2.23) x ∈ L3,p(y).

Moreover, when restricted to ∂M , x ∈ Cm+1,α(y). It follows from Corollary 2.2 that ĝ then has
the same regularity as the boundary metric γ in the x-coordinates, i.e. ĝ ∈ Cm,α(x).

To prove that ρ̂ ∈ Cm+1,α(x), standard formulas relating the Ricci curvature of ĝ with that of
g, cf. [2, (1.4-(1.5)] or [7, Ch.1J], give

ẑ ≡ R̂ic−
ŝ

4
ĝ = −2ρ̂−1(D̂2ρ̂−

∆̂ρ̂

4
ĝ),

so that D̂2ρ̂ − ∆̂ρ̂
4 ĝ = −1

2 ρ̂ẑ. Now apply the divergence operator δ̂ to both sides of this equation.

On the one hand, a simple computation gives, (dropping the hats from the notation), δD2f =
−d∆f − Ric(∇f) and δ(fg) = −df . On the other hand, for metrics of constant scalar curvature,
δ(fz) = fδz − z(∇f) = −z(∇f), where the last equation follows from the contracted Bianchi

identity. These calculations then give 3
4d∆̂ρ̂ = − ŝ

4dρ̂−
3
2 ẑ(dρ̂), or equivalently

(2.24) ∆̂dρ̂ = −
ŝ

3
dρ̂− 2ẑ(dρ̂).

Since ŝ is constant and d commutes with ∆̂, it follows that ẑ(dρ̂) is exact, so that

(2.25) −2ẑ(dρ̂) = dφ,

for some function φ. Thus (2.24) is equivalent to

(2.26) ∆̂ρ̂+
ŝ

3
ρ̂ = φ,

(where an undetermined constant has been absorbed into φ). This is an elliptic equation for ρ̂, with
ρ̂ = 0 on ∂M , and so one may use elliptic boundary regularity results to determine the smoothness
of ρ̂. To do this, recall that ĝ ∈ Cm,α(x) and ẑ ∈ Cm−2,α(x). Suppose first that

(2.27) ρ̂ ∈ Ck,α(x),

for some k, 1 ≤ k ≤ m. Then dρ̂ ∈ Ck−1,α(x) and since ẑ ∈ Cm−2,α(x), it follows from (2.25)
that dφ ∈ Cℓ,α, where ℓ = min(m − 2, k − 1). Hence, φ ∈ Cℓ+1,α(x). In the x-coordinates, the

Laplacian ∆̂ has the form ∆̂ = ĝµν∂xµ∂xν , and the Schauder elliptic boundary estimates, (cf. [14]
for instance), for the equation (2.26) then give

(2.28) ρ̂ ∈ Cℓ+3,α(x),

provided ℓ+ 1 ≤ m. This gives an increase in the regularity of ρ̂ by 2 derivatives over (2.27), and
hence by induction it follows that

(2.29) ρ̂ ∈ Cm+1,α(x)

provided, (for instance), ρ̂ ∈ C1,α(x).
To prove this last statement, note that ρ̂ = uρ, (since g = ρ̂−2ĝ = ρ̂−2u2g̃ = ρ̂−2u2ρ2g).

One has ρ ∈ L3,p(y) by assumption and u ∈ L2,p(y), so that ρ̂ ∈ L2,p(y). Then (2.23) gives

ρ̂ ∈ L2,p(x) ⊂ C1,α′

(x), for some α′ > 0. (The fact that α′ may be less than α is of no consequence).

One expects that the regularity conclusions in Theorem 2.3 are optimal. Namely, it seems
unlikely that the regularity of g̃ itself can be improved without further hypotheses, for example on
the scalar curvature s̃ or on the conformal factor u relating ρ̂ with ρ.

10



Remark 2.4. (i). Proposition 2.1, Corollary 2.2 and Theorem 2.3 have all been phrased globally.
However, the proofs of these results are completely local, and so local versions of these results hold
equally well.

(ii). We point out here that the proof of [2, Thm.2.4] contains a small gap. Namely, [2, Lemma
1.3] does not hold for the mixed components Ric0i of the Ricci curvature, when A 6= 0. The mixed
components Ric0i are not determined by s̃ and the boundary metric, modulo lower order terms as
in (2.8) but instead are given by (2.15), which is 2nd order in the ambient metric. Since [2, Thm.2.4]
uses the Yamabe gauge for which A 6= 0, one does not directly obtain a regularity estimate for Ric0i

in this gauge. My thanks to Robin Graham and Dylan Helliwell for pointing out this gap.
The proof of Theorem 2.3 above fixes this gap, via the boundary condition {4} above. Alternately,

it is straightforward to verify that one can also prove [2, Thm.2.4] by the same methods used there
by adding the boundary conditions {4}. Very briefly, in place of the single Neumann-type boundary
condition {2} used in [2, Thm.2.4], one uses the pair of Neumann-type boundary conditions {2}
and {4}, to obtain regularity in the normal and mixed directions. The proof of regularity in the
tangential directions remains the same.

(iii). A version of Theorem 2.3 has been proved in all even dimensions recently by Dylan
Helliwell, [16]. The proof uses the ideas of the proof above in dimension 4, together with the
Fefferman-Graham ambient obstruction tensor in higher dimensions, in place of the Bach tensor.

From certain perspectives, the best compactifications are geodesic compactifications, defined by
the property that

(2.30) ḡ = t2g,

where t(x) = distḡ(x, ∂M). The integral curves of ∇̄t are then geodesics, orthogonal to ∂M and so
the Gauss Lemma gives the splitting

(2.31) ḡ = dt2 + gt,

near ∂M , where gt may be identified as a curve of metrics on ∂M with g0 = γ. Similarly, the metric
g splits as g = d log t2+t−2gt, so that r = − log t is a geodesic parameter on (M, g). It is well-known
that C2 conformally compact Einstein metrics admit a geodesic compactification, cf. [12] or [15].
Theorem 2.3 gives the following result on the smoothness of the geodesic compactification.

Corollary 2.5. If g is an L2,p conformally compact Einstein metric on a 4-manifold M, with Cm,α

boundary metric γ, then the geodesic compactification ḡ = t2g is Cm−1,α smooth, in harmonic
coordinates. The same result holds with respect to C∞ and Cω.

Proof: By Theorem 2.3, there exists a Cm,α compactification g̃ = ρ2g of g in harmonic coordi-
nates. Writing t = ωρ, the defining equation for t, i.e. |∇̄t|2ḡ = 1, is equivalent to

2(∇̃ρ) logω + ρ|∇̃ logω|2
eg = ρ−1(1 − |∇̃ρ|2

eg).

This is a first order, non-characteristic PDE, with coefficients in Cm,α and right hand side in
Cm−1,α. Hence, the solution ω is in Cm−1,α(M̄).

We are now in position to prove Theorem 1.1.
Proof of Theorem 1.1.
We first set up the local Cauchy problem for the Bach equation (2.1). As local coordinates,

choose geodesic coordinates (t, xi) where, given a compact metric g on M̄ , t(x) = distg(x, ∂M) and
xi are local coordinates on ∂M extended into M to be invariant under the flow of T = ∇t. Thus,
the metric splits in these coordinates as in (2.31). (The bar has been dropped from the notation).
In particular, g0i = 0 and g00 = 1 in these coordinates. Note however that the Bach equation (2.1)
is not an elliptic system in these coordinates.
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Since (2.1) is a 4th order equation, Cauchy data consist of prescribing g, or equivalently gt in
(2.31), and its first three Lie derivatives with respect to T at t = 0. This data may be freely
chosen at ∂M , but we choose data agreeing with that of the Fefferman-Graham expansion (1.4) of
a conformally compact Einstein metric. Thus, set

(2.32) g(0) = g0 = γ, g(1) = LT g|t=0 = 0,

where γ is an arbitrary Cω Riemannian metric on ∂M . For a conformally compact Einstein metric,
the term g(2) is intrinsically determined by γ, (via the Einstein equations (1.2)), as

(2.33) (LT g)
2|t=0 = g(2) = −1

2(Ricγ −
sγ

4
)γ.

