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1. SOME ANSWERS TO PROBLEMS FROM §1.5

We have
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and so

i 1
n=1 n2
(In case you haven’t thought about it, this is a rather remarkable result: 7 is a
number defined as half the ratio of the length of the circumference and its radius.
That its square could possibly be related to the series whose terms are the inverses
of the squares of the whole numbers is, at first glance, impressive. And it is still
impressive after a while.)
The Fourier sine series of f is the Fourier series of the 27-periodic extension of x
defined on —7 < z < 7 (correct?). That periodic function is sectionally smooth but
it s not continuous. So the theorem that permits term-by-term differentiation does
not apply.

On the other hand, the Fourier cosine series of f is the Fourier series of the 27-
periodic extension of |z| defined on —7 < z < 7 (correct?). This periodic function is
continuous and sectionally smooth. So the answer in this case is yes: we can indeed
differentiate the cosine series of f term-by-term.

We can actually see these two results by direct analysis of the explicit expressions
for these sine and cosine series, that are given by
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respectively. The fundamental difference is that the coefficients of the first series
decrease as 1/n, while those of the second do so as 1/n?. As you can verify directly, the
term-by-term differentiation of these series lead to results that behave quite different,
one converges for all z that are not multiples of m to the “square wave function,”
while the other is quite hard to analyse, and it certainly does not converge to the
constant function 1.

For the term-by-term integration of the Fourier series of a function to be valid, it is
only required that the function be periodic and sectionally continuous. The given
sine series is the Fourier series of the 27-periodic extension of the function z, and
such a function satisfies these conditions. So we may integrate the identity
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term-by-term. For convenience, we compute the integral of both sides of this identity

from 0 to z (since we call z the upper limit of our integration, we shall use s for the
1



argument of the integrands, and carry the integration with respect to s):
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and so we obtain that
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Multiplying the series (1) by 7, and subtracting from the result the series above
for z2?, we obtain that
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(Could you guess from this identity the value of >~ | (_ln): Al ?)

Since f is an odd periodic function that is sectionally smooth, by the theorem on
convergence of Fourier series we know that
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converges at every z to the average (f(z*) + f(z7))/2. So the function

o0
u(z,t) = ane’"% sinnx, t>0,
n=1
restricts at ¢ = 0 to
N 20 N flat)+ fz~
u(z,0) = E:Ibne "0 5in nx = E:Ibnsmnx = (z7) 5 (z7) .
n= n—=

Furthermore, since sin0 = sinnm = 0, we have that u(0,t) = u(n,t) = 0 for any
positive t.

Finally, term by term differentiation with respect to z twice yields the formal
expression
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The whole issue to go beyond these formal manipulations is to see why the series (2)
and (3), that define u and d2u, respectively, converge. I will leave the details of that
argument to you.
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2. SOME ANSWERS TO PROBLEMS FROM §2.1

This is actually a rather simple exercise provided we assume Fourier’s law of heat
conduction and Newton’s law of cooling as valid. The first one says that
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where ¢ = ¢(z,t) is the rate of heat flow at a point z and time ¢ (we used this law
in the derivation of the heat equation satisfied by u). The second law says that at a
point a of the rod exposed to a fluid at temperature 7" = T'(¢), the heat is transfered
from the rod to the fluid by convection at a rate proportional to the difference in

temperature between the rod and the fluid, and so

Q(a'a t) = C(U,(CL, t) - T(t)) )

where c is the constant of proportionality.
So let us suppose that the point a = 0 is exposed to convection. We can take the
value at x = 0 of the equation expressing Fourier’s law and obtain that

ou
Q(Oat) - —/fg(o,t) .

On the other hand, the equation expressing Newton’s cooling law will read

q(0,t) = c(u(0,t) — T(t)).
But heat flows in the direction of lower temperature, so if u(0,¢) > 7'(¢) the point
x = 0 looses heat, that is to say, ¢(0,¢) < 0, while the opposite is true if u(0,t) < T'(¢).

This property implies that the constant ¢ must be negative, and we write it asc = —h
for some positive h. We thus obtain

—m%(o,t) = —h(u(0,t) = T(?)),

that simplifies to the condition of third kind, or Robin, given by
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Again, this amounts to interpreting the assertion about Boltzmann law of radiation:

the rate of heat radiation ¢ is proportional to the difference of the fourth power of

the temperature u of the rod and the temperature 7" of the ambient body. So we
obtain

(0, ) = hu(0,) — hT'(2).

q(a,t) = o(u'(a,t) = T*(t)),
at a point x = a of the rod exposed to radiation. Notice that in combination with
Fourier’s law, this yields
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at any such point.
The function u(z,t) = e~k cos Az has the following partial derivatives:
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—u(z,t) = —Ae M*sin Az,
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ﬁu(x,t) p <%u> =—-\e cos \x = —Nu(x,t).
Therefor, if we divide (4) by k£ and subtract (6) from the result, we obtain
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%au(x,t) - @u(x,t) = —Xu(z,t) — (—A\u(z,t)) =0,
as desired.

A similar argument applies to the function defined by e~****sin Az instead.

These two functions show that the heat equation alone may have more than one
solution. Uniqueness, if at all, must come from the imposition of further conditions
at the boundary of the (x,t)-region where this equation is solved. You should think
of this as somewhat analogous to solutions of ordinary differential equations, that are
unique if one imposes an initial condition.



