

Name:		ID:	
Section:	Section Teacher:		

If you are not sure of your section, consult the table below.

Section	Instructor	Time
1	Mieczkowski	Tu Th 2:20
2	Mieczkowski	Tu Th 3:50
3	Kim	M W 5:30
4	Krol	M W 2:15
5	Lundberg	M W 8:20
6	Coffee	M W 10:30
7	Kim	M W 8:30
9	Buse	Tu Th 8:20
10	Yau	M W 3:20
11	Friedman	Tu Th 9:50
12	Friedman	Tu Th 12:50
13	Sporn	Tu Th 8:20
14	Yau	M W 2:15
15	Behrstock	Tu Th 11:20
16	Behrstock	Tu Th 3:50
17	Rasdeaconu	Tu Th 7:00
18	Buse	Tu Th 8:20

Problem	Points	Grade
1	12	
2	15	
3	9	
4	10	
5	10	
Total	56	

WORK all problems on these pages. SHOW all work you want graded. WRITE CAREFULLY: points may be taken off for meaningless statements.

- 1. Let $f(x) = \frac{1}{2x}$.
- a) Find the slope of the secant line which passes through the points (1, f(1)) and (3, f(3)).

b) Find the equation of this secant line.
c) Find the slope of the tangent line to the graph of f which passes through the point $(1, f(1))$.
d) Find the equation of this tangent line.

- 2. Find each limit or explain why it does not exist:
 - a)

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$

b)

$$\lim_{x \to 0} \sin(1/x)$$

c)

$$\lim_{x \to 0} x \sin(1/x)$$

 $\lim_{x \to 0^-} \frac{|x|}{x}$

e)
$$\lim_{x \to -\infty} \frac{3x^4 - 2x^2 + 1}{2x^3 - 3x + 2}$$

- 3. Let $\lfloor x \rfloor$ denote the largest integer that is less than or equal to x.
 - a) Find

$$\lim_{x \to 2^+} \lfloor x \rfloor.$$

b) Find

$$\lim_{x \to 2^{-}} \lfloor x \rfloor.$$

c) For what values of x is $\lfloor x \rfloor$ continuous?

4. a) State the Intermediate Value theorem.

b) Use it to show that the equation

$$\frac{1}{3}x^3 - x^2 - x + 1 = 0$$

must have at least one solution in the interval [0, 2] and at least one solution in the interval [3, 6].

c) Does the equation in part b) have any negative solutions? Explain your answer carefully.

5. a) Find all values of x for which the function

$$f(x) = \frac{x^2 + 2x + 1}{(x^2 - x - 2)(x - 3)}$$

is defined.

b) Find

$$\lim_{x \to -1} \{ f(x) \}$$

c) Find the horizontal and verticle asymptotes of the curve y = f(x).