Finally let

(2.34) g(3) = (LT g)
3|t=0 = σ

be an arbitrary transverse-traceless Cω symmetric bilinear form on (∂M, γ), cf. again the discussion
following (1.4). This set of Cauchy data is clearly non-characteristic on ∂M . We recall that all
higher order terms in the expansion (1.4) are determined by g(0) and g(3). In fact, if one defines gk

by gk = t−2ḡk and

ḡk ≡ dt2 + g(0) + tg(1) + t2g(2) + t3g(3) + · · · + tkg(k),

so that ḡk is a truncation of the Taylor series of ḡ, then the coefficients g(j) are uniquely determined
by the property that

(2.35) ||Ricgk + 3gk||ḡ = O(tk−2).

With the exception of g(0) and g(3), one finds that g(j) depends on the lower order terms g(l), l < j,
and their x-derivatives up to second order, cf. [12].

Now the system (2.1) has real-analytic coefficients, and the Cauchy data above are real-analytic.
Of course the boundary {t = 0} at ∂M is real-analytic in the given coordinates (t, xi). Hence,
the Cauchy-Kovalewsky theorem, cf. [17], implies there is a unique Cω metric g, given in the form
(2.31) and defined on a thickening M = [0, ε)×∂M of ∂M , which satisfies the Bach equation (2.1),
and satisfies the prescribed Cauchy data (2.32)-(2.34).

Since the curve of metrics gt on ∂M as in (2.31) is real-analytic in t, it is given by its Taylor
expansion at t = 0. Now recall that conformally Einstein metrics are Bach-flat, and so are solutions
of the equations (2.1). Via the Bach equations, the higher order coefficients g(n), n ≥ 4, in the Taylor
expansion of the solution g are determined inductively by the lower order terms g(j), 0 ≤ j ≤ 3 and
their x-derivatives. Since, by construction in (2.32)-(2.34), these lower order terms are determined
by the Einstein equations, it follows immediately by uniqueness of analytic solutions that the higher
order terms g(n) are also determined by the Einstein equations. Hence the Taylor series of gt is the
same as the Fefferman-Graham series (1.4). Equivalently, via (2.35), one sees that the compactified
metric ḡ is conformally Einstein, to infinite order at ∂M . Analyticity then implies that ḡ is exactly
conformally Einstein, and moreover that g = t−2ḡ is an AH Einstein metric defined near ∂M .

If g′ is any other AH Einstein metric with L2,p conformal compactification, and with given
boundary data (γ, σ), then by Corollary 2.5, the geodesic compactification of g′ is real-analytic.
Hence g′ = g up to isometry, so that g is unique among AH Einstein metrics (with a weak com-
pactification).

As described in [4], the solution to the Einstein equations given by Theorem 1.1 can be analyti-
cally continued past N = ∂M onto the “other side”, to obtain a deSitter-type vacuum solution of
the Einstein equations. This is a Lorentz metric g, satisfying the Einstein equations with positive
cosmological constant, i.e.

(2.36) Ricg = 3g.
12



This Lorentz metric is Cω conformally compact, and defined at least in the region M = ∂M× [0, ε),
for some ε > 0. Hence, the solution is geodesically complete to the future of some Cauchy surface,
with real-analytic I+.

Thus, the Lorentzian version of Theorem 1.1 is the following:

Theorem 2.6. Let N be a closed 3-manifold, and let (γ, σ) be a pair consisting of a real-analytic
Riemannian metric γ on N , and a real-analytic symmetric bilinear form σ on N satisfying δγσ =
trγσ = 0. Then there exists a unique vacuum solution to the Einstein equations (2.36) with cosmo-
logical constant Λ = 3, which is Cω conformally compact, defined in a neighborhood of I+, and for
which the geodesic compactification ḡ = t2g satisfies

(2.37) ḡ = (−dt2 + γ − t2g(2) − t3σ + t4g(4) + ...).

Proof: Given the analyticity from Theorem 1.1 and Corollary 2.5, this is proved in [4]. The
Fefferman-Graham expansion (1.4) and its basic properties holds equally well for Lorentzian deSitter-
type vacuum solutions of the Einstein equations, cf. [12]. The terms g(j) in (2.37) are the same
as those given for the Riemannian AH Einstein metrics in (2.35). Note then that formally, the
expansion (2.37) is obtained from the expansion (1.5) by replacing t by it, and dropping any i
factors, giving a form of ”Wick rotation” in this situation. This is explained in more detail in [4].

Alternately, one can prove Theorem 2.6 directly, since a Lorentzian vacuum solution (2.36) is
also Bach-flat. The proof of Theorem 1.1 given above in the Riemannian AH setting then carries
through in the Lorentzian deSitter-type setting in exactly the same way.

Remark 2.7. This result gives a simple proof of a result of H. Friedrich [13], obtained by solving
the conformal Einstein equations, in the special case of analytic initial data. A third proof of this
result has recently been given by A. Rendall [25], using degenerate Fuchsian systems, analogous to
the original arguments of Fefferman-Graham [12].

3. Infinitesimal Einstein Deformations and Diffeomorphisms.

This section is a bridge between the previous and next sections. We begin with a brief discussion
of the Fefferman-Graham expansion [12] in all dimensions and then discuss a weak nondegeneracy
result from [6] which will be needed in the proof of Theorem 1.2.

Let g be a conformally compact Einstein metric on a compact (n+1)-manifold M with boundary
∂M which has a C2 geodesic compactification as in (2.30). The metric ḡ then splits in geodesic
boundary coordinates, as in (2.31):

(3.1) ḡ = dt2 + gt,

near ∂M . Each choice of boundary metric g0 = γ ∈ [γ] determines a unique geodesic defining
function t. Now suppose for the moment that the boundary metric γ is C∞ smooth. Then by
Corollary 2.5 when n = 3, or by [10] for general n, ḡ is C∞ smooth when n is odd, and is C∞

polyhomogeneous when n is even. Hence, the curve gt has a Taylor-type series in t - the Fefferman-
Graham expansion [12]. The exact form of the expansion depends on whether n is odd or even. If
n is odd, one has a power series expansion

(3.2) gt ∼ g(0) + t2g(2) + · · · + tn−1g(n−1) + tng(n) + · · · ,

while if n is even, the series is polyhomogeneous,

(3.3) gt ∼ g(0) + t2g(2) + · · · + tng(n) + tn log t H + · · · .

In both cases, this expansion is even in powers of t, up to tn. The coefficients g(2k), k ≤ [n/2], as
well as the coefficient H when n is even, are explicitly determined by the boundary metric γ = g(0)
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and the Einstein condition (1.2), cf. [11], [12]. For n even, the series (3.3) has terms of the form
tn+k(log t)m.

For any n, the divergence and trace (with respect to g(0) = γ) of g(n) are determined by the
boundary metric γ; in fact there is a symmetric bilinear form r(n) and scalar function a(n), both
depending only on γ and its derivatives up to order n, such that

(3.4) δγ(g(n) + r(n)) = 0, and trγ(g(n) + r(n)) = a(n).

For n odd, r(n) = a(n) = 0. However, beyond the relations (3.4), the term g(n) is not determined
by g(0); it depends on the “global” structure of the metric g. The higher order coefficients g(k)

of tk and coefficients h(km) of tn+k(log t)m, are then determined by g(0) and g(n) via the Einstein
equations. The equations (3.4) are constraint equations, and arise from the Gauss-Codazzi and
Gauss and Riccati equations on the level sets S(t) = {x : t(x) = t} in the limit t→ 0.

Now suppose k is an infinitesimal Einstein deformation of (M, g), so that k satisfies

(3.5) LE(k) ≡ 2
d

ds
(Ricg+sk + n(g + sk)) = D∗Dk − 2R(k) − 2δ∗β(k) = 0,

where β is the Bianchi operator β(k) = δk + 1
2dtrk. Suppose for the moment that k is C∞

polyhomogeneous smooth up to ∂M and preserves the geodesic boundary coordinates near ∂M , so
that k0α = 0. If

(3.6) k = O(t),

on approach to ∂M , then the discussion above on the Fefferman-Graham expansion implies the
stronger decay

(3.7) k = O(tn).

