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1. SOME ANSWERS TO PROBLEMS FROM §4.2

The functions u;(y) = sinh Ay and us(y) = sinh A(b — y) each solve the equation. We
verify this for the latter. We have
d

d—yug(y) = —Acosh A\(b—1y),

and therefore,

d’ 2 2
d—y2u2(y) = A sinh A(b— y) = XN us(y),
This last identity shows what we wanted to verify.

These two functions are linearly independent. This means that if we choose coefhi-
cients ¢; and ¢y, the only combination of the form c¢iu(y) + cous(y) that results into
the zero function is the combination corresponding to ¢; = co = 0. Let’s see if that is
the case. If

crur(y) + cauz(y) =0,

then taking the value at y = 0 we obtain
0= c1u1(0) + couz(0) = cosinh Ab.
But sinh Ab # 0, so this implies that co = 0. In turn this means that

cui(y) =0

for all y. So in particular, this is so at y = 1. But since u;(1) # 0, we conclude that
the coefficient ¢; must be zero.

The work above shows that {sinh Ay,sinh A\(b — y)} is a linearly independent set of
functions each one of which satisfies the second order differential equation ¥ — A2V = 0.
So this set is a basis of the space of solutions to this equation. That is to say, any solution
Y can be written as a linear combination

Y (y) = a;sinh Ay + agsinh A(b—v),

for some coefficients oy, as.

Let us consider the constant function v = v(x,y) = 1. We attempt to find our solution
u = u(z,y) as u = v + w for some function w. Since u and v are harmonic inside the
rectangle and the Laplace operator is linear, the function w must be harmonic inside
the rectangle as well. On the other hand, since v and v are equal to 1 on the bottom,
left, and upper side of the rectangle, we must have that w is zero on those sides. Finally,
0, w(0, y) must be zero since the same is truce of 9,u(0,y) and 0,v(0, y). Thus, w solves
the boundary value problem

Aw=0, 0<z<a,0<y<b,
0, w(0,y) =0, w =0 on the remainder of the boundary .

We show below that the only solution to this problem is the function w = 0. Hence,
the solution to problem we started with is the function u(z,y) = v(z,y) = 1.
In order to solve this problem for w, we apply the method of separation of variables.

There several ways of proceeding here. We describe one below.
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If we try to find solutions of Aw = 0 of the form w(z,y) = ¢(x)1(y) such that
0, w(0,y) = 0 and w(a,y) = 0, then we end up with the eigenvalue problem

¢+ = 0,
$(0) = 0,
p(a) = 0,
and the differential equation )
P — N =0.

The eigenvalues at A\g = 0 with eigenfunction ¢y = cos\gz = 1, and A\, = (2n +
1)m/(2a), with eigenfunction ¢, = cos A,z. Solving the equation for ¢ corresponding
to the various eigenvalues, we obtain the family of harmonic functions

cos A,z (A, cosh A,y + By, sinh A\,y)

whose normal derivative at £ = 0 and value at x = a are both zero. We seek for a
solution to the boundary value problem that w satisfies of the form

w(z,y) = Z cos Ay (A, cosh \y + By, sinh Ay,
n=1
and fix the coefficients A,, and B,, so that the conditions at y = 0 and y = b hold. But
from the condition at y = 0 we obtain

o0
w(z,0)=0= ZA" COS A\,
n=1
and this forces A, to be zero for all n. Once we know this, the expression for the
solution w we seek only involves sinh terms. Then from the condition at y = b we
obtain

w(z,b) =0= Z By, sinh Abcos A,z
n=1
and this implies that B, sinh Ab = 0 for all n, that in turn imples that B, = 0. So all
coefficients are zero and w(z,y) = 0, as claimed earlier.



