MAT 362 SPRING 05 HOMEWORK 7

Due Thursday, April 6

- 1. Do Problem 7.12, p.154 in the text. Even though its done quite completely in the solution section, please go through it carefully and make sure you understand all the steps.
- 2. Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be the mapping given by

$$F(p) = \lambda p$$
,

where λ is a non-zero constant. This is a "similarity" transformation of \mathbb{R}^3 .

Let S be a (regular) surface in \mathbb{R}^3 and let $\widetilde{S} = F(S)$.

- (a). Show that \widetilde{S} is also a regular surface.
- (b). Find formulas relating the Gauss and mean curvatures, \widetilde{K} and \widetilde{H} , of \widetilde{S} with the Gauss and mean curvatures, K and H, of S.
- 3. Describe the image of the Gauss map of the following surfaces, i.e. what is the region in S^2 that the surface maps to under the Gauss map.
 - (a). Paraboloid of revolution: $z = x^2 + y^2$.
 - (b). Hyperboloid of revolution: $x^2 + y^2 z^2 = 1$.
 - (c). Catenoid: $x^2 + y^2 = \cosh^2 z$.
- 4. Do Problem 7.19, p.169 of the text.
- 5. (Harder) Suppose S is a minimal surface, i.e. H=0 without umbilic points. Show that the Gauss map $N: S \to S^2(1)$ satisfies, for all $p \in S$,

$$\langle dN_p(w_1), dN_p(w_2) \rangle_{N(p)} = \lambda(p) \langle w_1, w_2 \rangle_p.$$

Here w_1, w_2 are vectors in T_pS and λ is a function on S. Explain why this means the Gauss map is a conformal map of surfaces.