If moreover one assumes the stronger condition that

(3.8) k = o(tn),

then the induced variation of the terms g(0) and g(n) in (3.2)-(3.3) vanishes and, again in view of
the discussion on the expansions above, one has

(3.9) k = o(tν),

for all ν < ∞. In this situation, one would expect that k ≡ 0 near ∂M . More generally, if k
is as above but is not necessarily in geodesic gauge, then near ∂M , k should be a “pure gauge”
deformation, i.e. k = δ∗Z, for some vector field Z on M with X = 0 on ∂M . These expectations
do in fact hold, and are proved in [6]; this corresponds to a unique continuation property at infinity
for AH Einstein metrics and their linearizations.

For the work to follow in §4, we need to discuss this in somewhat more detail. Thus, suppose
(M, g) is a C2,α conformally compact Einstein metric. In view of (3.5), the simplest gauge choice
for infinitesimal Einstein deformations κ of g is the Bianchi gauge

(3.10) β(κ) = 0.

In this case, κ satisfies the elliptic equation

(3.11) L(κ) = D∗Dκ− 2R(κ) = 0.

A well-known result of Biquard [8] also gives a converse to this statement. Namely, if κ is a solution
of (3.11) satisfying (3.6), then (3.10) holds. In fact, one then has

(3.12) δκ = 0 and trκ = 0.

To prove (3.12), the trace of (3.11) gives the equation

−∆trκ+ 2ntrκ = 0.
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Since |trκ| → 0 at infinity, it follows immediately from the maximum principle that trκ = 0.
Combining this with (3.10) shows that δκ = 0 also.

We also note the well-known fact, proved via elliptic regularity in weighted Hölder spaces asso-
ciated to the equation (3.11), that for (M, g) as above, if κ satisfies (3.11) and either κ ∈ L2(M, g)
or (3.6) holds for κ, then (3.7) holds, i.e.

(3.13) κ = O(tn).

In addition, an analysis of the behavior of the indicial roots of (3.11) shows that one also has

(3.14) κ(N, ·) = O(tn+1),

where N = ρ∂ρ, with ρ the given defining function for ∂M in M ; the decay estimates (3.13)-(3.14)
are proved in [8], [20] or [22].

Given this background, the following result is proved in [6, Cor. 4.4], and will be used in the
proof of Theorem 4.1.

Proposition 3.1. Let g be a C3,α conformally compact Einstein metric on M , and suppose

(3.15) π1(M,∂M) = 0.

If κ is a symmetric bilinear form in L2(M, g) satisfying (3.11) and (3.8) holds in a neighborhood
of ∂M , then

(3.16) κ ≡ 0,

on (M, g).

Remark 3.2. Proposition 3.1 proves a weak nondegeneracy property conjectured in [22]. As noted
above, it corresponds to a unique continuation property at infinity for solutions of the linearized AH
Einstein equations. A local version of this result also holds, (where (3.8) holds only on approach
to a portion of the boundary); this will not be used here however. The topological condition (3.15)
is needed to ensure that the (iterative) use of the local unique continuation property for solutions
of (3.11) extends consistently to give a global uniqueness on the full manifold M .

We expect that Proposition 3.1 is false in general if the assumption π1(M,∂M) = 0 is dropped,
for example if ∂M is not connected. However, this is not known and it would be of interest to find
some concrete counterexamples.

On the other hand, if ∂M is connected and (M, g) has no local Killing fields, (i.e. there are no

Killing fields on the universal cover M̃ of M), then the proof Proposition 3.1 in [6] holds without
the assumption (3.15). In particular, it follows that Proposition 3.1 holds for generic AH Einstein
metrics on M provided ∂M is connected.

Finally for the application in §4, we note that the pointwise assumption (3.8) in Proposition 3.1
may be weakened to the analogous assumption on the L2 norm of κ over the spheres S(t) as t→ 0.
This follows again from elliptic regularity associated with the equation (3.11), cf. [6, Lemma 4.2]
for further details.

4. The Banach Manifold EAH .

In this section we prove that the moduli space of AH Einstein metrics on a given (n+1)-manifold
is naturally an infinite dimensional Banach manifold, assuming it is non-empty. This is essentially
the content of Theorem 1.2, but the full version is proved in §5. The work in this section uses the
methods developed by Graham-Lee [15] and Biquard [10], as well as the work of White [26], [27].

We begin by describing the function spaces to be used. First, let ρ0 be a fixed Cω defining function
for ∂M in M . Throughout §4, the defining function ρ0 will be kept fixed and only compactifications
with respect to ρ0, will be considered, i.e.

(4.1) g̃ = ρ2
0 · g.
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The situation where ρ0 varies over the family of smooth defining functions is discussed in §5. Given
ρ0, define the function r = r(ρ0) on M by

(4.2) r = − log(ρ0

2 ).

Let Metm,α(∂M) be the space of Cm,α Riemannian metrics on ∂M, so that Metm,α is an open
cone in the Banach space Sm,α(∂M) of symmetric bilinear forms on ∂M . The space Metm,α(∂M)

is given the Cm,α′

topology, for a fixed α′ < α, so that bounded sequences in the Cm,α norm have
convergent subsequences. In this topology, Metm,α is separable, cf. [26]. Next let Sk,β(M) be the
Banach space of Ck,β symmetric bilinear forms on M , and let Sk,β(M̄) be the corresponding space

of forms on the closure M̄ , again with the Ck,β′

topology, β′ < β.
Forms in Sk,β(M) have no control or restriction on their behavior on approach to ∂M, while those

in Sk,β(M̄) of course by definition extend Ck,β up to ∂M. Thus, (m,α) determines the regularity
of the boundary data, while (k, β) determines the regularity in the interior M . These are not
necessarily related, unless one has boundary regularity results, i.e. regularity of the data up to and
including the boundary. We will always assume that m+ α ≥ k + β, and k ≥ 2, α, β ∈ (0, 1).

Let g be a complete Riemannian metric of bounded geometry on M , i.e. g has bounded sectional
curvature and injectivity radius bounded below on M . Following [15] and [8], define the weighted

Hölder spaces S
k,β
δ (M) = S

k,β
δ (M, g) to be the Banach space of symmetric bilinear forms h on M

such that

(4.3) h = e−δrh0,

where h0 ∈ Sk,β(M) satisfies ||h0||Ck,β(M,g) ≤ C, for some constant C < ∞. Here the norm is the

usual Ck,β norm with respect to the metric g, given by

(4.4) ||h0||Ck,β(M,g) =
∑

j≤k

||∇jh0||C0(M,g) + ||∇kh0||Cβ(M,g).

Thus h ∈ S
k,β
δ (M) implies that h and its derivatives up to order k with respect to g decay as e−δr

as r → ∞. The weighted norm of h is then defined as

(4.5) ||h||
Ck,β

δ
(M)

= ||h0||Ck,β(M).

The norms in (4.4) and (4.5) depend only on Ck,β quasi-isometry class of g; two metrics g and
g′ are Ck,β quasi-isometric if, in a fixed local coordinate system, the linear map g−1g′ is bounded

away from 0 and ∞ in Ck,β(M). Hence the spaces S
k,β
δ (M) depend only on the Ck,β quasi-isometry

class of g.
Now suppose the metric g is conformally compact, with compactification g̃ as in (4.1). One may

then define the Ck,β norm of h above also with respect to g̃. Using standard formulas for conformal
changes of metric gives, for any j, β ≥ 0,

(4.6) ||∇̃jh||Cβ(eg) = ||ρ−2−j−β
0 ∇jh||Cβ(g) + lower order terms.

Given these preliminaries, one can construct a natural or “standard” AH metric associated to
any boundary metric γ ∈ Metm,α(∂M). This is first done in a collar neighborhood U of ∂M on
which dρ0 is non-zero, and then later extended to a metric on all of M . Choose a fixed identification
of U with I × ∂M so that ρ0 corresponds to the variable on I. Recalling that ρ0 is fixed, define the
Cm,α hyperbolic cone metric gU = gU (γ, ρ0) in U by

(4.7) gU = dr2 + sinh2 r · γ,

for r as in (4.2). Observe that the dependence of gU is Cω in γ, (and also in ρ0). Also if γ1 and γ2

are Cm,α quasi isometric boundary metrics, then gU (γ1) and gU (γ2) are Cm,α quasi isometric.
16



If {ei} is a local orthonormal frame for gU , with e1 = ∂r, then one easily verifies that the sectional
curvatures Kij of gU in the direction (ei, ej) are given by

K1i = −1,Kjk =
1

sinh2 r
(Kγ)jk − coth2 r,

where i, j, k run from 2 to n + 1 and Kγ is the sectional curvature of γ. This implies that the
curvature of gU decays to that of the hyperbolic space Hn+1(−1) at a rate of O(e−2r) = O(ρ2

0).
The same decay holds for the covariant derivatives of the curvature, up to order m − 2 + α. In
particular by (4.3)-(4.5)

(4.8) RicgU
+ n · gU ∈ S

m−2,α
2 (M).

The metric gU is Cm,α conformally compact. In fact if g̃U is the compactification (4.1) of gU , then
a simple computation gives

g̃U = dρ2
0 + (1 − 1

4ρ
2
0)

2 · γ.

The metric gU will be viewed as a background metric with which to compare other conformally
compact metrics with the same boundary metric. Thus suppose g′ is any conformally compact
metric on M , with compactification g̃′ as in (4.1). Then one may write

(4.9) g′|U = gU + h,

and we will assume that h ∈ Sk,β(M). This implies that

(4.10) g̃′|U = dρ2
0 + (1 − 1

4ρ
2
0)

2 · γ + ρ2
0h,

so that if ρ2
0|h| → 0 on approach to ∂M , then g̃′ is a C0 compactification of g′|U with boundary

metric γ; here |h| is the pointwise norm of h with respect to any smooth metric on M̄ . The
compactification g̃′ is Ck,β when ρ2

0h ∈ Sk,β(M̄). Using the relations (4.3)-(4.6), observe that

(4.11) h ∈ S
k,β
δ (M) with δ ≥ k + β ⇒ h̃ = ρ2

0h ∈ Sk,β(M̄).

However, if δ < k + β and h ∈ S
k,β
δ (M), then in general, i.e. without further restrictions, ρ2

0h will

not be in Sk,β(M̄); this is essentially the issue of boundary regularity, and will be discussed at the
end of §4 and in §5.

The standard metrics gU may be naturally extended to all of M as follows. Let η = η(r) be a
fixed cutoff function on M , with η ≡ 1 on U , η ≡ 0 on M \ U ′, where U ′ is a thickening of U on
which dη is also non-vanishing. If gC is any smooth Riemannian metric on the compact manifold
M \ U , (so gC is incomplete), then define

(4.12) gγ = ηgU + (1 − η)gC .

Thus for any γ ∈ Metm,α(∂M), gγ in (4.12) gives a standard AH metric on M , with boundary
metric γ. The metric gγ on M again depends smoothly on γ and the choices of the compact metric
gC and cutoff η. As with ρ0, we fix the metric gC and cutoff η once for all. With this understood,
one thus has a Cω smooth (addition) map

(4.13) A : Metm,α(∂M) × Uk,β
δ →Metk,β

δ (M), A(γ, h) = g ≡ gγ + h,

where Uk,β
δ is the open subset of S

k,β
δ (M), consisting of those h such that gγ + h is a well-defined

metric on M .
In view of the decay rate (4.8), the most natural choice of δ is

(4.14) δ = 2,

and we fix this choice for the remainder of this section. The map A is clearly injective and the
asymptotically hyperbolic (AH) metrics (of weight δ = 2) are defined to be the image of A;

(4.15) Metk,β
AH = ImA.
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The inverse map to A, S : Metk,β
AH → Metm,α(∂M) × Uk,β

2 gives the splitting of the AH metric g
into its components gγ and h. Let

(4.16) Ek,β
AH ⊂Metk,β

AH

be the subset of AH Einstein metrics, with topology induced as a subset of the product topology.

Note that, as discussed in (4.11), metrics in Ek,β
AH are C2 conformally compact, but not necessarily

Ck,β conformally compact with respect to ρ0, for k + β > 2. Of course Einstein metrics are Cω in

local harmonic coordinates, and so (k, β) only serves to denote the ambient space Metk,β
AH in which

EAH is embedded.
Now let g0 be a fixed (but arbitrary) background metric in Metk,β

AH with boundary metric γ0.
For γ ∈Metm,α(∂M) close to γ0, let

(4.17) g(γ) = g0 + η(gγ − gγ0
).

Any metric g ∈ Metk,β
AH with boundary metric γ thus has the form g = g(γ) + h, for h ∈ S

k,β
2 .

Essentially as in [8], for any k ≥ 2, define

(4.18) Φ = Φg0 : Metk,β
AH → S

k−2,β
2 (M),

Φ(g) = Φ(g(γ) + h) = Ricg + ng + (δg)
∗βg(γ)(g),

where βg(γ) is the Bianchi operator with respect to g(γ), (cf. (3.5)),

(4.19) βg(γ)(g) = δg(γ)g + 1
2d(trg(γ)g).

Observe that Φ is well-defined, by (4.8), (4.14) and the fact that h = g − g(γ) ∈ S
k,β
2 . Clearly Φ is

Cω in g.
There are several natural reasons for considering the operator Φ. First, it is proved in [8, Lemma

I.1.4] that

(4.20) Zk,β
AH ≡ Φ−1(0) ∩ {Ric < 0} ⊂ Ek,β

AH ,

where {Ric < 0} is the open set of metrics with negative Ricci curvature. (Here one uses the fact

that βg(γ)(g) ∈ S
k−1,β
2 ). Further, if g is an AH Einstein metric, i.e. Ricg = −ng, with boundary

metric γ, which is close to g0 and which satisfies Φ(g) = 0, then

(4.21) βg(γ)(g) = 0.

As discussed later, the condition (4.21) defines the tangent space of a slice to the action of the

diffeomorphism group on MetAH and EAH . Thus, for any g ∈ Ek,β
AH near g0, there exists a dif-

feomorphism φ such that φ∗g ∈ Zk,β
AH , cf. (4.38) below. Hence, Ek,β

AH differs from Zk,β
AH just by the

action of diffeomorphisms.
Second, as discussed in §3, the linearization of the Einstein operator Ricg + ng at an Einstein

metric g is given by

(4.22) 1
2D

∗D −R− δ∗β,

acting on the space of symmetric 2-tensors S(M) on M , cf. [7]. The kernel of the elliptic self-adjoint
linear operator

(4.23) L = 1
2D

∗D −R

corresponds to the space of non-trivial infinitesimal Einstein deformations in Bianchi-free gauge,
analogous to the Jacobi fields for geodesics. An AH Einstein metric g on M is called non-degenerate
if

(4.24) K = L2 −KerL = 0,
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i.e. if there are no non-trivial infinitesimal Einstein deformations of g in L2(M, g). Einstein metrics
are critical points of the Einstein-Hilbert functional or action, and this corresponds formally to
the condition that the critical point be non-degenerate, in the sense of Morse theory. Recall from
(3.12) that elements in K are transverse-traceless.

Now the linearization of Φ at g0 ∈Metk,β
AH with respect to the 2nd variable h has the simple form

(4.25) (D2Φ)g0
(ḣ) = 1

2D
∗Dḣ+ 1

2(Ricg0
◦ ḣ+ ḣ ◦Ricg0

+ 2nḣ) −Rg0
(ḣ);

this is due to cancellation of the variation of the term (δg)
∗βg(γ)(g) with the variation of the Ricci

curvature, cf. [8, (1.9)]. Hence, if g0 is Einstein, then

(4.26) (D2Φ)g0
= L = 1

2D
∗D −R.

The variation of Φ at g0 with respect to the 1st variable g(γ) has the form

(D1Φ)g0
(ġ(γ)) = (D2Φ)g0

(ġ(γ)) − δ∗g0
βg0

(ġ(γ)),

where (D2Φ)g0
(ġ(γ)) is given by (4.25) with ġ(γ) in place of ḣ.

The main result of this section, which leads to a version of Theorem 1.2 is the following:

Theorem 4.1. Suppose π1(M,∂M) = 0. At any metric g ∈ Ek,β
AH which is C3,α conformally

compact, the map Φ is a submersion, i.e. the derivative

(4.27) (DΦ)g : TgMetk,β
AH → TΦ(g)S

k−2,β
2 (M)

is surjective and its kernel splits in TgMetk,β
AH .

Proof: By (4.13) and (4.15), TgMetAH = TγMetm,α(∂M)⊕ ThS
k−2,β
2 (M). With respect to this

splitting, (4.26) shows that the derivative of Φ with respect to the second (i.e. h) factor is given by

(D2Φ)g = 1
2D

∗D −R : S
k,β
2 (M) → S

k−2,β
2 (M).

Now by [8, Prop. I.3.5], (D2Φ)g is a Fredholm operator whose kernel on S
k,β
2 (M) equals the L2

kernel K in (4.24). Since (D2Φ)g is self-adjoint on L2, it has Fredholm index 0, and the cokernel of

(D2Φ)g is naturally identified with K in S
k−2,β
2 (M). Thus to prove DΦg is surjective, it suffices to

show that for any non-zero L2 infinitesimal Einstein deformation κ ∈ K, there is a tangent vector
X ∈ TgMetAH such that

(4.28)

∫

M
〈(DΦ)g(X), κ〉dVg 6= 0.

To do this, let X = ġ(γ), so that X corresponds to a variation of the boundary metric γ of g.
Then DΦg0

(X) has the form

(4.29) (DΦg)(X) = 1
2D

∗Dġ(γ) −R(ġ(γ)) − δ∗β(ġ(γ)).

Let γ be the boundary metric induced by g̃ in (4.1) on ∂M . For the following computation, it
is convenient to work with the geodesic defining function t determined by γ. Set r = − log t

2 , as
in (4.2) and let B(r) be the r-sublevel set of the function r with S(r) = ∂B(r) the r-level set.
We apply the divergence theorem to the integral (4.28) over B(r); twice for the Laplacian term in
(4.29) and once for the δ∗ term. Since κ ∈ KerL and δκ = 0 by (3.12), it follows that the integral
(4.28) reduces to an integral over the boundary, and gives

(4.30)

∫

B(r)
〈(DΦ)g(X), κ〉dVg =

∫

S(r)
(〈ġ(γ),∇Nκ〉 − 〈∇N ġ(γ), κ〉 − 〈β(ġ(γ)), κ(N)〉)dVS(r),

where N = ∇r = −t∂t is the unit outward normal.
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To estimate the boundary integrals, the volume form of S(r) satisfies

dVS(r) = t−ndVγ +O(t2),

where dVγ is the volume form of the boundary metric. Let κ̃ = t−nκ. By (3.13), |κ̃|g|S(r) is

uniformly bounded. Setting κ̂ = t2κ̃, one has |κ̂|ḡ = |κ̃|g, and so the same is true for |κ̂|ḡ. A simple
calculation from (4.17) gives

ġ(γ) = η(sinh2 r)γ̇, ∇N ġ(γ) = O(t),

so that |ġ(γ)|g ∼ 1 and |∇N ġ(γ)|g ∼ O(t) as t→ 0. Hence,

(4.31) (〈ġ(γ),∇Nκ〉g − 〈∇N ġ(γ), κ〉)gdVS(r) = t2〈∇Nκ, γ̇〉γdVS(r) +O(t)

= 〈∇N κ̂− (n− 2)κ̂, γ̇〉γdVγ +O(t).

By (3.14), κ(N) = O(tn+1), and hence the last term in (4.30) vanishes in the limit r → ∞.
It follows that if (4.28) vanishes in the limit r → ∞, for all variations γ̇, then one must have

(4.32) ∇N κ̂− (n− 2)κ̂ = o(1),

weakly, as forms on T (S(r)) with respect to ḡ. Here ∇ is the covariant derivative with respect to
g, not ḡ. Pairing this with the bounded form κ̂, and using (3.14) again, one easily sees that (4.32)
implies that 1

2N |κ̂|2 − n|κ̂|2 = o(1), where the norms are with respect to ḡ. Integrating this with

respect to the volume form on (S(t), ḡ) and using the fact that d
dtdVS(t) = O(t), it follows that

(4.33) 1
2N

∫

S(t)
|κ̂|2dVγ − n

∫

S(t)
|κ̂|2dVγ = o(1),

as t→ 0. Using the fact that N = −t∂t, an elementary integration then implies that
∫
S(t) |κ̂|

2dVγ →

0, and hence κ̃ = o(tn) weakly. However, under the assumption π1(M,∂M) = 0, this contradicts
Proposition 3.1, (cf. also Remark 3.2), which thus proves that (4.28) holds.

To prove that the kernel of DΦg splits, i.e. it admits a closed complement in TgMetAH , it suffices
to exhibit a bounded linear projection P mapping TgMetAH onto Ker(DΦg). We do this following
[27]. Thus, one has

(4.34) KerDΦg = {(γ̇, ḣ) : D1Φ(γ̇) +D2Φ(ḣ) = 0}.

From (4.26), D2Φ = L and Im L = K⊥, for K as in (4.24). Hence D1Φ(γ̇) ∈ K⊥, so that
πKD1Φ(γ̇) = 0, i.e. γ̇ ∈ Ker(πKD1Φ), where πK is orthogonal projection onto K. By (4.28) or
more precisely its proof, D1Φ maps onto K and hence ImπKD1 = K. Since the finite dimensional
space K splits, we have TMetAH = K⊕K⊥ = Im(πKD1Φ)⊕Ker(πKD1Φ), so that Ker(πKD1Φ)
splits. Hence, there is a bounded linear projection P1 onto Ker(πKD1Φ). The operator L+ πK is
invertible and one may now define

P (γ̇, ḣ) = (P1γ̇, (L+ πK)−1(−(D1Φ)P1(γ̇) + πK ḣ)).

Then P is the required bounded linear projection.

As in Remark 3.2, it is doubtful if Theorem 4.1 remains valid in general without the assumption

π1(M,∂M) = 0. As noted there, in the generic situation where g ∈ Ek,β
AH has no local Killing fields,

Theorem 4.1 does hold at g, at least when ∂M is connected. For simplicity, for the rest of this
section and throughout §5, we assume π1(M,∂M) = 0.

Corollary 4.2. For any C3,α conformally compact metric g ∈ Ek,β
AH , the local space Zk,β

AH is an

infinite dimensional C∞ separable Banach manifold. In fact, via the splitting (4.13), Zk,β
AH is a C∞

Banach submanifold of Metm,α(∂M) × S
k,β
2 (M) and as such

(4.35) TgZ
k,β
AH = Ker(DΦ)g.
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Proof: This is an immediate consequence of the definition (4.20), Theorem 4.1 and the im-

plicit function theorem in Banach spaces, cf. [18]. Zk,β
AH is separable since it is a submanifold of

Metm,α(∂M) × S
k,β
2 (M), each of which are separable Banach spaces in the topologies defined at

the beginning of §4.

Locally, near any given g0 ∈ Ek,β
AH , the boundary map taking an AH Einstein metric g to its

boundary metric γ with respect to the compactification (4.1) is given simply by projection on the
first factor:

(4.36) Π : Ek,β
AH →Metm,α(∂M); Π(g) = Π(gγ + h) = γ.

Clearly, this map is C∞ smooth.

The spacesMetk,β
AH and Ek,β

AH are invariant under the action of suitable diffeomorphisms. In §5, we
will consider larger diffeomorphism groups, but for now we restrict to the group D2 ≡ Diffm+1,α(M̄)
of Cm+1,α diffeomorphisms φ of M̄ such that

(4.37) φ|∂M = id∂M , and lim
ρo→0

(
φ∗ρ0

ρ0
) = 1,

where ρ0 is the fixed defining function. If g ∈ Ek,β
AH and g̃ = ρ2

0g is the compactification as in (4.1),
then for φ ∈ D2, the compactification of φ∗g is given by

φ̃∗g = ρ2
0φ

∗g = (φ∗g̃)(
ρ0

φ∗ρ0
)2.

Hence (4.37) implies that g and φ∗g have the same boundary metric with respect to ρ0. However,
the normal vectors of the compactified metrics g̃ and φ∗g̃ are different in general.

The action of D2 preserves the spaces Metk,β
AH and Ek,β

AH . This is because |Dφ− id|eg extends Cm,α

smoothly up to ∂M , and hence |Dφ− id|g = O(e−r), so that |φ∗g − g|g = O(e−2r). Note also that

since m ≥ k, for g a Ck,β metric (in a smooth atlas for M), and φ ∈ D2, φ
∗g ∈ Ck,β .

Observe that the action of D2 on Metk,β
AH or Ek,β

AH is free, since any isometry φ of a metric inducing
the identity on ∂M must itself be the identity; this is most easily seen by working in a geodesic

compactification ḡ. It is also standard that the action of D2 on Metk,β
AH and Ek,β

AH is proper.

It is well-known however that the action of D2 on Metk,β
AH is not smooth; for a 1-parameter group

of diffeomorphisms φt with φ0 = id and infinitesimal generator X, one has d
dt(φ

∗
t g)|t = φ∗tLXg.

For g ∈ Metk,β
AH and X ∈ TidD2, the form LXg is only Ck−1,β smooth and so not an element of

TgMetk,β
AH . However, as noted following (4.16), Einstein metrics g are C∞ smooth in a smooth

atlas for M , and in such coordinates, LXg is Ck,β, (in fact Cm,α), smooth. Thus, there is no
loss-of-derivatives for Einstein metrics.

Now it is proved in [8, Prop. I.4.6] that the set of metrics g ∈ Ek,β
AH near a given g0 ∈ Ek,β

AH such
that

(4.38) βg0
(g) = 0

is a local slice for the action of D2 on Ek,β
AH . Thus, a neighborhood U of any given g0 ∈ Ek,β

AH

is homeomorphic to a product Zk,β
AH × V, where V is a neighborhood of the identity in D2. The

homeomorphism is given by

ψ0(g) = (φ∗0g, φ0),

where φ0 is the unique element of D2 such that φ∗0g ∈ Zk,β
AH . To consider the corresponding overlap

maps, let g0 and g1 be background metrics in Ek,β
AH which are sufficiently close, and let Zi be the
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space (4.20) determined by gi. Then ψ0(g) = (φ∗0g, φ0), ψ1(g) = (φ∗1g, φ1) with φ∗i g ∈ Zi, and hence
the overlap map is given by

ψ01(g0, φ0) = (g1, φ1) = ((φ∗1(φ
−1
0 )∗)g0, (φ1 ◦ φ

−1
0 )φ0),

where gi ∈ Zi and φ1 = φ1(g0, φ0) is defined as the unique solution of the equation βg1
(φ∗1(φ

−1
0 )∗g0) =

0. By the discussion preceding (4.38), φ1 is differentiable in g0 and φ0 and in fact is C∞ smooth in

these variables. It follows that the overlap maps are C∞ and hence the global space Ek,β
AH is a C∞

smooth separable Banach manifold, as is the quotient

(4.39) E
(2)
AH = Ek,β

AH/D
m+1,α
2 .

Two metrics g1 and g2 in E
(2)
AH are equivalent if there is a Cm+1,α diffeomorphism φ of weight 2,

i.e. satisfying (4.37), such that φ∗g1 = g2. In particular, g1 and g2 must have the same boundary
metric with respect to ρ0.

When Ek,β
AH is viewed as subset of the product Metm,α(∂M)× S

k,β
2 (M) via S, since Dm+1,α

2 acts
trivially on the first factor, one has

(4.40) E
(2)
AH ⊂Metm,α(∂M) × (Sk,β

2 (M)/Dm+1,α
2 ).

This inclusion sends [g] = [gγ +h] to (γ, [h]), and, given a fixed g0 ∈ Ek,β
AH , a slice representative for

[h] is that unique h ∈ [h] satisfying (4.38). Via (4.36), Π descends to a smooth map

(4.41) Π : E
(2)
AH →Metm,α(∂M), Π([g]) = γ.

We summarize the analysis above in the following:

Proposition 4.3. Near any C3,α conformally compact Einstein metric g, the space E
(2)
AH is a smooth

separable Banach manifold. The map Π : E
(2)
AH →Metm,α(∂M) is a C∞ Fredholm map of index 0,

with

(4.42) Ker(DΠ)g = Kg,

where as in (4.24), Kg is the space of L2 infinitesimal Einstein deformations at g. Consequently,
ImΠ ⊂Metm,α(∂M) is a variety of finite codimension.

Proof: One only needs to verify that Π is Fredholm, with kernel given by (4.42). By construction,
one has

KerDΠ = TE
(2)
AH ∩KerΠ1,

where Π1 is the linear projection on the first factor in the splitting (4.40). Since DΠ1 = Id on the
first factor,

TE
(2)
AH ∩KerΠ1 = TE

(2)
AH ∩ T (Sk,β

2 /Dm+1,α
2 ).

This intersection just consists of the classes [h] satisfying (4.38), and so by (4.35) and (4.26),

KerDΠ = KerL,

where the kernel is taken in S
k,β
2 . But this is the same as the L2 kernel K by [8, Prop.I.3.5].

For the cokernel, one has

Im(DΠ) = Π(TE
(2)
AH) = Π(KerDΦ) = Ker(πKD1Φ),

where the second equality is from (4.35) and the last equality follows from (4.34) and the discussion
following it. Again, as following (4.34), KerπKD1Φ = K⊥ is closed, and has codimension k =
dimK. Hence Π is Fredholm of index 0.

22



Remark 4.4. This result shows that one has the following dictotomy: either there exist no con-
formally compact Einstein metrics on M , or the moduli space of such metrics is at least infinite
dimensional, with ImΠ a variety of finite codimension in Met(∂M).

If there exist Einstein metrics g ∈ EAH which are non-degenerate, so that Kg = {0}, then Π is
a local diffeomorphism in a neighborhood of g. This is the result of Biquard [8], extending earlier
work of Graham-Lee [15]. In other words, Π is an open map on the open submanifold E′

AH of
non-degenerate metrics.

Note that TE
(2)
AH is the space of (essential) infinitesimal asymptotically hyperbolic Einstein de-

formations, (not necessarily preserving the boundary metric as is the case with the L2 kernel K).

The fact that E
(2)
AH is a smooth Banach manifold implies that any infinitesimal AH Einstein defor-

mation may be integrated to a (local) curve of AH Einstein metrics. Apriori, it is not clear if this
remains the case when the boundary metric is required to be fixed, i.e. an L2 infinitesimal Einstein
deformation in K might not integrate to a curve of AH Einstein metrics with the same boundary
metric.

Observe that all the results above are valid in any dimension.

We complete this section with a discussion of the boundary regularity of metrics in EAH . The

Einstein metrics in Ek,β
AH have C2 and hence L2,p compactifications. Suppose dim M = n+ 1 = 4.

Then Theorem 2.3 implies that any g ∈ Ek,β
AH is Cm,α conformally compact, for any m ≥ 2, see the

discussion following (4.2). Thus

(4.43) Ek,β
AH = Em,α

AH ,

and Em,α
AH is the space of AH Einstein metrics on M which are Cm,α conformally compact with

respect to the defining function ρ0 as in (4.1). The space Em,α
AH is a smooth separable Banach

manifold, and boundary regularity implies that the topology on Em,α
AH defined by (4.16) is equivalent

to the S
m,µ
2 (M̄) topology on the compact manifold M̄ , for a fixed µ < α. This corresponds to the

definition in the Introduction. With this understood, one has the following version of Theorem 1.2:

Proposition 4.5. If dim M = 4 and m ≥ 3, then Em,α
AH is the space of Cm,α conformally compact

Einstein metrics on M . If π1(M,∂M) = 0, then Em,α
AH is a smooth separable Banach manifold and

the map Π is a C∞ map

(4.44) Π : Em,α
AH →Metm,α(∂M).

Of course, Proposition 4.5 also holds on the quotient E
(2)
AH = E

(2),m,α
AH . An analogous but somewhat

weaker result holds in all higher dimensions n + 1 > 4; in fact there are two versions in higher
dimensions, although neither version is quite as strong as Proposition 4.5, cf. Theorems 5.5 and 5.6
for further details.

5. The Spaces Em,α, Diffeomorphisms and Stability.

In §4, the defining function ρ0 was fixed, thus giving a fixed boundary metric γ for an AH
Einstein metric g on M . In this section, we consider the situation where ρ varies over all smooth
defining functions, and the corresponding variation of the boundary metrics. This is closely related
to the action of diffeomorphisms on M̄ . These issues are discussed in §5.1, together with the proof
of Theorem 1.2 and its versions in higher dimensions. In §5.2, we prove that the spaces Em,α

AH are
all diffeomorphic and stable in a natural sense.

§5.1. Let D1 = Dm+1,α
1 (M̄) be the group of orientation preserving Cm+1,α diffeomorphisms of

M̄ which restrict to the identity map on ∂M . Recall from (4.37) that D2 ⊂ D1 is the subgroup of
diffeomorphisms φ satisfying limρ0→0(φ

∗ρ0/ρ0) = 1. It is easily seen that D2 is a normal subgroup of
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D1. With respect to ρ0, one has the splitting TM |∂M
∼= T (∂M)⊕R, where the R factor is identified

with the span of ∂/∂ρ0. The groups D1 and D2 act on T (∂M) ⊕ R by the map φ → Dφ|∂M , and
so induce subgroups of Hom(TM |∂M , TM |∂M ). Since D2 ⊂ D1 is defined solely by a 1st order
condition at ∂M , the quotient group D1/D2 is isomorphic to the corresponding quotient group in
Hom(TM |∂M , TM |∂M ).

Lemma 5.1. The quotient group D1/D2 is naturally isomorphic to the group of Cm,α positive
functions λ on ∂M .

Proof: With respect to the splitting TM |∂M
∼= T (∂M)⊕R, the linear map Dφ|∂M , for φ ∈ D1,

has the form (
1 ∗
0 λ

)

where λ = limρ0→0(φ
∗ρ0/ρ0). For φ ∈ D2, Dφ is the same, except that the entry λ is 1. It follows

that the quotient group is identified with the multiplicative group of functions λ : R → R, acting
in the ∂/∂ρ0 direction. Since Dφ is non-singular, λ cannot vanish and hence λ > 0.

As in §4, let E
(2)
AH = EAH/D2 be the space of isometry classes of AH Einstein metrics, among

diffeomorphisms in D2, and similarly, let E
(1)
AH = EAH/D1; here EAH = Ek,β

AH , as in (4.16), (or

(4.43)). There is a natural projection map E
(2)
AH → E

(1)
AH with fiber D1/D2. As in §4, D1 acts freely

on EAH , with local Bianchi slice as in (4.38) so that as following (4.38), E
(1)
AH is a C∞ separable

Banach manifold.
Next, let C = Cm,α be the space of conformal classes of Cm,α metrics on ∂M . Again, C has the

structure of an infinite dimensional Banach manifold, with tangent spaces given by the space of
trace-free symmetric bilinear forms. There is a natural projection map Metm,α(∂M) → C, with
fiber the space of Cm,α conformally equivalent metrics on ∂M .

Proposition 5.2. The boundary map Π descends to a C∞ boundary map on the base spaces, i.e.

(5.1) Π : E
(1)
AH → C.

This map Π is Fredholm, of index 0, with Ker DΠ = K, as in (4.42).

Proof: Let g1 and g2 be AH Einstein metrics on M with φ∗g2 = g1, for φ ∈ D1, and set
λ = limρ0→0(φ

∗ρ0/ρ0). Let ḡi be the compactification of gi, i = 1, 2, with respect to ρ0, as in (4.1),
and let γi be the induced boundary metrics. If ĝ2 is the ρ0-compactification of φ∗g2, then one has

ĝ2 = ρ2
0φ

∗(ρ−2
0 )φ∗(ρ2

0g2) = (
ρ0

φ∗(ρ0)
)2φ∗(ρ2

0g2).

Hence, the boundary metric γ̂2 of ĝ, which must equal γ1, is given by

γ1 = γ̂2 = λ−2φ∗γ2.

Since φ = id on ∂M , it follows that γ2 = λ2γ1, so that the boundary metrics are conformal. It
follows that the boundary map Π in (4.41) descends to the map Π in (5.1) and is smooth.

Further, observe that Lemma 5.1 shows that the converse of the proof above also holds, i.e. if
γ1 and γ2 are conformally equivalent metrics in Metm,α(∂M), so that γ2 = λ2γ1, then there is a
diffeomorphism φ ∈ D1 such that φ∗g2 = g1, where gi are any AH Einstein metrics on M with
boundary metrics γi with respect to the ρ0-compactification. Hence, Π maps the fibers D1/D2

diffeomorphically onto the fibers of Metm,α(∂M) → C.
The proof that Π is Fredholm of index 0, with KerDΠ = K, is thus exactly the same as in

Proposition 4.3.
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Remark 5.3. Recall that the map Π : E
(2)
AH → Met(∂M) in (4.41) depends on a choice of the

defining function ρ0 from (4.1). The reduced map Π in (5.1) is now independent of the choice of
ρ0. To see this, let ρ1 be any other defining function, so that ρ1 = λ · ρ0, for some function λ > 0
on M . Let

ḡ = ρ2
0g, and g̃ = ρ2

1g

be compactifications of g with respect to ρ0 and ρ1. The boundary metrics are related by γ̃ = λ2γ,
where λ = limρ→0(ρ1/ρ0). As in the proof of Proposition 5.2. there is a diffeomorphism φ ∈ D1

satisfying, (along integral curves of ∂/∂ρ0), dφ(ρ0)/dρ0 = λ at ∂M . Hence

(̃φ∗g) = ρ2
1φ

∗g = λ2ρ2
0φ

∗g,

while
φ∗g̃ = φ∗(ρ2

0)φ
∗g = λ2ρ2

0φ
∗g,

near ∂M . Thus, the ρ1 compactification of φ∗g is the same as the ρ0 compactification of g, pulled
back by φ.

Theorem 1.2 is now essentially an immediate consequence of the work above and in §4.
Proof of Theorem 1.2.
The discussion following Lemma 5.1 shows that E

(1)
AH = E

(1),k,β
AH and C = Cm,α, are C∞ smooth

separable Banach manifolds and by Proposition 5.2, Π is a C∞ Fredholm map of index 0. The

boundary regularity result in Proposition 4.5, cf. (4.43), shows that by setting (k, β) = (m,α), E
(1)
AH

is the space of AH Einstein metrics on M which admit a Cm,α compactification, with topology that
of S

m,µ
2 (M̄), µ < α.

Remark 5.4. For certain purposes, it is useful to consider quotients by larger diffeomorphism
groups, and we discuss this briefly here. Thus, let D0 be the group of (Cm+1,α) diffeomorphisms
of M̄ such that the induced diffeomorphism on ∂M is isotopic to the identity. Again, the group
D1 ⊂ D0 is a normal subgroup, and one may form

(5.2) E
(0)
AH = EAH/D0 = E

(1)
AH/(D0/D1).

Similarly, let T denote the quotient space T = C/D0. This is the space of marked conformal
structures on ∂M , analogous to the Teichmüller space of conformal structures on surfaces. The
group D0 however does not act freely on C. Elements in C having a non-trivial isotropy group D0[γ]
are the classes [γ] which have a non-trivial group of conformal diffeomorphisms, i.e. D0[γ] consists
of diffeomorphisms φ ∈ D0 such that

φ∗γ = λ2 · γ,

for some positive function λ on ∂M . A well-known theorem of Obata [24] implies that the isotropy
group D0[γ] of [γ] is always compact, with the single exception of (∂M, [γ]) = (Sn−1, [γ0]), where
γ0 is the round metric on Sn−1.

Similarly, the elements g of EAH which have non-trivial isotropy groups D0(g) in D0 are AH
Einstein metrics which have a non-trivial group of isometries. Such isometries φ ∈ D0 induce a
diffeomorphism φ of ∂M , which is a conformal isometry of the conformal infinity [γ] of g. It follows
that the boundary map Π in (5.1) descends further to a boundary map

(5.3) Π : E
(0)
AH → T .

At any class [g] where D0[g] = id, the quotient space E
(0)
AH is a smooth infinite dimensional Banach

manifold, and similarly for T . At those classes [g] or [γ] where D0[g] or D0[γ] is compact, the quo-

tients E
(0)
AH and T are smooth orbifolds, and Π is an orbifold smooth map. Only at the exceptional

class (Bn, g−1) of the Poincaré metric on the ball is the quotient T not well-behaved, and possibly
non-Hausdorff.
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Finally, one may carry out the same quotient construction with respect to the full group D
= Diff(M̄) of diffeomorphisms of M̄ mapping ∂M to itself, so that EAH = EAH/D, while T is
replaced by the moduli space of conformal structures M = T /Γ, where Γ = D(∂M)/D0(∂M) is
the subgroup of the mapping class group of ∂M consisting of diffeomorphisms of ∂M which extend
to diffeomorphisms of M .

Next we discuss two versions of Theorem 1.2 in higher dimensions. Let M be an (n+ 1) dimen-
sional manifold with boundary, n > 3. When n is even, the Fefferman-Graham expansion (3.3) in
general has log terms appearing at order n, i.e. of the form tn log t, and at higher order as well.
Thus, one cannot expect a smooth boundary regularity result when dim M is odd. On the other
hand, a result of Lee [20] gives boundary regularity below order n.

To describe the first version of Theorem 1.2, let E2
AH be the space of AH Einstein metrics which

are C2 conformally compact, with respect to a smooth defining function ρ0, as in (4.16). Suppose
the boundary metric γ ∈ Cm,α. Then Lee’s result [20] states that any g ∈ E2

AH is Ck,µ conformally
compact, where k + µ = min(m+ α, n− 1 + β), for any β ∈ (0, 1).

Combining this result with the results above in §5, and with Proposition 4.3 and the discussion
preceding Proposition 4.5, gives the following:

Theorem 5.5. Let M be a compact, oriented (n + 1)-manifold with boundary ∂M , n > 3, with

π1(M,∂M) = 0. If, for a given (m,α), with 3 ≤ m ≤ n− 1, ÊAH = Êm,α
AH is non-empty, then ÊAH

is a smooth infinite dimensional Banach manifold. Further, the boundary map

(5.4) Π : ÊAH → C = Cm,α

is a C∞ smooth Fredholm map of index 0.

Thus, the statement of Theorem 5.5 is equivalent to that of Theorem 1.2, provided m ≤ n − 1.
For the second version of Theorem 1.2, a result of Chruściel et al. [10] gives an optimal boundary
regularity result for C∞ boundary metrics γ. Thus, if g is an AH Einstein metric with a C2

conformal compactification to a C∞ boundary metric γ, then if n is odd, g is C∞ conformally
compact. If n is even, g is C∞ polyhomogeneous, i.e. g has a compactification ḡ which is a smooth

function of (t, tn log t, y), where y ∈ ∂M . In either case even/odd, let ẼAH be the space of such
metrics, and C∞ the space of C∞ conformal classes.

The same proof as Theorem 5.5 gives:

Theorem 5.6. Let M be a compact, oriented (n+1)-manifold with boundary ∂M with π1(M,∂M) =

0. If ẼAH is non-empty, then ẼAH is a smooth infinite dimensional Frechet manifold. Further, the
boundary map

(5.5) Π : ẼAH → C = C∞

is a C∞ smooth Fredholm map of index 0.

§5.2. In this section, we compare the structure of the spaces Em,α
AH over varying m, α. In

dimension 4, the spaces Em,α
AH are defined as in (4.43), while in dimensions greater than 4, Em,α

AH is

defined as preceding (5.4) with 3 ≤ m ≤ n−1. (The spaces ẼAH are only defined for C∞ boundary
data).

Clearly, one has inclusions

(5.6) Eω
AH ⊂ E∞

AH ⊂ Em′,α′

AH ⊂ Em,α
AH ,
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for any (m′, α′) with m′ + α′ > m + α. Here we recall that the topology on Em,α
AH is that induced

by the Cm,µ topology on S
m,α
2 (M̄), for a fixed µ < α, cf. the discussion preceding Proposition 4.4.

The inclusions (5.6) correspond formally to the much simpler inclusions of the conformal classes

Cω ⊂ C∞ ⊂ Cm′,α′

⊂ Cm,α of conformal classes of metrics on ∂M . It is essentially clear that the
spaces Cm,α are diffeomorphic, for all (m,α), including m = ∞ or m = ω. Further, each Cm′,α′

is
dense in Cm,α.

For later purposes, it is worthwhile to verify these claims explicitly. With respect to a fixed
real-analytic atlas for ∂M , metrics in Metm,α(∂M) are given by a collection of Cm,α functions
gij : U → R, where U is an open set in Rn. Hence the topology on Metm,α(∂M) is determined by
the standard Cm,α topology on Cm,α(U,R). These local spaces are all diffeomorphic in a natural
sense, as (m,α) vary and induce diffeomorphisms of the global spaces Metm,α(∂M). This argument
also holds when passing to the associated spaces Cm,α of conformal classes. The fact that Cm,α is
dense in Cm′,α′

also follows from the fact that the local spaces Cm′,α′

(U,R) are dense in Cm,α(U,R).

Theorem 5.7. For any (m,α), with m ≥ 3 and including m = ∞ and m = ω, the spaces Em,α
AH

are all diffeomorphic. Further Eω
AH , and hence Em′,α′

AH , is dense in Em,α
AH so that if Eω

AH denotes the
completion of Eω

AH in Em,α
AH , then

(5.7) Eω
AH = Em,α

AH .

Proof: It suffices to work with the spaces E
(2),m,α
AH in (4.39) and Metm,α(∂M), using a fixed

Cω defining function ρ0 as in §4. In the following, we will drop the superscript (2) from the
notation. Suppose first that g ∈ Em,α

AH is a regular point of Π, so that DΠg is an isomorphism. The
inverse function theorem implies that there are neighborhoods U of g in Em,α

AH and V of γ = Π(g)
in Metm,α(∂M) such that Π : U → V is a diffeomorphism. Since V is an open set in a Banach

space, Π|U is a chart for Em,α
AH . It follows that Vm′,α′

= Metm
′,α′

(∂M)∩V ⊂ ImΠ and by boundary

regularity that Π−1(Vm′,α′

) ∩ U = Um′,α′

is an open set in Em′,α′

AH . Hence Π induces a chart for

Em′,α′

AH and so Em′,α′

AH is locally diffeomorphic to Em,α
AH .

Next suppose that g is a singular point of Π, and let K = KerDΠg ⊂ TgMetm,α
AH (M), with

H = (CokerDΠg)
⊥ ⊂ TΠ(g)Metm,α

AH (∂M), where the orthogonal complement is taken with respect

to the L2 inner product. By the implicit function theorem, i.e. Theorem 4.1, a neighborhood U
of g in Em,α

AH may be written as a graph over a domain V in K ⊕ H. This gives a local chart on
U and for the same reasons as above, one thus obtains a local chart structure for the open set

Um′,α′

= Em′,α′

AH ∩ U ⊂ Em′,α′

AH .
These local chart structures patch together to give the spaces Em,α

AH the Banach manifold struc-

ture. Since the local charts for Em′,α′

AH are just those obtained by restricting the charts of Em,α
AH to

subdomains, it follows that the spaces Em,α
AH are all diffeomorphic. Similarly, (5.7) follows from the

density of the corresponding local charts, i.e. the density of Cω(U,R) in Cm,α(U,R).
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